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We propose a new multivariate Markov chain model for adding a new categorical data sequence. The number of the parameters in
the newmultivariateMarkov chainmodel is onlyO(3s) less thanO((𝑠 + 1)2) the number of the parameters in the formermultivariate
Markov chain model. Numerical experiments demonstrate the benefits of the new multivariate Markov chain model on saving
computational resources.

1. Introduction

Markov chains are of interest in a wide range of applications,
for example, telecommunication systems [1, 2], remanufac-
turing and inventory systems [3], speech recognition [4],
PageRank [5–7], microbial gene [8], and AIDS [9]. In recent
years, the predictions of data sequences have become more
and more useful in other applications such as sales demand
prediction [10], DNA sequencing [11], credit risk [12], and
stock prices [13].

Different models have been proposed for multiple cat-
egorical data sequences prediction. A multivariate Markov
chain model was proposed in [10] by Ching et al.; they
constructed a new matrix by means of the transition prob-
ability matrices among different sequences. An improved
multivariate Markov chain model had also been studied to
speed up the convergent speed for computing the stationary
or steady-state solutions [14]. In the improved multivariate
Markov chain model, Ching et al. incorporated positive and
negative association parts. The extensions of intensity-based
models for pricing credit risk and derivative securities to the
simulation and valuation of portfolios were discussed in [15].
Moreover, there are many other papers contributing to the

multivariate Markov chain model, for example, [16–22] and
so on.

With the developments ofMarkov chainmodels and their
applications, the number of the sequences may be larger.
It is inevitable that a large categorical data sequence group
will cause high computational cost in multivariate Markov
chain model. Thus, reducing the number of parameters in
the models is useful in numerical computation. For the
above reasons, we present a new multivariate Markov chain
model for detecting the relations between the previous data
sequences and the following data sequence.

The rest of the paper is organized as follows. In Section 2,
we review two lemmas and several Markov chain models.
In Section 3, the new multivariate Markov chain model is
proposed for adding a new categorical sequence. Moreover,
the convergence of the newmultivariateMarkov chainmodel
is proved. Section 4 gives parameter estimation method
for the new multivariate Markov chain model. Numerical
experiments on sales demand prediction and stock prices
prediction are presented to test the efficiency of the new
multivariate Markov chain model in Section 5. Concluding
remarks are given in Section 6. The data of the stocks’ prices
are provided in the Appendix.
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2. A Review on Markov Chain Models

In this section, we briefly introduce two lemmas, the Markov
chain model [23] and the multivariate Markov chain model
[10].

Lemma 1 (see [24, Perron-Frobenius theorem]). Let 𝐴 ∈

R𝑚×𝑚 be a nonnegative and irreducible matrix. Then,
(1) 𝐴 has a positive real eigenvalue 𝜆 equal to its spectral

radius; that is, 𝜆 = max
𝑘
|𝜆
𝑘
(𝐴)| where 𝜆

𝑘
(𝐴) denotes

the 𝑘th eigenvalue of 𝐴;
(2) to 𝜆 there corresponds an eigenvector 𝑧 of its entries

being real and positive, such that 𝐴𝑧 = 𝜆𝑧;
(3) 𝜆 is a simple eigenvalue of 𝐴.

Lemma 2 (see [22]). Let𝐵 be the iterativematrix of multivari-
ate Markov chain model and let 𝑋

𝑡
be the state distribution at

time 𝑡. If 𝐵 is irreducible and aperiodic, then there is a unique
stationary distribution 𝜋 satisfying 𝜋 = 𝐵𝜋 and lim

𝑡→∞
𝑋
𝑡
=

𝜋.

2.1. TheMarkov Chain Model. Let the state set of the categor-
ical data sequence be M = {1, 2, . . . , 𝑚}. The Markov chain
satisfise the following relations:

Prob (𝑥
𝑡+1
= 𝜃
𝑡+1
| 𝑥
0
= 𝜃
0
, 𝑥
1
= 𝜃
1
, . . . , 𝑥

𝑡
= 𝜃
𝑡
)

= Prob (𝑥
𝑡+1
= 𝜃
𝑡+1
| 𝑥
𝑡
= 𝜃
𝑡
) ,

(1)

where 𝜃
𝑡
∈ M, 𝑡 ∈ {0, 1, 2, . . .}. The conditional probability

Prob(𝑥
𝑡+1

= 𝜃
𝑡+1

| 𝑥
𝑡
= 𝜃
𝑡
) is called one-step transition

probability. If we rewrite the transition probability as

𝑝
𝑖,𝑗
= Prob (𝑥

𝑡+1
= 𝑖 | 𝑥

𝑡
= 𝑗) , ∀𝑖, 𝑗 ∈M, (2)

the Markov chain model can be presented as follows:

𝑋
𝑡+1
= 𝑃𝑋
𝑡
, (3)

where

𝑃 = [𝑝
𝑖,𝑗
] , 0 ≤ 𝑝

𝑖𝑗
≤ 1, ∀𝑖, 𝑗 ∈M,

𝑚

∑
𝑖=1

𝑝
𝑖,𝑗
= 1, ∀𝑗 ∈M.

