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Abstract 
 

In oblique shape from shading (SfS), the lighting 
(illumination) direction is essential for recovering the 
3D surface of a shaded image. On the other hand, Fast 
Marching Methods (FMM) are SfS algorithms that use 
the mechanism of wave propagation to reconstruct the 
surface. In this paper, the estimation of lighting 
direction is addressed and we model it as an 
optimization problem. The idea is to minimize the 
inconsistency of wave propagation of FMM during the 
reconstruction. As the consistency of wave propagation 
is a multi-modal function, genetic algorithm (GA) is 
utilized to determine the lighting direction. 
Experimental results on four oblique SfSs with an 
unknown lighting direction are presented to 
demonstrate the performance of the proposed 
algorithm. 
 
 
1. Introduction 
 

Shape from shading (SfS) is an inverse process to 
determine the depth map D from its intensity image I 
based on the fact that there is a relation between D and 
I, i.e. I = R(D). Due to the difficulty of the problem, 
typically five assumptions are made in the past: (1) 
Lambertian model; (2) orthographic projection; (3) a 
single light source placed at the infinity, which can be 
modeled as a lighting direction vector. The direction 
vector is assumed to be given a priori; (4) the boundary 
conditions or a good initial solution are a priori known. 
Sometimes, the more restrictive assumption: (5) frontal 
lighting, i.e. the lighting direction is perpendicular to 
the image plane, is also applied as Sfs reduces to a 
simpler Eikonal form in this case. 

Recently, several articles reported solutions to 
relax the assumption of (2) to perspective projection, as 
the vast majority of images in reality are taken using 

perspective projection. Yuen et al. [ 4 ] proposed 
perspective SfS with the Fast Marching method (FMM) 
of [ 1 ]. This work is applied on images under frontal 
lighting. A one step, non-iterative approach is used that 
models the perspective effect directly. Another 
approach is reported by Courteille et al. [ 8 ], who also 
considered the case with frontal lighting and 
perspective projection. They used prior shape 
information to solve the equation. Tankus et al. [ 3 ] 
suggested the use of a perspective SfS based on the 
orthographic FMM of [ 1 ], in which the assumption of 
frontal lighting is relaxed.  They used the FMM for 
orthographic projection as the initial solution, then used 
an iterative scheme for computing the perspective 
FMM. Wei and Hirzinger [ 9 ] applied multiplayer 
feedforward networks to solve the SfS problem. Since 
the algorithms employ gradient descent methods to 
optimize the error function, the solutions (depths) are 
not guaranteed to be globally optimal. In addition, 
over-smoothing will occur as [ 9 ] involves 
regularization in the surface recovery. Jezekiel et al. [ 
10 ] proposed a shape from shading method based on 
learning spatially localized brightness pattern. Prados 
and Faugeras [ 11 ] introduced the perspective 
irradiance equation for solving the SfS problem, which 
can handle the cases of perspective projection and 
oblique lighting. They showed that both orthographic 
and perspective SFS (under frontal or oblique lighting) 
can be modeled by one  generic Hamiltonian, and 
proposed an iterative scheme that is guaranteed to 
converge to the correct viscosity solution.  Their 
algorithm is able to deal with discontinuities as well as 
shadows.  However, the algorithm is iterative and the 
depth at the boundary and all the singular points must 
be given. 

Considering the more general case of oblique 
lighting introduces the problem of lighting direction 
estimation. A useful discussion of the ambiguities 
involved in light source estimation can be found in [ 5 ]. 
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Several groups of researchers have proposed methods 
for the estimation of the lighting direction. Zheng and 
Chellappa [ 7 ] consider shadowing effects and use a 
uniform distribution of the tilt and slant angles of 
surface normals. They assume local spherical patches 
and their algorithm suffers on surfaces that deviate 
significantly from this assumption. Leclerc and Bobick 
[ 6 ] derive accurate light source information from 
surfaces reconstructed using stereo data.  However, 
shape from stereo requires at least two images, which 
may simply not be available, for example, in a single 
photo.  Recently, Ikeda [ 17 ] uses a Newton's iterative 
method with Jacobi update to solve the SfS problem.  
He estimates the lighting direction by maximizing a 
form of the rank condition in the update matrix.  This 
implicitly assumes that the lighting direction that will 
best stabilize the iterative scheme is the correct  
direction.  The assumption lacks a rigorous theoretical 
justification and may not be true in reality. 

