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Abstract — The neural-network training algorithm can
be divided into 2 categorfes: (1) Batch mode and (2)
Sequential mode. In this paper, a novel onfine RBF
network called "Memory Regression Network (MRN) " is
proposed. Different firom the previous approaches [2, 11],
MRN involves two hipes of memories: Experience and
Neuron, which handle short and long term memories
respectively. By simulating human’s learning behavior, a
given function can be estimated without memorizing the
whole training set. Two sets of function esiimation
experiments are examined in order to illustrate the
performarnce of the proposed algorithm. The results show
that MRN can effectively approximaie the given fimciion
within a reasonable time and acceptable mean square
error.

1 Introduction

Radial Basis Function (RBF) network is a multi-
layers feedforward network using radial basis functions
in the solution of the real muitivariate interpolation
problem. It consists of three functionally distinct layers,
The input layer is simply a set of sensory units. The
second layer is a hidden layer of sufficient dimensicns,
which applies a non-linear transformation of the input
domain to a higher dimension hidden-unit demain such
that the training samples can be linearly separated. The
third layer performs a linear transformation from the
hidden-unit domain to the output domain. It has been
applied successfully in a number of applications
including image processing {6], speech recognition {1, 8,
2], time series analysis and adaptive equalization [4].

There are, in general, two types of RBF network
training algorithms: (1) Batch mode and (2} Sequential
mode. For the batch mode approach, a complete sample
set is presented at the whole training process. In addition,
the parameters of neurons are determined from the
correlation among the training samples. Vapnik [10]
suggests using the sample set to formulate the energy
function of Support Vector Machine. By minimizing this
function, the network parameters are determined. In
contrast, the sequential approaches [1, 7] only requires a
sub-set of the previous training set, or even just the
current sample for training. A significant contribution to
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‘sequential training algorithm was made by Platt [5]

through the development of Resource Allocation
Network (RAN), which hidden neurons are added
sequentially based on the new data. Kadirkamanathan
and Niranjan proposed to use EKF instead of LMS for
updating the neurons’ center, variance and weight to
improve the regression accuracy. It is known as the
enhanced RAN and named RANEKF[9]. In this paper,
we propose a new type of sequential RBF neural network
called “Memory Regression Network MRN”. Different
from the previous network architecture, MRN involves a
set of extra elements called “Experience™. As a result,
only a subset of samples is required for training,

This paper is organized as follows. In section 2, the
objective, and hence the advantages of sequential RBF
network are discussed. The architecture of MRN and its
training algorithm are introduced in Section 3, 2 sets of
functions are estimated so as to illustrate the performance
of the proposed algorithm in Section 4. And a conclusion
is drawn in Section 5.

2 Sequential RBF Network

Sequential learning is an important component of
learning in many applications of intelligent systems [3,
13]: adaptive control, time series prediction, financial
engireering and DNA sequencing, Moreover, due to the
flexibility on the experience learning, this type of neural
network is suitable for modeling a time-variant system.

Instead of training a neural network by using the pre-
stored data, the sequential learning consists of
propagating the experience’s input vector forward
through the neural network fo compute its output. By
comparing of this ocutput with a reference (desired
output), the regression error is computed. Finzally the
neuron weights are modified in such way as to reduce the
sum of square error, Therefore, instead of training the
weights of all neurons, the network needs only concern
the current sample.

A sequential network is commonly used on robot
applications. A robot collects samples by interacting with
the environment, which is relative longer than that of the
training process. Therefore, different from the
performance measurement of off-line training that



evaluating the training speed, the performance of a
sequential trained network should be measured on the
sample size invelved for training.

3 Memory Regression Network —
MRN

3.1. Architecture of MRN

In general, the performance of a neural network is
measured by two qualities: Accuracy and Generalization.
A large-scale network guarantees a high accuracy but
low generalization. In contrast, a small-scale network
leads to a poor accuracy but preserves a betier
generalization, It is a trade-off between accuracy and
generalization To tackle this problem, Platt [3] proposed
a sequential training process called “Growing and
Pruning GP™ strategy, which is used to classify the
training state as one of the 3 possible states listed in
below:

Inserting a neuron for improving the accuracy.
Deleting a neuron for enhancing the generalization.
Maintaining the current network size and adjusting
the internal parameters to improve the accuracy.