(4)

Here, 𝑋
0
is the initial probability distribution and 𝑋

𝑡
=

(𝑥1
𝑡
, 𝑥2
𝑡
, . . . , 𝑥𝑚

𝑡
)
𝑇 is the state probability distribution at time

𝑡.

2.2. The Multivariate Markov Chain Model. Themultivariate
Markov chain model has the following form:

𝑥
(𝑗)

𝑡+1
=

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
𝑃
(𝑗,𝑘)
𝑥
(𝑘)

𝑡
, ∀𝑗 = 1, 2, . . . , 𝑠, 𝑡 = 0, 1, . . . , (5)

where
𝜆
𝑗𝑘
≥ 0, ∀𝑗, 𝑘 = 1, 2, . . . , 𝑠,

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
= 1, ∀𝑗 = 1, 2, . . . , 𝑠.

(6)

𝑥
(𝑗)

0
is the initial probability distribution of the 𝑗th sequence,

𝑥(𝑘)
𝑡

is the state probability distribution of the 𝑘th sequence
at time 𝑡, 𝑥(𝑗)

𝑡+1
is the state probability distribution of the 𝑗th

sequence at time 𝑡 + 1, and 𝑃(𝑗,𝑘) is the one-step transition
probability matrix from the states in the 𝑘th sequence at time
𝑡 to the states in the 𝑗th sequence at time 𝑡 + 1. In the matrix
form, (5) has

𝑋
𝑡+1
=(

𝑥
(1)

𝑡+1

𝑥
(2)

𝑡+1

...
𝑥
(𝑠)

𝑡+1

)

=(

𝜆
1,1
𝑃(1,1) 𝜆

1,2
𝑃(1,2) ⋅ ⋅ ⋅ 𝜆

1,𝑠
𝑃(1,𝑠)

𝜆
2,1
𝑃(2,1) 𝜆

2,2
𝑃(2,2) ⋅ ⋅ ⋅ 𝜆

1,1
𝑃(2,𝑠)

...
...

...
...

𝜆
𝑠,1
𝑃(𝑠,1) 𝜆

𝑠,2
𝑃(𝑠,2) ⋅ ⋅ ⋅ 𝜆

𝑠,𝑠
𝑃(𝑠,𝑠)

)(

𝑥(1)
𝑡

𝑥(2)
𝑡

...
𝑥(𝑠)
𝑡

).

(7)

Entries 𝑃(𝑗,𝑘) can be obtained directly from the categorical
data sequences, and 𝜆

𝑗,𝑘
can be got by the linear program-

ming [10].

3. A New Multivariate Markov Chain Model

In order to reduce the number of the parameters inmultivari-
ate Markov chain model, a new multivariate Markov chain
model is proposed. Moreover, the convergent property of the
new model is also analyzed.

Suppose that there are 𝑠 categorical data sequences and
each of the sequences has 𝑚 possible states in M. The
multivariate Markov chain model for 𝑠 categorical data
sequences has the form

𝑥
(𝑗)

𝑟+1
=

𝑠

∑
𝑘=1

𝜆


𝑗,𝑘
𝑃
(𝑗,𝑘)
𝑥
(𝑘)

𝑟
∀1 ≤ 𝑗 ≤ 𝑠, 𝑟 ≥ 0, (8)

where

𝜆


𝑗,𝑘
≥ 0, ∀1 ≤ 𝑗, 𝑘 ≤ 𝑠,

𝑠

∑
𝑘=1

𝜆


𝑗,𝑘
= 1, ∀𝑗 = 1, 2, . . . , 𝑠,

(9)

where 𝑥(𝑗)
0
, 𝑥
(𝑘)

𝑟
, 𝑥
(𝑗)

𝑟+1
, and 𝑃(𝑗𝑘) are defined the same as those

in Section 2.2. In the matrix form, (8) is

𝑋
𝑟+1
=(

𝑥
(1)

𝑟+1

𝑥
(2)

𝑟+1

...
𝑥
(𝑠)

𝑟+1

)
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=(

𝜆
1,1
𝑃(1,1) 𝜆

1,2
𝑃(1,2) ⋅ ⋅ ⋅ 𝜆

1,𝑠
𝑃(1,𝑠)

𝜆
2,1
𝑃(2,1) 𝜆

2,2
𝑃(2,2) ⋅ ⋅ ⋅ 𝜆

1,1
𝑃(2,1)

...
...

...
...

