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Abstract  

We analyze the switching characteristics of ultrashort pulses in a nonlinear 

high-birefringence two-core optical fiber by solving a set of four generalized coupled 

nonlinear Schrödinger equations. In such a fiber, the critical power required for activating 

switching changes significantly with the polarization angle of the input pulse and, as a 

result, a pulse at a proper power level can be switched between the two cores of the fiber 

by changing the input polarization angle. This provides a simple mechanism of achieving 

optical switching with the fiber. We also study the effects of the group-delay difference 

(GDD) between the two polarization components and the coupling-coefficient dispersion 

(CCD) in the fiber on the switching characteristics. The GDD tends to break up the two 

polarization components in the input pulse and thus leads to an increase in the switching 
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power. A larger GDD, however, can give a sharper switching contrast when the input 

polarization angle is varied. The CCD tends to break up the input pulse and cause pulse 

distortion, regardless of the polarization, so it also leads to an increase in the switching 

power. Unlike the GDD, a large CCD always reduces the switching contrast. To achieve 

high-quality switching, the fiber should have a small CCD. 

Key Words: birefringence, nonlinear pulse propagation, optical switching, polarization, 

two-core optical fiber  
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1. Introduction 

Nonlinear two-core optical fibers (TCFs) have drawn tremendous attention since the 

pioneering theoretical work by Jensen in 1982 [1] for their many potential applications in 

optical signal processing, especially as all-optical switches [2 – 12]. All-optical switching 

has been experimentally demonstrated in conventional TCFs [2 – 5] and, more recently, in 

a two-core photonic crystal fiber [6] using high-power ultrashort pulse lasers. To avoid 

pulse distortion caused by the group velocity dispersion (GVD) in the fiber, the use of 

soliton pulses for optical switching has been proposed [7]. Many other effects on the 

switching dynamics in TCFs, such as intermodal dispersion [13, 14], third-order 

dispersion [15], and intrapulse Raman scattering [16, 17] have been investigated. 

A TCF that consists of two identical cores possesses two symmetry axes, and hence 

the fiber must possess geometry-induced birefringence, which means that the light waves 

polarized along the two symmetry axes of the fiber propagate at slightly different phase 

velocities. In addition, because the materials for the cores and the cladding of the fiber 

have different thermal expansion coefficients, stress-induced birefringence in the fiber is 

normally produced when the fiber is drawn from the preform at a high temperature. The 

total birefringence in a TCF is the combined result of the geometry birefringence and the 

stress birefringence. It is a complicated exercise to analyze a nonlinear birefringent TCF, 

because four coupled nonlinear equations need to be solved. The majority of the studies 

on TCFs deal with a simpler problem where the birefringence in the fiber is ignored [1 – 
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17]. A zero-birefringence TCF is described by two coupled equations and much more 

amenable to analytical treatment. There are only a few theoretical studies on birefringent 

TCFs [18 – 22], which include an analysis of all-optical continuous-wave (CW) switching 

[18], a study of soliton states [19] and their stability [20] in the absence of group-delay 

difference (GDD) between the two polarization components, a numerical investigation of 

vector soliton pulse switching [21], and a detailed analysis of the modulation instabilities 

in linearly and circularly birefringent TCFs [22]. In spite of these studies, the role of the 

birefringence in a TCF in affecting the switching characteristics of ultrashort pulses is yet 

to be fully understood.  

The primary objective of this paper is to study the switching characteristics of a 

nonlinear high-birefringence (Hi-Bi) TCF with an emphasis on the understanding of the 

effects of the polarization state of the input pulse. Our analysis is based on numerically 

solving a set of four generalized coupled nonlinear Schrödinger equations which 

incorporate the effects of the GDD and the coupling-coefficient dispersion (CCD) in the 

fiber. The significance of these effects on the switching performance of ultrashort pulses 

is investigated. Our main results are summarized below: 

 The critical power required for activating switching changes significantly with the 

polarization angle. This makes possible the realization of polarization-activated 

switching, where a pulse at an appropriate power level is switched between the two 

cores by varying the polarization angle. 

 The GDD increases the switching power and is undesirable for power-controlled 
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switching. However, it increases the switching contrast for polarization-activated 

switching. 