ENE

Since the network fries to maximize its accuracy,
neurons’ parameters will be adjusted such that:

Eq. (1)

However, as GP considers only the latest sample S = [x; |
ys} with its regression error € = f{x;) - y;, the network has
no ability to classify if the regression error £ caused by
either itself or S such that y, = y¢ + € where y; is the
noise-free output and g, is the embedded noise.
Alternatively, according to the Eq. (1}, the network will
be trained in which &, is embedded to the network, i.c.
flx,) = ys + &. The embedded noise doses not conly
degrade the network performance, but also occupy more
neurcn, and hence requires longer computation time. To
prevent from the effect that sensitive to noise, statistical
method is a well-known approach to remove the
Gaussian noise embedded in the sample set effectively.
Mean Square Error (MSE) is an popular measurement to
reflect the goodness of a solution. In order to apply the
statistical approach, MRN introduces a new type of
memory unit calied experience in which stores the
sample for calcutating the corresponding MSE. Therefore,
fotally 2 types of memory units are involved inside the
MRN: the short-term memory unit (STMU)} experience is
used for against the pattern noise while neuron is a long-
term memory unit (LTMU) for estimating the target
function, In often, the size of experience is larger than
that of neuron, .

f(x} = y + & where £ approach to zero
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3.2 Training Algorithm of MRN

Memory Regression Network is a type of online
RBF network such that its training algorithm is
simulating the learning behavior of human. In general,
Human Leamning Behavior (HLB) can be divided into 3
stages:

Stage 1: Sample Memorizing

Conceptually, knowledge to environment ¥ is
achieved by the experiences collected from W. As more
experiences are collected, the constructed knowledge is
more accurate. Therefore, for a human that survive af an
initially unknown ‘¥, he prefers to directly memorize the
experiences collected by interacting with \V'. This strategy
guarantees that the formulated knowledge is most benefit
to his status,

Stage 2: Knowledge Generalization

As the number of collected experience excess from
the capacity of memory, a human tries 1o generalize the
experiences by expressing some of them. as the
correlation of the others, :

Stage 3: Knowledge Selection

For the case that a human cannot memorize more
distinct experience, he will try to select the contributed
experiences to establish the knowledge for surviving. It is
found that the ecxperiences and the knowledge are
mutually dependent as experiences achieve knowledge
and the knowledge reflects the contribution of
experiences.

In the view of MRN, the experience in HLB is
represented as STMU while the knowledge is expressed
as the regressive function of MRN. Similar to the HLB
described in previous, MRN training algorithm is divided
into 3 phases. For the first phase, the collected samples
are simply batched by the STMU in which the centers of
neurons are assigned as the same of sample input x.
Further, the weights of neurons can be determined by
using the Matrix Inversion Method (MIM). As the
number of experience increases, MIM has no longer
applicable. The network improves the accuracy and
generalization by minimizing the regression error of the
experience set, which is equivalent to the stage 2 of HLB.
For the case that alt experfences are in used while a new
sample is collected, the experience with minimum
regression error will be replaced by the new sample
(stage 3 of HLB). The training process of MRN is mainly
divided into 3 phases:

Phase 1 ifN, SN andN, <N,
Training Procedure = { Phase 2 if N, > N,
Phase 3 if N, >N,

where N,, N, and N, are the number of experience,
neuron and collected sample respectively. The details of
3 phases are described as follows:



Phase 1: Sample Memorizing

The parameters of i experience P; = [B, e are assigned
as B; « xg and e; «vy. In addition, the center and
variance of " neuron H; = [w;, o, Mi] are assigned as:

minkf ~ £, |

i — X
A € % 8In0.8

o,

Consequently, the magnitudes of neuron set [M] can be
determined by the Matrix Inversion method, ie. [M] =
[GI'[Y] where G, = exp(-|lp; - pit / 26,7 and ¥, = ¢,

Phase 2: Knowledge Generalization

The parameters of i experience P, are assigned as B,
« x and e; « y so as to memorize the incoming sample.
If there exists the neuron Hy = [, 63, M,] such that:
1, |M;] <M foralli
2. and |M}] S E(x, )
where E(%. )= y— ZM exp| - ",u S “
J=l O’J,

the parameters of H, will be assigned as:

i ]

min
-8In0.8

X o« M« E(x.¥)