𝜆
𝑠,1
𝑃(1,1) 𝜆

𝑠,2
𝑃(𝑠,2) ⋅ ⋅ ⋅ 𝜆

𝑠,𝑠
𝑃(𝑠,𝑠)

)(

𝑥(1)
𝑟

𝑥(2)
𝑟

...
𝑥(𝑠)
𝑟

).

(10)

Transition probability matrix 𝑃(𝑗,𝑘) can be obtained directly
by the 𝑠 categorical data sequences. The parameters 𝜆

𝑗,𝑘
can

be solved from the corresponding linear programming.
Assuming that the multivariate Markov chain model for

previous sequences is obtained, we add a new sequence at the
back of the previous sequences. For detecting the relations
between the previous 𝑠 categorical data sequences and the
new categorical data sequence, a new multivariate Markov
chain model is proposed and has the following form:

𝑥
(𝑗)

𝑟+1

=

{{{{{{

{{{{{{

{

𝑙
𝑗

𝑠

∑
𝑘=1

𝜆


𝑗,𝑘
𝑃
(𝑗,𝑘)
𝑥
(𝑘)

𝑟
+ 𝜆
𝑗,𝑠+1
𝑃
(𝑗,𝑠+1)

𝑥
(𝑠+1)

𝑟
∀𝑗 = 1, 2, . . . , 𝑠,

𝑠+1

∑
𝑘=1

𝜆
𝑗,𝑘
𝑃
(𝑗,𝑘)
𝑥
(𝑘)

𝑟
∀𝑗 = 𝑠 + 1,

(11)

where

𝑙
𝑗
≥ 0, 𝑙

𝑗
𝜆


𝑗,𝑘
= 𝜆
𝑗,𝑘
, 𝜆
𝑗,𝑠+1

≥ 0, 𝜆
𝑠+1,𝑘

≥ 0

∀1 ≤ 𝑗, 𝑘 ≤ 𝑠, 𝑟 = 0, 1, . . . ,

𝑠+1

∑
𝑘=1

𝜆
𝑗,𝑘
= 1 ∀𝑗 = 1, 2, . . . , 𝑠 + 1.

(12)

In the matrix form, (11) has

(

𝑥
(1)

𝑟+1

...
𝑥
(𝑠)

𝑟+1

𝑥
(𝑠+1)

𝑟+1

)

=(

𝑙
1
𝜆
11
𝑃(11) ⋅ ⋅ ⋅ 𝑙

1
𝜆
1,𝑠
𝑃(1,𝑠) 𝜆

1,𝑠
𝑃(1,𝑠+1)

...
...

...
...

𝑙
𝑠
𝜆
𝑠,1
𝑃(𝑠,1) ⋅ ⋅ ⋅ 𝑙

𝑠
𝜆
𝑠,𝑠
𝑃(𝑠,𝑠) 𝜆

𝑠,𝑠+1
𝑃(𝑠,𝑠+1)

𝜆
𝑠+1,1
𝑃(𝑠+1,1) ⋅ ⋅ ⋅ 𝜆

𝑠+1,𝑠
𝑃(𝑠+1,𝑠) 𝜆

𝑠+1,𝑠+1
𝑃(𝑠+1,𝑠+1)

)

×(

𝑥(1)
𝑟

...
𝑥(𝑠)
𝑟

𝑥(𝑠+1)
𝑟

).

(13)

Let

𝑋
𝑟+1
= (𝑥
(1)

𝑟+1
, . . . , 𝑥

(𝑠)

𝑟+1
, 𝑥
(𝑠+1)

𝑟+1
)
𝑇

,

𝐵 =(

𝑙
1
𝜆
11
𝑃(11) ⋅ ⋅ ⋅ 𝑙

1
𝜆
1,𝑠
𝑃(1,𝑠) 𝜆

1,𝑠
𝑃(1,𝑠+1)

...
...

...
...

𝑙
𝑠
𝜆
𝑠,1
𝑃(𝑠,1) ⋅ ⋅ ⋅ 𝑙

𝑠
𝜆
𝑠,𝑠
𝑃(𝑠,𝑠) 𝜆

𝑠,𝑠+1
𝑃(𝑠,𝑠+1)

𝜆
𝑠+1,1
𝑃(𝑠+1,1) ⋅ ⋅ ⋅ 𝜆

𝑠+1,𝑠
𝑃(𝑠+1,𝑠) 𝜆

𝑠+1,𝑠+1
𝑃(𝑠+1,𝑠+1)

).