Cho and Chow [ 14 ] reports a neural computation 
approach to recover the reflectance model and the 3D 
shape of a shaded image. The model is an iterative 
approach: the estimated reflectance model and 3D 
shape are mutually updated by each another until the 
proposed stopping criterion is reached. Dimitris et. al. [ 
16 ] propose an iterative algorithm and a deformable 
model to estimate the surface and lighting direction of 
a shaded image jointly. Similar to work of [ 14 ], The 
initialized lighting direction by [ 7 ] is passed to 
estimate the model parameters (surface). Afterwards, 
the lighting direction is re-estimated by feedback of the 
surface obtained in the pervious step. The iteration is 
repeated until the estimated lighting direction and the 
model parameters mutually agree. The accuracies of [ 
14 ] and  [ 16 ] highly depend on that the initial 
conditions and the deformable model parameter 
settings. Furthermore, there is no convergence proof of 
the algorithm, so we do not know whether the 
algorithms converge, let alone converge to the correct 
solution. In addition, how to determine the parameters 
of the deformable model in [ 14 ]  in the first place is 
an unsolved problem. 

In shape from shading, fast marching methods 
(FMMs) [ 1 ] [ 3 ] [ 4 ] are deterministic, non-iterative 
and the algorithm has complexity O(NlogN) for a 
guaranteed correct surface reconstruction. The basic 
idea of the method is to systematically construct the 
solution using only upwind values. FMM can 
reconstruct the surface accurately provided that the 
depths of singular points are known. Our original 
perspective Sfs method [4] only works for frontal 
lighting. In this article, we extend the method to 
unknown non-frontal lighting. We also report a method 

to estimate the lighting direction using Genetic 
Algorithm (GA).  We make the following assumptions: 
(1) Lambertian model, (2) perspective projection, (3) 
single light source at infinity, with unknown lighting 
direction, and (4) depths of single points are provided. 

  It relaxes the standard assumptions of Sfs in the 
following ways:  (2) perspective projection is a more 
realistic assumption for practical imagery.   (3) the 
lighting direction may now be oblique (non-frontal), 
and the lighting direction is assumed to be unknown.  It 
may also be pointed out that for FMM based methods, 
the depths of image boundary do not need to be given  
in (4).   

  In this article, the lighting direction estimation is 
modeled as a two dimensional optimization. Since the 
proposed energy function is non-differentiable and 
consists of many local optimums, we optimize the 
energy function by a global optimization method: the 
Genetic algorithm.  Empirical justification of the nature 
of the problem is given in the experimental results in 
section 5. 

The rest of this paper is organized as follows: 
Section 2 briefly introduces the perspective FMM and a 
novel extension to handle oblique lighting under 
perspective projection. Section 3 presents a novel 
measure (fitness function) to describe the consistency 
of a lighting direction guess based on the nature of 
FMM. A novel GA-based approach to optimize the 
measure is discussed in section 4. Section 5 
investigates the performance of the proposed algorithm 
on 4 sets of SfS problems and the nature of the fitness 
landscape of the problem, which provides justification 
for using GA.  A comparison is also made with a 
simple gradient descent approach. A conclusion is 
drawn in section 6. 
 
2. Fast Marching Method 
 

Sethian [ 1 ] introduces the Fast Marching Method. 
It applies to phenomena that can be described as a 
wavefront propagating (normal to itself) with a speed F 
= F(i, j). The main idea is to systematically construct 
the solution using only upwind values. Let the solution 
surface T(i, j) be the time at which the curve crosses the 
point (i, j), then it satisfies the Eikonal equation |∇T| = 
1. The physical meaning is that the gradient of arrival 
time of the front is inversely proportional to the speed 
of the front. For an upwind scheme, the approximation 
to the gradient is written as: 

[ ]
ij

y
ij

y
ij

x
ij

x
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where the difference operator notation, for example 
Dij