 The CCD increases the switching power and reduces the switching contrast, and 

should be minimized for both power-controlled and polarization-activated switching.  

Modern TCFs based on photonic crystal structures can be designed to possess strong 

birefringence by adjusting the arrangement and the size of the air holes around the core 

region [23]. A study of all-optical switching in such fibers must take into account the 

effects of the birefringence. In fact, the recent experimental demonstration of all-optical 

switching in a 9-mm long two-core photonic crystal fiber using 120-fs laser pulses (at a 

wavelength around 1550 nm with peak intensity up to a few TW/cm2) exhibits significant 

polarization dependence [6]. With such ultrashort pulses, the effects of the GDD and the 

CCD in the fiber, both of which tend to break up the pulses, are expected to be important. 

The findings in this paper can provide insight into the switching behavior of a Hi-Bi TCF 

and thus facilitate the design of fibers and experiments to demonstrate the 

polarization-activated switching effects.   

2. Coupled-mode equations  

We consider a lossless TCF with two identical single-mode cores aligned in the x 

direction, where the light waves in the fiber propagate in the z direction. Because of the 

presence of the birefringence in the fiber, there are two orthogonal polarization modes in 

each core, the x-polarization mode and the y-polarization mode, which propagate along 
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the fiber at different phase velocities. A pulse with an arbitrary polarization state launched 

into one of the cores can be decomposed into the two principal polarization components. 

The propagation of the pulse in such a fiber is described by the following coupled 

nonlinear Schrödinger equations, which can be obtained by extending the existing 

equations for TCFs [7 – 11]:  
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In the above equations, ajp (j = 1, 2 and p = x, y), a function of z and t, is the slowly 

varying amplitude of the electric field of the p-polarization mode in the j-th core; z and t 
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are the distance and time coordinates, respectively; β0p is the propagation constant of the 

p-polarization mode; β1p is the group delay of the p-polarization mode; β2p is the GVD 

with β2p < 0 and β2p > 0 for anomalous and normal dispersion, respectively; γp is the 

nonlinear coefficient of the p polarization; Cp is the linear coupling coefficient of the p 

polarization, which is responsible for the periodic power transfer between the two cores in 

a linear TCF; C1p = dCp/dω, evaluated at the optical carrier frequency of the pulse, 

represents the coupling-coefficient dispersion (CCD), which is equivalent to the 

intermodal dispersion arising from the group delay difference in the p polarization 

between the even and odd supermodes of the TCF [24, 25]. The first and second nonlinear 

terms in each of the above equations account for the self-phase modulation (SPM) and 

cross-phase modulation (XPM) effects, respectively. The third nonlinear term comes from 

the nonlinear coherent coupling between the two orthogonal polarization components in 

each core.  

In the case that the birefringence in the fiber, namely |β0x – β0y|, is large, the 

nonlinear coherent coupling term oscillates rapidly along the propagation direction and its 

contribution is averaged out to zero [18], which suggests that this term can be ignored for 

a Hi-Bi TCF. In practice, the polarization dependences of the GVD, the nonlinearity 

coefficient, and the coupling coefficient dispersion, are weak, so we can put β2x = β2y ≡ β2, 

γx = γy ≡ γ, and C1x = C1y ≡ C1. With these assumptions, Eq. (1) is simplified to the 

following set of equations: 
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By introducing the normalized parameters: 
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where T0 is a characteristic width of the input pulse and LD is the dispersion length, Eq. 

(2), assuming anomalous GVD (β2 < 0), can be expressed in the normalized form: 
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where the coupling length LC and the walk-off lengths caused by the GDD and the CCD, 

LWG and LWC, are defined, respectively, by 
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The normalized amplitudes Ajp (j = 1, 2 and p = x, y) in Eq. (3) are functions of the 

normalized distance and retarded time coordinates, Z and T. The parameter δ, defined by 

Eq. (4), is a measure of the GDD between the two orthogonal polarization components in 

each core. Without loss of generality, we assume δ ≥ 0. It is possible to design a Hi-Bi 

fiber with δ over a wide range (including a zero value) by properly controlling the 

geometry birefringence and the stress birefringence in the fiber [26]. The parameters R 

and R1, defined by Eq. (5) and Eq. (6), respectively, are the normalized linear coupling 
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coefficient and CCD, respectively.  