(14)

Equation (13) is abbreviated as

𝑋
𝑟+1
= 𝐵𝑋
𝑟
. (15)

Theorem 3. Let 𝑙
𝑗
≥ 0, 𝜆

𝑗,𝑘
≥ 0, 𝑙

𝑗
𝜆
𝑗,𝑘
= 𝜆
𝑗,𝑘
. If 𝜆
𝑗,𝑠+1

>

0, 𝜆
𝑠+1,𝑘

> 0 ∀1 ≤ 𝑗, 𝑘 ≤ 𝑠, then the iterative matrix 𝐵 has an
eigenvalue equal to one and the modulus of all its eigenvalues
are less than or equal to one.

Proof. Suppose that

Λ =(

𝜆(1,1) ⋅ ⋅ ⋅ 𝜆(1,𝑠) 𝜆(1,𝑠+1)

...
...

...
...

𝜆(𝑠,1) ⋅ ⋅ ⋅ 𝜆(𝑠,𝑠) 𝜆(𝑠,𝑠+1)

𝜆(𝑠+1,1) ⋅ ⋅ ⋅ 𝜆(𝑠+1,𝑠) 𝜆(𝑠+1,𝑠+1)

)

=(

𝑙
1
𝜆
(1,1)

⋅ ⋅ ⋅ 𝑙
1
𝜆
(1,2)

𝜆(1,𝑠+1)

...
...

...
...

𝑙
2
𝜆
(𝑠,1)

⋅ ⋅ ⋅ 𝑙
𝑠
𝜆
(𝑠,𝑠)

𝜆(𝑠,𝑠+1)

𝜆(𝑠+1,1) ⋅ ⋅ ⋅ 𝜆(𝑠+1,𝑠) 𝜆(𝑠+1,𝑠+1)

).

(16)

From (9) and (12), each column sum of this matrix is equal
to one and the matrix Λ is nonnegative and irreducible.
According to Lemma 1, there exists a positive vector

𝑦 = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑠
]
𝑇 (17)

satisfying

Λ𝑦 = 𝑦, 𝑦
𝑇
Λ
𝑇
= 𝑦
𝑇
. (18)

Let 1
𝑚
= [1, . . . , 1] ∈ R1×𝑚. Since 𝑃(𝑗𝑘) is a transition

probability matrix, it has

1
𝑚
𝑃
(𝑗,𝑘)

= 1
𝑚
. (19)

It is clear that

[𝑦
1
1
𝑚
, 𝑦
2
1
𝑚
, . . . , 𝑦

𝑠
1
𝑚
] 𝐵 = [𝑦

1
1
𝑚
, 𝑦
2
1
𝑚
, . . . , 𝑦

𝑠
1
𝑚
] , (20)

with 1 an eigenvalue of 𝐵.
Now, our aim is to prove that the modulus of all the

eigenvalues of 𝐵 are less than or equal to one. Suppose that
𝐷V = Diag(V), V𝑇 = 𝑦 ⊗ 1

𝑚
= [𝑦
1
1
𝑚
, 𝑦
2
1
𝑚
, . . . , 𝑦

𝑠
1
𝑚
]

satisfying V𝑇𝐵 = V𝑇. 𝐵 = 𝐷V𝐵𝐷
−1

V is similar to 𝐵. From (20),
it has ‖𝐵‖

1
= 1. Then

𝜌 (𝐵) = 𝜌 (𝐵) ≤

𝐵
1
= 1. (21)
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Theorem 4. Assume that ∀1 ≤ 𝑗, 𝑘 ≤ 𝑠 + 1, 𝑝(𝑗,𝑘) is
irreducible, ∀1 ≤ 𝑗, 𝑘 ≤ 𝑠, 𝑙

𝑗
𝜆
𝑗,𝑘
= 𝜆
𝑗,𝑘
≥ 0, and 𝜆(𝑗,𝑠+1) >

0, 𝜆(𝑠+1,𝑘) > 0. Then there is a vector 𝑋 = [𝑥(1), 𝑥(2), . . . ,

𝑥(𝑠+1)]
𝑇 satisfying 𝑋 = 𝐵𝑋 and

𝑚

∑
𝑖=1

[𝑥
(𝑖)
]
𝑗
= 1 ∀𝑖 = 1, 2, . . . , 𝑚. (22)

Proof. The proof is similar to Proposition 2 in [1] and
therefore it is omitted.

To keep the irreducibility of 𝐵, we fill the column of 𝑃(𝑗,𝑘)
with 1/𝑚 when the column sum of 𝐵 is zero.

Theorem 5. Let 𝑋 be the stationary probability of the new
multivariate Markov chain model. Then 𝑋 = 𝐵𝑋 and
lim
𝑡→∞

𝑋
𝑡
= 𝑋.