+xT = (Ti+1,j - Ti,j)/∆x is employed. A key insight in 
this scheme is that to solve this nonlinear system, an 
optimal ordering of the grid points can be found. 
Starting at the singular points (also called boundary 
points), which are sources of the wave, the method 
marches the front outwards one grid point at a time.  In 
detail, the method is as follows: 
 
1. Assign the T values of all local minimum singular 

points. Label the singular points as Known. 
2. Label as Trial all points that are one grid point 

away.  Calculate the T value of the Trial points. 
3. Label as Far all other grid points. 
4. Determine the trial point A that has the smallest T 

value.   
5. Remove A from Trial and add it to Known. 
6. Label as Trial all neighbors of A that are not 

already Known, i.e., if the neighbor is in Far, 
removes, and add to the set Trial. 

7. If all points are labeled as Known, then exit, else 
goto step 4. 

 
Note that the T values of those local minimum 

singular points that are sources need to be given (step 
1), and the point with the smallest T is updated (step 4).  
The later is known as the entropy condition.  This 
condition is a consequence of the Fermat’s principle of 
least time, taking the physical analogy that the 
propagating particles are light particles [ 13 ].  
Computationally, the fast marching is the same as the 
well known A* algorithm. 

The FMM can be applied to perspective Sfs under 
frontal lighting.  For details, the reader is referred to [ 4 
]. 

Lighting direction estimation involves the oblique 
lighting SfS which cannot be handled by existing 
FMMs. In order to overcome this limitation, we present 
a novel lighting transformation applied to the shaded 
image before performing FMM below: This   
transformation is based on the idea of coordinate 
transformation of [ 1 ]. It aims at estimating the image 
that is viewed at the direction of light source [l1, l2, l3] 
by means of which perspective SfS under oblique 
lighting can be simplified as those under frontal 
lighting. 

Different from the orthographic projection case in 
[ 1 ], the coordinate transformation does not involve 
any approximation of z. So a more accurate result can 
be obtained. The details of the image transformation 
are discussed in the following: 

Given that I(u, v) and D(u, v) are intensity and 
depth of the pixel (u, v) respectively, the corresponding 
3D coordinate P in viewpoint coordinate system is 



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On the other hand, the same point at the light-source 
coordinate system with lighting direction [l1, 0, l3] is 
simply 
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where it is projected onto (u’, v’) of the transformed 
image plane I’ under the perspective projection 
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Since the intensity is invariant to the coordinate system 
under the Lambertian model (i.e. depends only on the 
surface normal and lighting direction), the pixel (u, v, 
I(u, v)) is transformed as (u’, v’, I(u, v)) which is 
independent of D. In general, any I(u, v) illuminated 
from [l1, l2, l3] can be transformed as I’(u, v) 
illuminated from [l1, 0, l3] by simply rotating tan-1(l2 / 
l1). An oblique illuminated image is able to be 
transformed as the one viewed at the direction of light 
source by the two transformations: 
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where l1 = cosα, l3 = sinα, r1 = cosβ and r2 = sinβ. 
 
3. Correct lighting direction is of consistent 

wave propagation 
 

FMMs employ the mechanism of wave 
propagation to reconstruct the surface. Each singular 
point generates a wavefront for which the starting time 
of the propagation is the singular point depth value. In 
oblique SfS, an incorrect lighting direction will 
produce an incorrectly transformed image. Thus an 
incorrect 3D reconstruction result is expected. This 
leads to two possible incorrect wave propagations: 

1. The propagation starts too fast or too slow (due to 
incorrect singular point depths). 

2. The speed of propagation is higher or lower than 
the actual values (due to incorrect lighting 
direction that gives an incorrect Sfs equation). 

 
These incorrect propagation lead to an inconsistency 
among the wavefronts or delays of wavefronts 
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collisions, in which the depth of an image point 
estimated by wavefront W1 is different from that of 
another wavefront W2. Alternatively, a set of correct 
wave propagation is equivalent to zero delay collisions 
of wave propagation. In more detail, suppose that P is a 
peak singular point and Q is the first visited singular 
point (FvSP) of the wavefront WP of P, the depth of Q 
estimated by WP should equal to actual depth of Q. 