The normalization procedure can reduce the number of free parameters and thus 

allows a more general discussion of the switching behavior. As shown by Eqs. (4) – (6), 

the GDD, the linear coupling coefficient, and the CCD are all normalized with respect to 

the GVD scaled with the pulse width, which effectively leads to a comparison of the 

characteristic lengths. In the case R >> R1 and δ, i.e., LC << LWC and LWG, which 

corresponds to the use of long pulses (>> 100 fs) and/or strongly coupled cores, it takes a 

large number of coupling lengths to observe significant pulse breakup caused by the GDD 

and the CCD and, as a result, the GDD and the CCD have little effects on optical 

switching with a short fiber (less than a few coupling lengths). In our study, we take R = 1 

and –1 ≤ R1 ≤ 0, which corresponds to the practical situation of launching a ~100-fs pulse 

at the wavelength 1.5 μm into a typical TCF with β2 = 20 ps2/km, γ = 3 /(W·km), and a 

center-to-center core separation of approximately 6 to 8 times of the core radius [11]. The 

range of the GDD values should be similar to that in a single-core Hi-Bi fiber and, 

consequently, is taken as 0 ≤ δ ≤ 2.5 [27]. 

We solve Eq. (3) numerically with the pseudospectral method in the time domain and 

the fourth-order Runge-Kutta scheme with an adaptive step-size control in the space 

domain [28]. 

3. Results and discussions 

We consider a pulse launched into only one core of a Hi-Bi TCF:  
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where P0 is the normalized peak power of the input pulse (P0 = 1 is known as the soliton 

power) and θ is the polarization angle that determines the relative strength of the two 

polarization components in the input pulse. We calculate the transmission coefficient of 

the fiber for each core, which is defined as the output energy from that core at a 

propagation distance of one coupling length divided by the total energy of the input pulse, 

namely,  
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where LR = π/(2R) is the normalized coupling length. 

3.1 Effects of the polarization angle  

In this section, we study the effects of the polarization angle θ on the switching 

characteristics of a Hi-Bi TCF, where the CCD is assumed to be zero, i.e., R1 = 0. 

We first consider the case where the input pulse contains only one principal 

polarization component, i.e., θ = 0° or 90°. Figure 1 shows the dependence of the 
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transmissions of the fiber on the input pulse power for this case with R = 1 and R1 = 0. 

The results shown in Fig. 1 are independent of the value of δ and identical to the 

published results for a zero-birefringence TCF [8, 11]. This is expected, because, for the 

single principal polarization input, the birefringence and the GDD have no effects on the 

pulse propagation; the four equations given in Eq. (4) are reduced to a set of two coupled 

equations, the same equations that govern pulse propagation in a zero-birefringence TCF. 

These results verify the validity of our computer program and, at the same time, serve as 

the reference for subsequent discussions. In the linear limit (P0 approaches zero), the 

input pulse is transferred completely from the input core to the cross core, i.e., T1 = 0 and 

T2 = 1, as expected for a one-coupling-length TCF. As the input power increases over a 

critical value, much of the input pulse is switched from the cross core to the input core. As 

shown in Fig. 1, the switching power Psw, defined as the normalized input power required 

for the transmitted powers from the two cores to be equal, i.e., T1 = T2 = 0.5, is equal to 

3.61.  

We next consider the cases where the input pulse contains both principal polarization 

components, i.e., 0° < θ < 90°. The results for θ and (90° – θ) are identical by symmetry.  

In these cases, the pulse propagation dynamics is affected by the GDD in the fiber. 

Figures 2(a) – (f) show six sets of switching characteristics of a Hi-Bi TCF at θ = 15° 

(75°), 30° (60°), and 45°, which correspond to δ = 0, 0.5, 1.0, 1.5, 2.0, and 2.5, 

respectively. At any given value of δ, the switching power increases, as the polarization 

angle θ increases from 0° to 45° (or decreases from 90° to 45°) with the value at θ = 45° 
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being the largest. For example, for a Hi-Bi TCF without GDD, i.e., δ = 0, we have Psw = 

3.61 (Fig. 1), 3.74, 4.09, and 4.33 for θ = 0° (90°), 15° (75°), 30° (60°), and 45°. We can 

understand this phenomenon intuitively. When the power of the input pulse is distributed 

between the two polarizations, the GDD broadens the pulse along the fiber and thus 

weakens the nonlinear effect. A higher input power is therefore needed to counteract the 

GDD effect to activate switching. As the GDD effect is strongest at θ = 45°, the critical 

switching power is highest at θ = 45°. The effects of the GDD are discussed in detail in 

the next section.  