Proof. From Lemma 2, our goal is to prove that 𝐵 is irre-
ducible and aperiodic. Since 𝐵 is connected, 𝐵 is irreducible.
Then we only need to prove that 𝐵 is aperiodic. Let 𝑆

1
=

{1, 2, . . . , 𝑠 − 1}, 𝑆 = {1, 2, . . . , 𝑠}. There exists 𝑡
1
such that

(𝐵(𝑖𝑗))
𝑡
1 > 0 ∀𝑖, 𝑗 ∈ 𝑆

1
. From the form of 𝐵, we obtain

𝐵(𝑠𝑗) > 0, 𝐵(𝑗𝑠) > 0. There exists 𝑡
2
, 𝑡
3
, 𝑡
4
satisfying 𝐵𝑡2

𝑖𝑗
> 0,

𝐵
𝑡
3

𝑖𝑖
> 0, 𝐵

𝑡
4

𝑘𝑖
> 0. Therefore, 𝐵𝑡2+𝑡3+𝑡4

𝑘𝑗
≥ 𝐵
𝑡
2

𝑖𝑗
𝐵
𝑡
3

𝑖𝑖
𝐵
𝑡
4

𝑘𝑖
> 0. Because

𝐵𝑛
𝑘𝑗
> 0 ∀𝑛 > 𝑡

2
+ 𝑡
3
+ 𝑡
4
, (𝐵)
𝑛 is a positive matrix. Then 𝐵 is

aperiodic. According to the above results, the conclusions of
this theorem are obtained.

4. Parameter Estimation Method of the New
Multivariate Markov Chain Model

Let M = {1, 2, . . . , 𝑚} be the states set and let 𝑓(𝑗,𝑘)
𝑖
𝑗
,𝑖
𝑘

be
frequency from the 𝑖

𝑘
state in the 𝑘th sequence at time 𝑡 = 𝑟

to the 𝑖
𝑗
state in the 𝑗th sequence at time 𝑡 = 𝑟+1 ∀1 ≤ 𝑖

𝑗
, 𝑖
𝑘
≤

𝑚. The transition frequency matrix 𝐹(𝑗,𝑘) is

𝐹
(𝑗,𝑘)

=(

(

𝑓
(𝑗,𝑘)

1,1
𝑓
(𝑗,𝑘)

1,2
⋅ ⋅ ⋅ 𝑓

(𝑗,𝑘)

1,𝑚

𝑓
(𝑗,𝑘)

2,1
𝑓
(𝑗,𝑘)

2,1
⋅ ⋅ ⋅ 𝑓

(𝑗,𝑘)

2,𝑚

...
...

...
...

𝑓
(𝑗,𝑘)

𝑚,1
𝑓
(𝑗,𝑘)

𝑚,1
⋅ ⋅ ⋅ 𝑓(𝑗,𝑘)
𝑚,𝑚

)

)𝑚×𝑚

. (23)

The transition probability matrix 𝑃(𝑗,𝑘) can be obtained by
normalizing the transition frequency matrix 𝐹(𝑗,𝑘) as follows:

𝑃
(𝑗,𝑘)

=(

(

𝑝
(𝑗,𝑘)

1,1
𝑝
(𝑗,𝑘)

1,2
⋅ ⋅ ⋅ 𝑝
(𝑗,𝑘)

1,𝑚

𝑝
(𝑗,𝑘)

2,1
𝑝
(𝑗,𝑘)

2,1
⋅ ⋅ ⋅ 𝑝
(𝑗,𝑘)

2,𝑚

...
...

...
...

𝑝
(𝑗,𝑘)

𝑚,1
𝑝
(𝑗,𝑘)

𝑚,1
⋅ ⋅ ⋅ 𝑝(𝑗,𝑘)
𝑚,𝑚

)

)𝑚×𝑚

, (24)

where

𝑝
(𝑗,𝑘)

𝑖
𝑗
,𝑖
𝑘

=

{{{

{{{

{

𝑓
(𝑗,𝑘)

𝑖
𝑗
,𝑖
𝑘

∑
𝑚

𝑖
𝑗
=1
𝑓
(𝑗,𝑘)

𝑖
𝑗
,𝑖
𝑘

, if
𝑚

∑
𝑖
𝑗
=1

𝑓
(𝑗,𝑘)

𝑖
𝑗
,𝑖
𝑘

̸= 0,

0, otherwise.

(25)

Subsequently, the way of estimating the parameter 𝜆
𝑗,𝑘

will be introduced. Consider 𝑋 to be a joint stationary
probability distribution.𝑋 can be presented as

𝑋 = ((𝑋
(1)
)
𝑇

, (𝑋
(2)
)
𝑇

, . . . , (𝑋
(𝑠)
)
𝑇

)
𝑇

𝑚𝑠×1

(26)

satisfying

𝐵𝑋 ≡ 𝑋. (27)

One would expect that

(

𝐵(1,1) 𝐵(1,2) ⋅ ⋅ ⋅ 𝐵(1,𝑠)

𝐵(2,1) 𝐵(2,2) ⋅ ⋅ ⋅ 𝐵(2,𝑠)

...
...