Motivated by the observation of consistent 
wavefront propagation, we propose to measure the 
correctness of an lighting direction estimation by the 
inconsistency of wavefronts. The inconsistency is 
defined as the differences among the estimated depths 
by wavefront and the actual depths of FvSPs of peak 
singular points, and inconsistency of a correct lighting 
direction is expected to be zero. 
 
4. Genetic Algorithm 
 

Genetic Algorithm (GA) attracts much attention 
from researchers due to its ability to find the global 
optimum of a complex, non-differentiable, non-smooth 
objective function. For this kind of landscapes, 
conventional optimization techniques are problematic 
and do not have good performance. GA is classified as 
a technique in Evolutionary Computation (EC) that 
searches the global optimum based on ideas from 
natural selection, crossover type information 
interchange during sexual reproduction, as well as 
random changes due to mutation. In the use of GA, (1) 
a suitable chromosome representation and (2) a suitable 
fitness function need to be designed before performing 
optimization. The designs are presented in the 
following: 
 
4.1 Chromosome representation 
 

Since the lighting direction L of a single light 
source at infinity can be represented by two angles, we 
define this set of angles as a chromosome. Each angle 
then corresponds to one of the genes in a chromosome. 
They are defined as: α ∈ [0°, 90°] = the angle between 
L and x-y plane and  β ∈ [0°, 180°] = the angle 
between L and x-z plane. Thus, a chromosome C = [α, 
β] represents the lighting direction [cosαsinβ, 
cosαcosβ, sinα]. 
 
4.2 Fitness function 
 

A GA uses a fitness function to determine the 
performance of each artificially created chromosome. 
Since the fitness function is intended to measure the 
lighting direction quality, it is natural to use the 

inconsistency of wavefronts discussed in the previous 
section as the fitness function. Since the fitness 
function involves a SfS under oblique lighting, the 
shaded image has to be transformed by the lighting 
transformation (section 2) before each fitness 
evaluation. Suppose the target image I(u, v) consists of 
n singular points {Pi = [ui, vi, Di]}i ∈ [1, n] (with known 
depths), the fitness F of a chromosome C = [α, β] is 
defined as: 

 
Fitness Function 

Input: chromosome C 
 
1. Transform {Pi} to S = {Qi = [ui’, vi’, Di’]}i ∈ [1, n] 
2. Transform I(u, v) to I’(u’, v’) = TI(I(u, v), C) using 

the lighting transformation TI. 
3. for i := 1 to n 
4. Assume that I’(u’, v’) consists of only one 

singular point Qi 
5. Perform FMM on I’(u’, v’) and denote the 

estimated depth map as Di(u’, v’). 
6. Define QN(i) ∈ S as the FvSP of Qi where 

[1, ]
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7. next i 
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Output: fitness value F(C) of C 
 
Given a chromosome C that represents the possible 
lighting direction [α, β], the singular point set {Pi} is 
transformed as S = {Qi = [ui’, vi’, Di’]}i ∈ [1, n]. In 
addition, the shaded image I(u, v) is transformed to 
I’(u’, v’) using the proposed lighting transformation TI. 
For each transformed singular point Qi, we perform a 
FMM on the I’(u’, v’) and name the estimated depth 
map as Di(u’, v’). During the FMM, only the wavefront 
of Qi is propagated. Meanwhile, the FvSP of Qi, 
namely QN(i) ∈ S, is defined based on the wavefront 
propagation. The inconsistency fi of Qi is denoted by 
the absolute difference between the desired and the 
estimated depth of QN(i), i.e. the absolute difference of 
DN(i)’ and Di(uN(i)’, vN(i)’) if Qi is the valley of Qn(i), i.e. 
Di’ < DN(i)’. Otherwise, fi is assigned as zero in order to 
ignore its consistency. F(C) is computed as the sum of 
the inconsistencies of all singular points. 
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5. Experimental Results 
 

In this section, the proposed algorithm is examined 
by a set of synthetic images that are obtained from 4 
models: 4 Mountains, 3 Hill, Step and CosCos: 

4 Mountains: See [ 4 ] for details 

3 Hills: 
800800800

32
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The second column of Figure 2 shows the 4 examined 
models. The focal lengths and offsets for rendering the 
shaded images are listed in Table 1. 