3.2 Effects of the group-delay difference (GDD) 

The effects of the GDD between the two polarization components are shown in Fig. 

2(a) – (f). By comparing the switching characteristics at the same polarization angle for 

different values of δ in Fig. 2, we find that the switching power at a given polarization 

angle (except at 0° or 90°) increases with the value of δ. The increase becomes more and 

more significant as the polarization angle approaches 45°. The results are summarized in 

Fig. 3, where the switching power is plotted as a function of δ. This increase of the 

switching power with δ can be explained by the tendency of the GDD to break up the two 

principal polarization components in the input pulse. Consequently, a larger GDD will 

imply a higher power to “glue” the two polarization components together and activate 

switching. Our results are consistent with the previous observation that the walk-off effect 

caused by the GDD in a single-core Hi-Bi fiber can be suppressed by nonlinearity, i.e., by 

using a sufficiently high input power [29]. We also notice that, when the GDD becomes 
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very large (δ ≥ 1.0), the change in the switching characteristics at around 45° becomes 

particularly pronounced. When θ is not close to 45°, the switching contrast, i.e., the 

maximum difference between T1 and T2 at a power level exceeding Psw, decreases with an 

increase in the value of δ, as shown by the first (for θ = 15°) and second (for θ = 30°) 

columns of the results in Fig. 2. When θ gets close to 45°, however, the switching contrast 

becomes large when δ ≥ 1.0, as shown by the third column of the results (for θ = 45°) in 

Fig. 2.   

As the switching power is sensitive to the polarization angle, it is possible to achieve 

switching between the two cores by controlling the polarization angle. For such 

polarization-activated switching to be effective, the input power must be set at a proper 

value. Figure 4 shows the variations of the transmissions T1 and T2 with the polarization 

angle θ at different values of δ, where the input power is set at P0 = 3.99, which is 

somewhat higher than the switching power 3.61 at θ = 0° (90°). As shown in Fig. 4, a 

larger GDD gives a higher switching contrast as θ is varied, which can be explained by 

the increase in the switching power with the GDD as θ approaches 45°. Consequently, a 

larger GDD is more desirable for polarization-activated switching.  

3.3 Effects of the coupling coefficient dispersion (CCD) 

It has been shown that the CCD in a zero-birefringence TCF tends to break up the 

input pulse and thus deteriorate the switching characteristics of the fiber for ultrashort 

pulses, as confirmed both theoretically [10, 11] and experimentally [13, 14]. We should 

expect similar effects in a Hi-Bi TCF. Figures 5(a) – (c) show the switching 
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characteristics of a Hi-Bi TCF with δ = 0.5, R = 1, and R1 = –1 at θ = 0°, 22.5°, and 45°, 

respectively. A comparison with Fig. 1 confirms that the CCD indeed deteriorates the 

switching characteristics; it tends to increase the switching power and reduce the 

switching contrast, as in the case of a zero-birefringence TCF [11]. The effects are more 

significant as the polarization angle approaches 45°, as shown in Fig. 5. Fortunately, the 

CCD in a TCF can be minimized by properly choosing the physical parameters of the 

fiber (the core separation, the core diameter, the refractive-index difference between the 

core and the cladding, and the operation wavelength), which should give sufficient 

flexibility to design a TCF with a minimal CCD [24]. Photonic crystal TCFs can offer 

even more flexibility in the control of the birefringence and the CCD in the fiber [30]. 

3.4 Soliton pulse switching 

The input pulse given by Eq. (10), which is widely used in the study of all-optical 

switching in TCFs [7, 8, 10, 11], represents a soliton pulse only when P0 = 1. As the 

power changes, a soliton pulse should contain a phase that scales simultaneously with the 

peak power of the pulse. The use of soliton pulses can produce quantitatively better 

switching characteristics in a zero-birefringence TCF [31]. However, it is not convenient 

to use soliton pulses to perform all-optical switching experiments, as it is difficult, in 

practice, to adjust the phase of the input pulse to match its peak power when the pulse 

power is varied. The switching characteristics presented in our study should not be 

different qualitatively for soliton pulses. 
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3.5 Alignment of fiber cores 

Our analysis assumes a practical fiber where the two fiber cores are identical in 

shape with at least two-fold symmetry (e.g., elliptical cores) and the corresponding 

principal axes of the two cores are aligned. When the principal axes of the two cores are 

not aligned, the symmetry of the composite structure is broken and the model based on Eq. 