...
...

𝐵(𝑠,1) 𝐵(𝑠,2) ⋅ ⋅ ⋅ 𝐵(𝑠,𝑠)

) 𝑋 ≈ 𝑋. (28)

Certainly, (28) can be interpreted as

|𝐵𝑋 − 𝑋| ≤ 𝜔, (29)

where 𝜔 is small enough.
One way of estimating 𝜆

𝑗,𝑘
is to transform (29) into a

minimization problem as the following form:

min
𝜆
𝑖,𝑗

‖𝐵𝑋 − 𝑋‖

subject to
𝑠+1

∑
𝑘=1

𝜆
𝑗,𝑘
= 1, ∀𝑗 ∈ {1, 2, . . . , 𝑠 + 1} ,

𝜆
𝑗,𝑘
≥ 0, ∀𝑗, 𝑘 ∈ {1, 2, . . . , 𝑠 + 1} .

(30)

The minimization problem (30) is identical to the following
form:

min 𝜆
𝑖,𝑗
max
𝑖

(



[

𝑠

∑
𝑘=1

𝑙
𝑗
𝜆


𝑗,𝑘
𝑃
(𝑗,𝑘)
𝑥
(𝑘)

+𝜆
(ℎ)

𝑗,𝑠+1
𝑃
(𝑗,𝑠+1)

𝑥
(𝑠+1)

− 𝑥
(𝑗)
]

𝑖



)

subject to
𝑠

∑
𝑘=1

𝑙
𝑗
𝜆


𝑗,𝑘
+ 𝜆
𝑗,𝑠+1

= 1, ∀𝑗 ∈ {1, 2, . . . , 𝑠} ,

𝑠+1

∑
𝑘=1

𝜆
𝑠+1,𝑘

= 1,

𝜆
𝑗,𝑠+1
, 𝜆
𝑠+1,𝑘

≥ 0, ∀𝑗, 𝑘 ∈ {1, 2, . . . , 𝑠 + 1} ,

(31)
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where [⋅]
𝑖
is the 𝑖th entry of the vector. Let the norm be ‖ ⋅ ‖

2
.

The above problem can be rewritten as a linear programming
problem

min
𝜆

𝜔
𝑗

subject to (
𝜔
𝑗

𝜔
𝑗

) ≥ 𝑥
(𝑗)
− 𝐵(

𝑙
𝑗

𝜆
𝑗,𝑠+1

)

(
𝜔
𝑗

𝜔
𝑗

) ≥ −𝑥
(𝑗)
+ 𝐵(

𝑙
𝑗

𝜆
𝑗,𝑠+1

) , ∀𝑗 ∈ {1, 2, . . . , 𝑠}

(

𝜔
𝑗

𝜔
𝑗

...
𝜔
𝑗

) ≥ 𝑥
(𝑗)
− 𝐵(

𝜆
𝑗,1

𝜆
𝑗,2

...
𝜆
𝑗,𝑠+1

)

(

𝜔
𝑗

𝜔
𝑗

...
𝜔
𝑗

) ≥ −𝑥
(𝑗)
+ 𝐵(

𝜆
𝑗,1

𝜆
𝑗,2

...
𝜆
𝑗,𝑠+1

),

∀𝑗 = 𝑠 + 1, 𝜔
𝑗
≥ 0,

𝑙
𝑗

𝑠

∑
𝑘=1

𝜆
𝑗,𝑘
+ 𝜆
𝑗,𝑠+1

= 1, ∀𝑗 ∈ {1, 2, . . . , 𝑠} ,

𝑠+1

∑
𝑘=1

𝜆
𝑠+1,𝑘

= 1,

𝜆
𝑗,𝑠+1
, 𝜆
𝑠+1,𝑘

≥ 0, ∀𝑗, 𝑘 ∈ {1, 2, . . . , 𝑠 + 1} ,

(32)

where

𝐵

=

{{{{{{{{{

{{{{{{{{{

{

[𝜆
𝑗,1
𝑝(𝑗,1)𝑥(1) + 𝜆

𝑗,2
𝑝(𝑗,2)𝑥(2)

+ ⋅ ⋅ ⋅ + 𝜆
𝑗,𝑠
𝑝(𝑗,𝑠)𝑥(𝑠) | 𝑝(𝑗,𝑠+1)𝑥(𝑠+1)] , if 1 ≤ 𝑗 ≤ 𝑠,

[𝑝(𝑗,1)𝑥(1) | 𝑝(𝑗,2)𝑥(2) |

⋅ ⋅ ⋅ | 𝑝(𝑗,𝑠)𝑥(𝑠) | 𝑝(𝑗,𝑠+1)𝑥(𝑠+1)] , if 𝑗 = 𝑠 + 1.
(33)

5. Numerical Experiments

In this section, numerical experiments with different mul-
tivariate Markov chain models on sales demand prediction
and stock prices prediction are given.We report on numerical
results obtained with a Matlab 7.0.1 implementation on Win-
dows XP with 2.93GHz 64-bit processor and 1GB memory.