Table 1. The focal lengths and offsets for rendering 
the synthetic images 

 Focal length Offset 
4 Mountains 70 200 
3 Hills 60 200 
Step 70 200 
CosCos 60 200 

 
The shaded images (the first column of Figure 2) 

are generated by the method of [ 4 ]. The sizes of the 
shaded images are 128 by 128 and the desired oblique 
angles are α = 20° and β = 40°, i.e. La = [20, 40]. In 
this experiment, the perspective FMM of [ 4 ] is 
employed in the fitness evaluation and shape recovery. 

The population size of GA is chosen as 40. The 
evolution is terminated after 60 generations. The 
genetic operators and the selection scheme of GA 
follow those in [ 15 ]. Since the search space of this 
application is relatively smaller than that of [ 15 ], the 
search space contraction of [ 15 ] is not applied in this 
experiment. The accuracy of the estimated lighting 
direction Le is evaluated by the following quantities: 

1. L2: L2 norm distance between La and Le 
2. θ: Angle between La and Le, θ  = cos-1(La ⋅ 

Le). 
3. Dmean: The average absolute differences between 

the actual depth map Da(u, v) and the 
estimated depth map De(u, v) obtained by 
Le. Due to the discontinuities around the 
silhouettes (depth discontinuities) of the 
tested models, it is expected that huge errors 
occur at those regions. In order to illustrate 
the performance of the algorithms in a 
conclusive manner (i.e. ignore the 
meaningless solution at the silhouette), 
Dmean considers only the valid pixels. (u,v) is 
valid for computing Dmean if none of the 
pixel within the template centred at P is a 
silhouette pixel. Figure 1 shows an example 
of pixel validation with template width w = 
3. Given that white-filled boxes represent 
the pixels with depth values, the solid-line 
boxes are regarded as the valid pixels for 
measuring the Dmean while the dotted-line 
boxes are the invalid pixels that are ignored 
in the calculation of Dmean. In this article, 
the template width w is assigned as 5. 

4. Dmedian: The median of absolute difference of the 
valid pixels between Da(u, v) and De(u, v). 

Figure 1. Example of pixel validation 
 

The performance of the proposed algorithm is 
compared with the gradient descent method. Since the 
objective function (see sec. 4.2) is non-differentiable, a 
first order gradient approximation is employed: 


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The solution C is updated as C(t+1) = C(t) - η∇F(C(t)) 
iteratively until the magnitude of the change of C is 
smaller than a predefined stopping threshold ε, i.e. 
|∇F(C)|  < ε. The values of η and ε are chosen as 0.001 
and 0.2 respectively by trial and error. 

Since GA is a stochastic method, the four 
quantities: L2, θ, Dmean and Dmedian are obtained by 
statistics gathered through 100 independent trials. 
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Similarly, 100 independent trials are applied to the 
gradient descent method, in which the initial starting 
points are randomly generated. The third and the forth 
columns of Figure 2 show typical estimated depth maps 
and the corresponding error maps. Seen from the 
figures, the proposed algorithm successfully recovers 
the lighting directions and hence accurately estimates 
the depth maps. Tables 2 - 5 list the accuracies of the 
proposed algorithm and the gradient descent method 
(indicated as M1 and M2 respectively) on the four 3D 
reconstructions. Seen from the tables, the proposed 
algorithm is vastly superior to the gradient descent 
method in all of the four accuracy measures. This is 
attributed to the nature of the proposed objective 
function: i.e. it is a multi-modal function with a single 
global optimum and many local optima (see below for 
empirical evidence for the above claim). In addition, 
the performance of the gradient descent method highly 
depends on the choice of initial starting point, step size 
and learning rate, and these results in erroneous 
estimations of lighting directions and depth maps. The 
much smaller standard deviations of the four 
measurements empirically indicate the higher 
reliability of the proposed algorithm compared with the 
gradient descent method. 

Table 2. L2 measurement of M1: the proposed 
algorithm and M2: gradient descent method. (a) 4 
Mountains, (b) 3 Hills, (c) Step and (d) CosCos. 