(1) is no longer valid. In the case where one core is rotated by 90° from the other core, i.e., 

the major axis of one core is aligned with the minor axis of the other core, the modes of 

the same polarization in the individual cores are no longer phase-matched. Each linear 

coupling term in Eq. (1) includes a phase-mismatch factor determined by the 

birefringence in each core. The coupled-mode equations for this case (with the CCD 

effects ignored) can be written as 
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The four coupling coefficients, xC12 , xC12 , yC12 , and yC21 , are in general different, 

but, in practice, we may assume xC12 = yC12  and xC21 = yC21 . In the case that the 

birefringence |β0x – β0y| is large, the phase-mismatch factors in the linear coupling terms 

(as well as the nonlinear coherent coupling terms) oscillate rapidly along the propagation 

direction and, as a result, the linear coupling effect is averaged out to zero, which 

suggests that the two cores are no longer coupled and effective switching between the 

two cores is no longer feasible. Consequently, a rotation of one of the cores by 90° is 

equivalent to introducing a large dissimilarity between the two cores and, thus, weakens 

the coupling and switching effects. The analysis of this configuration for weak or 

moderate birefringence, where the phase-mismatched terms cannot be ignored, is beyond 

the scope of this paper. 

4. Conclusions 

We have analyzed in detail the switching characteristics of a nonlinear 

coupling-length Hi-Bi TCF for ultrashort pulses with an emphasis on the understanding of 

the effects of the polarization angle, the GDD, and the CCD. We show that the switching 

power increases as the polarization angle increases from 0° to 45° (or decreases from 90° 

to 45°) with a maximum value at 45°. This property of the fiber allows the input pulse set 
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at a proper power level to be switched between the two cores by varying only the 

polarization angle. This mechanism could be explored as a means to achieve optical 

switching. We find that the switching power increases with the GDD in the fiber, yet a 

large GDD can increase the transmission contrast between the two cores as the 

polarization angle is varied. We also show that a large CCD in the fiber tends to reduce 

the switching contrast and thus deteriorate the switching characteristics. In terms of 

application, when the fiber is used as a power-dependent switch, the GDD should be 

minimized. When the fiber is used as a polarization-activated switch, however, a large 

GDD is preferred. In either case, we should use a fiber that has a smallest possible CCD 

[24, 31]. We should emphasize that effective switching can be achieved with a coupling 

length of the TCF, which is translated into a physical length of only several millimeters to 

several tens of centimeters for typical TCF designs. A two-core photonic crystal fiber can 

serve as an ideal platform to demonstrate the nonlinear switching effects discussed in this 

paper.  
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Figure captions 

Fig. 1. Switching characteristics of a coupling-length Hi-Bi TCF with R = 1 and R1 = 0 at 

θ = 0o or 90o. 

Fig. 2. Switching characteristics of a coupling-length Hi-Bi TCF with R = 1 and R1 = 0 at 

θ = 15° (75°), 30° (60°), and 45° for (a) δ = 0, (b) δ = 0.5, (c) δ = 1.0, (d) δ = 1.5, 

(e) δ = 2.0, and (f) δ = 2.5.   

Fig. 3. Dependence of the switching power Psw in a coupling-length Hi-Bi TCF with R = 

1 and R1 = 0 on the polarization angle θ at different values of δ. 

Fig. 4. Dependence of the transmissions T1 and T2 of a coupling-length Hi-Bi TCF with R 

= 1 and R1 = 0 on the polarization angle θ at different values of δ, where the input 

power is set at P0 = 3.99. 

Fig. 5. Switching characteristics of a coupling-length Hi-Bi TCF with δ = 0.5, R = 1, and 

R1 = –1 at (a) θ = 0o, (b) θ = 22.5o, and (c) θ = 45o. 
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