5.1. Sales Demand Prediction. In this section, the sales
demand sequences are presented to show the benefits of the
newmultivariateMarkov chainmodel. Since the requirement

of the market fluctuates heavily, the production planning and
the inventory control directly affect the estate cost. Thus,
studying the interplay between the storage space requirement
and the overall growing sales demand is a pressing issue for
the company. Here, our goal is to predict the sales demand
of the market for minimizing the estate cost. Assume that
products are classified into six possible states (1, 2, 3, 4, 5, 6);
for example, 1 = no sale volume, 2 = very low sale volume,
3 = low sale volume, 4 = standard sale volume, 5 = high sale
volume, and 6 = very high sale volume. The customers’ sales
demand data of five important products can be found in [10].

The multivariate Markov chain model of four categor-
ical data sequences, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐴, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐵, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐶, and
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐷, will be given. By computing the proportions of
the occurrences of each state in each sequence, we formulate
the initial probability distributions of four categorical data
sequences

𝑥
(1)

0
= (0.0818, 0.4052, 0.0483, 0.0335, 0.0037, 0.4275)

𝑇
,

𝑥
(2)

0
= (0.3680, 0.1970, 0.0335, 0.0000, 0.0037, 0.3978)

𝑇
,

𝑥
(3)

0
= (0.1450, 0.2045, 0.0186, 0.0000, 0.0037, 0.6283)

𝑇
,

𝑥
(4)

0
= (0.0000, 0.3569, 0.1338, 0.1896, 0.0632, 0.2565)

𝑇
.

(34)

The transition probability matrix 𝑃(𝑗,𝑘) can be obtained after
normalizing the transition frequency matrix. By solving the
corresponding linear programming problem, one can obtain
𝜆
𝑖,𝑗
. The multivariate Markov chain model is presented as

follows:

𝑥
(1)

𝑟+1
= 𝑃
(1,2)
𝑥
(2)

𝑟
,

𝑥
(2)

𝑟+1
= 𝑃
(2,2)
𝑥
(2)

𝑟
,

𝑥
(3)

𝑟+1
= 𝑃
(3,4)
𝑥
(4)

𝑟
,

𝑥
(4)

𝑟+1
= 𝑃
(4,4)
𝑥
(4)

𝑟
.

(35)

In order to uncover the relations of 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐴, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐵,
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐶, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐷, and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐸, we add a new categor-
ical data sequence 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐸 at the back of the original cate-
gorical data sequences. With the data sequence of 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐸,
the initial probability distribution of 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐸 is obtained as
follows:

𝑥
(5)

0
= (0.0000, 0.3569, 0.1227, 0.2268, 0.0520, 0.2416)

𝑇
.

(36)

In the multivariate Markov chain model, 𝜆
𝑗,𝑘

can be
calculated by a corresponding linear programming problem.
The multivariate Markov chain model is

𝑥
(1)

𝑟+1
= 𝑃
(1,2)
𝑥
(2)

𝑟
,

𝑥
(2)

𝑟+1
= 𝑃
(2,2)
𝑥
(2)

𝑟
,

𝑥
(3)

𝑟+1
= 𝑃
(3,5)
𝑥
(5)

𝑟
,
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Table 1: Numerical results of themultivariateMarkov chainmodel and the newmultivariateMarkov chainmodel on sales demand prediction.

A B C D E Time np 𝜔

Mmodel 0.4176 0.3985 0.6207 0.3525 0.3525 0.0938 25 0.0095
B, C, D, E add A 0.4176 0.3985 0.6207 0.3525 0.3525 0.0469 13 0.0095
A, C, D, E add B 0.4176 0.3985 0.6207 0.3525 0.3525 0.0469 13 0.0095
A, B, D, E add C 0.4176 0.3985 0.6207 0.3525 0.3525 0.0469 13 0.0095
A, B, C, E add D 0.4176 0.3985 0.6207 0.3525 0.3525 0.0469 13 0.0095
A, B, C, D add E 0.4176 0.3985 0.6207 0.3525 0.3525 0.0469 13 0.0095

𝑥
(4)

𝑟+1
= 0.2783𝑃

(4,4)
𝑥
(4)

𝑟
+ 0.7217𝑃

(4,5)
𝑥
(5)

𝑟
,

𝑥
(5)

𝑟+1
= 𝑃
(5,4)
𝑥
(4)

𝑟
.