 Mean Std. Median 
 M1 M2 M1 M2 M1 M2 

(a) 0.2° 18.3 0.02 2.34 0.17 17.1 
(b) 1.6 23.3 0.03 1.87 1.4 22.6 
(c) 0.8 25.8 0.02 3.05 0.6 24.3 
(d) 1.3 21.8 0.13 4.71 1.1 20.1 

 
Table 3. θ measurement of M1: the proposed algorithm 

and M2: gradient descent method. (a) 4 Mountains, (b) 3 
Hills, (c) Step and (d) CosCos. 

 Mean Std. Median 
 M1 M2 M1 M2 M1 M2 

(a) 0.29° 25.71° 0.03° 2.71° 0.26° 24.6° 
(b) 2.37° 33.81° 0.04° 20.8° 2.27° 33.1° 
(c) 1.14° 33.62° 0.02° 3.13° 1.06° 31.2° 
(d) 1.71° 31.4° 0.19° 4.67° 1.61° 30.8° 

 
Table 4. Dmean measurement of M1: the proposed 
algorithm and M2: gradient descent method. (a) 4 

Mountains, (b) 3 Hills, (c) Step and (d) CosCos 
 Mean Std. Median 
 M1 M2 M1 M2 M1 M2 

(a) 1.87 19.8 0.17 2.1 1.68 20.3 
(b) 3.57 25.1 0.31 1.8 3.31 24.8 

(c) 2.31 27.8 0.26 1.7 1.97 26.1 
(d) 3.42 23.4 0.30 2.2 3.14 22.9 

. 
Table 5. Dmedian measurement of M1: the proposed 
algorithm and M2: gradient descent method. (a) 4 
Mountains, (b) 3 Hills, (c) Step and (d) CosCos. 

 Mean Std. Median 
 M1 M2 M1 M2 M1 M2 

(a) 1.02 16.8 0.16 1.8 0.98 15.9 
(b) 1.73 21.7 0.19 1.3 1.65 20.1 
(c) 1.61 23.5 0.17 1.6 1.51 22.5 
(d) 1.65 21.1 0.16 1.9 1.34 21.4 

 
Figure 3 show the typical fitness landscapes of the 

4 models. x and y-axis of the figures indicate the values 
of α and β respectively. Higher intensities denote  
lower fitness values of a possible solution and vice 
versa. (In this case, the fitness value is the value of the 
consistency measure, i.e. the lower the fitness values 
the better). In order to illustrate the distribution of the 
optima more clearly, the fitness values are in log scale. 
The brightest point indicates the global optimum. It is 
observed that the fitness landscapes are non-smooth 
and consist of multiple local optima and a single global 
optimum. These observations empirically illustrate the 
problem complexity and hence the suitability of an 
evolutionary computation approach such as the GA on 
solving this problem.  
 
6. Conclusions 
 

Shape from shading (SfS) refers to 3D shape 
recovery based on the shading information of an image. 
In SfS, fast marching methods (FMMs) [ 1 ] [ 3 ] [ 4 ] 
are deterministic, non-iterative and the algorithm has 
complexity O(NlogN) for a guaranteed correct surface 
reconstruction. In this article, the proposed algorithm 
relaxes two assumptions of FMM: (1) orthographio 
projection is relaxed to the more realistic perspective 
projection; (2) known lighting direction is relaxed to 
unknown lighting direction that may be oblique or 
frontal. This enables the extended FMM to reconstruct 
surfaces under more realistic conditions. The 
assumption of frontal lighting is relaxed by applying a 
simple image transformation. We also point out that the 
consistency of wavefront propagation of FMM is a 
promising correctness measure for a lighting direction. 
Incorporating the GA, the lighting direction of a shaded 
image can be estimated by optimizing a two-
dimensional objective function. 

The experimental results support the contributions 
of this article. The plot of the fitness landscape 
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empirically illustrates the problem complexity and 
hence the suitability of an evolutionary computation 
approach such as the GA for solving this problem. 
Relaxation of the assumption of known singular point 
depths will be considered in future development. 
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Figure 2. Experiment details: (a) 4 Mountains, (b) 3 Hills, (c) Step and (4) CosCos 

 

  
(a) (b) 
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Figure 3. Fitness lanscapes of the experiment (a) 4 Mountains, (b) 3 Hills, (c) Step and (4) CosCos 
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