Due to the neuron adjustment process listed in the above,
a Gaussian regression error region is occurred. Instead of
adjusting all neurons to minimize the error, a subset of
them (Excited neuron set {O} = {U,i, Cop Moi}) is
extracted for error minimization. The procedures of
extracting the excited neuron set are listed in below:

a.i

Determine the Excitivity of i” neuron (C,);

" —’ﬂ _".! 2, -]
C’: =_,(j"; ,’::—j{- "” e (f‘ U —f ’f’.'ldj:

Step I:

where ., and o, is the mean and variance of H,,
before the adjustment.

Step 2: Sort {C;} in descending order.

Step 3: Assume that R(i) is the rank of i neuron H.

Step 4: By giving the Correlation constant 7, H;
' defined as the excited neuron if:

is

'ZC W< r]iC‘ ", for R(i) = R{#) where pis the network size

| el

In a!ddltlon the experience P, = [B; e] is regarded as the
element of excited experience {F;} = {B.;, €.} if ||B; -
Hojll € ac,; for some j. By minimizing R defined at Eq.
(1}, the network with minimum error can be achieved.

g ]

Eq.(1)
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Phase 3: Knowledge Selection
If there exists an experience Py = [, e,] such that

1. E(Bi, e) <E(P;, ) forall i
2, E(Bw &) <E(x,3)

By and e, will be adjusted as x and y respectively.
4 Experimental Results

4.1 Regression Ability of MRN

In this section, the regression performance of MRN
is examined by three different problems in the function
approximation area:

(a) for x €[0.1)
(b)

y=x

y=08sin{50x)e™ forxef0.1]

_sin(6r(x, - 0.5)7 + (x, - 0.5)")
674(x, - 0.5) + (x, - 0.5

(©) for x,.x, €[0.1]

Training samples with its desired output are
provided for the functions (a), (b) and (c) respectively.
All training inputs are selected randomly under the
uniform distribution. After applying the proposed
training algorithm, the parameters of the neurons are
determined. In order to analyse the effect of network size
on the MRN’s generalization, the experiments are
repeated with various combinations of network size N,
and the number of experience N,. The network size is
varied from 10 to 100 and the number of experience is
assigned as I, 2, 3 and 4 times of the network size.
Furthermore, the generalization L of the resultant MRN
is defined as:

1 100
——ZlE(0.00Ii, »)

D=1

L= 100 loo
E %:ZOTE({OUOIIOOOIJ],y)I D=2

=a J=

where D is the function dimension. For each combination
of N, and N,, 10 trials of experiments are undergone in
order to obtain the average generalization. Table 1, 3 and
5 list the average generalizations of MRN on the
regression of function (a), (b) and (c) respectively.
Moreover, the computational time of MRN on function
(a), (b) and (c) are listed at the Table 2, 4 and 6
respectively. The results show that MRN requires smalfer
training set to construct the output with generalization
similar to the cne trained by the RAN.

In all simulations, the Correlation constant is chosen
as 0.85. Moreover, they are processed by a PC with
1.7GHz CPU and 256MB memory.
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Figure 1b Regression output of Function (a) by the trained

MRN with 10 neurons and 30 experiences

Figure 2b Regression output of Function (b} by the trained

MRN with 40 neurons and 80 experiences

Figure 3a Desired Cutput of Function (c)

4.2 Noise Sensitivity of MRN

In this experiment set, noise sensitivity of MRN was
evaluated. The sample sclection strategy in this
experiment is the same of the previous experiment except
that a Gaussian noise with mean = 0 and variance = 0.1 is
added to the sample output. In order to handle the noise
pattern, more training samples are required for noise

Figure 3b Regression output of Function (c) by the trained MRN with 40

4818

neurons and 100 experiences

reduction in which the sample size is double of previous
section. Similar to the previous result illustration, the
solid-lines at fig. 2 show the regression result while the
circles represent the training samples presented. The
results at table 2 show that the proposed training
algorithm is robust on handling noisy pattern.
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b. Regression Qutput of Function (b) in Section 4.2

Figure 4 Resultant Approximated functions at Section 4B

5 Conclusion

In this paper, we proposed a novel RBF network
called “Memory Regression Network MRN™, Its training
algorithm is somewhere between the batch mode and the
sequential mode. Different from the existing RBF
network [2, 11] that comprise of neuron only, MRN

involves an extra short-term memory called “Experience™.

By simulating human’s learning behavior with the
concept of excited elements, the MRN is well trained

Table I Average generalization error of function (a) in

Section 4.1

Number of Number of Experience / Number of Neuron

Neuron 1 B 3 4
10 0.011628 0.002360  0.002695 0.000749
20 0.004863 0.003467 0.001163 0.000795
30 0.002702 0.000627  0.000618 0.000738
40 0.000546 0001424  0.000507 0.000304
50 0.002740 0.000604  0.000445 0.000404
60 0.000644 0.000363 0.000405 0.000272
0 0.000993 0.000343 0.000425 0.000273
80 0.001226 0.000348  0.000296 0.000253
90 0.000534 0.000292 0.00027% 0.000218
100 0.000592 0.000301 0.60027}1 0.000262

Table 3 Average generalization error of function (b) in

Section 4.1
Number of Number of Experience / Number of Neuron
Neuron 1 2 3 4
10 0.195087  0.156842 0.156720  0.124429
20 0.135123 0.049631 0.053141 0.032568
30 0.050133 0.016640 0.009887 0.008143
40 0.043754 0011013 0.004903  0.008709
50 0038812 0.009085 0004739  0.002468
60 0017335 0005304  0.004224  0.002344

within a reasonable time while the accuracy and
generalization of MRN is acceptable. The results on
function approximation show that the proposed network
can handle both static and highly oscillated patterns. In
addition, we have tested the network with noisy pattern
with a noise level up to 20% of the desired value. Based
on the approximated results, it is concluded that the
proposed network is quite insensitive to noise.

Table 2 Average computational time (sec.) of function (a)
in section 4.1

Number of Number of Experience / Number of Neuron

Neuron 1 2 3 4
10 0.3 04 0.6 06
20 0.7 0.7 14 08
30 08 1.1 1.7 12
40 1.1 1.2 1.7 1.8
30 £3 1.7 1.9 28
60 1.3 20 28 4.1
70 14 25 37 47
£0 i6 3.0 4.4 59
90 24 36 6.0 68
100 23 42 6.3 19
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Table 4 Average computational time (sec.) of function (b)
in section 4.1

Number of Number of Experience / Number of Neuron
Neuron 1 2 3 4

10 0.4 0.7 08 10

20 0.8 1.1 1.2 1.1

30 1.1 1.5 1.6 23

40 1.3 1.8 22 2.7

50 1.7 20 26 38

60 20 2.] 29 38



70 0.00966% 0.002824 0002368 0.001608 70 23 28 39 4.4
80 0010254 0004480  0.002851  0.003198 80 33 33 45 6.3
90 0.005769 0.002367 0.001938 0.002824 90 34 38 4.9 6.1
100 0.004833 0.003620  0.002696  0.001915 100 36 45 6.1 76
Table 5 Average generalization error of function (c) in Table 6 Average computational time (sec.) of function (c)
Section 4.1 in Section 4.1
Number of Number of Experience / Number of Neuron Number of Number of Experience / Number of Neuron
Neuron 1 2 3 4 Neuron 1 2 3 4
10 0.118347  0.062102 0055085 0049227 10 <1 [ 1 i
20 0.080891 0.022624 0.019445 0.013522 20 <1 2 5 5
30 0.051761 0.01473%  0.010607 0.007447 30 ! 5 8 13
a0 .042516 0012375 0.007334 0.005654 40 2 7 12 26
50 0.033631 0.009839 0.005203 0.004182 50 2 1 26 29
60 0031125 0.008011  0.004657  0.002733 60 3 17 26 43
70 4.023137 0008185 0.003896 0.003141 70 5 26 48 75
80 0028118 0004051  0.004472  0.002617 80 7 30 53 81
90 (.029392. 0.006776 0.003908 0.002321] 90 7 34 60 117
100 0020538 0005419  0.003790 0002426 100 9 39 80 119
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