(37)

After calculating 𝜆
𝑗,𝑘

by a corresponding linear program-
ming problem, the newmultivariateMarkov chainmodel can
be presented as follows:

𝑥
(1)

𝑟+1
= 𝑃
(1,2)
𝑥
(2)

𝑟
,

𝑥
(2)

𝑟+1
= 𝑃
(2,2)
𝑥
(2)

𝑟
,

𝑥
(3)

𝑟+1
= 0.0007𝑃

(3,4)
𝑥
(4)

𝑟
+ 0.9993𝑃

(3,5)
𝑥
(5)

𝑟
,

𝑥
(4)

𝑟+1
= 0.4706𝑃

(4,4)
𝑥
(4)

𝑟
+ 0.5294𝑃

(4,5)
𝑥
(5)

𝑟
,

𝑥
(5)

𝑟+1
= 𝑃
(5,4)
𝑥
(4)

𝑟
.

(38)

From the results of the new multivariate Markov model,
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐴 and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐵 are closely related. Moreover, the
sales demand of 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐴 depends strongly on 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐵.
The reason is that the chemical nature of 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐴 and
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐵 is the same, only used for different packaging of
marketing purposes. 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐶, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐷, and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐸
are closely related. The fact is that 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠𝐶 and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐸
have the same product flavor, only different in packaging.

In the following, we use the new multivariate Markov
chain model and the multivariate Markov chain model to
predict the state of the 𝑘th sequence 𝑥(𝑘)

𝑡
at time 𝑡. The

maximum probability,

𝑥
(𝑘)

𝑡
= 𝑗, if [𝑥(𝑘)

𝑡
]
𝑖
≤ [𝑥
(𝑘)

𝑡
]
𝑗
, ∀1 ≤ 𝑖 ≤ 𝑚, 𝑡 > 1, (39)

is taken as the state at time 𝑡. For evaluating the effectiveness
of the new multivariate Markov chain model, prediction
results are measured by the prediction accuracy 𝑟 defined as

𝑟 =
1

𝑇 − 𝑛
×

𝑇

∑
𝑡=𝑛+1

𝛿
𝑡
× 100%, (40)

where 𝑇 is the length of the data sequence and

𝛿
𝑡
= {
1, if 𝑥(𝑘)

𝑡
= 𝜃(𝑘)
𝑡
,

0, otherwise.
(41)

Note that “𝑡𝑖𝑚𝑒” is CPU time, “𝜔” is the object function
value of the corresponding linear programming problem,

Table 2: Numerical results of the multivariate Markov chain model
and the new multivariate Markov chain model on stock prices
prediction.

Time np 𝜔

Mmodel 0.7354 144 0.3095
NMmodel 0.1406 34 0.3099

“𝑛𝑝” is the number of the parameters in the models, and
the prediction accuracies of𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐴,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐵,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐶,
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐷, and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐸 are “𝐴,” “𝐵,” “𝐶,” “𝐷,” and “𝐸,”
respectively. Suppose that the results of the multivariate
Markov chainmodel of𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐴,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐵,𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐶, and
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐷 are obtained. The new multivariate Markov chain
model for 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐴, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐵, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐶, and 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐷
adding 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐸 is denoted as “𝐴, 𝐵, 𝐶,𝐷 add 𝐸.” The
multivariate Markov chain model is denoted as “𝑀𝑚𝑜𝑑𝑒𝑙.”
Stop criterion can be found in Matlab function 𝑙𝑖𝑛𝑝𝑟𝑜𝑔. The
results are presented in Table 1.

Observing the results from Table 1, we find that the
object function values of the new model and the multivariate
Markov chain model are the same. The prediction accura-
cies of our new models are comparable to the prediction
accuracy of the multivariate Markov chain model. The new
multivariate Markov chain model performs better than the
multivariate Markov chain model in time consumption and
controlled parameters.

5.2. Stock Prices Prediction. The data of 12 American stocks’
price from December 17, 2013, to January 16, 2014, are given
in the Appendix. They are divided equally into 6 regions
as 6 states between maximum price and minimum price of
the stocks. The state set of 12 stocks is M = {0, 1, 2, 3, 4, 5}.
The data of 12 stocks in the Appendix are transformed into
categorical data sequences.

“𝑡𝑖𝑚𝑒,” “𝜔,” “𝑛𝑝,” and “𝑀𝑚𝑜𝑑𝑒𝑙” are denoted the same
as those in Section 5.2. Note that “𝑀𝑚𝑜𝑑𝑒𝑙 − 1” is the
multivariate Markov chain model of all stocks except AMAP.
Suppose that the results of “𝑀𝑚𝑜𝑑𝑒𝑙 − 1” are obtained. The
new multivariate Markov chain model which is denoted as
“𝑁𝑀𝑚𝑜𝑑𝑒𝑙” can detect the relations of BIDU, CTRP, GA,
EDU, SINA, SOHU, YOKU, XRS, QIHU, HTHT, HMIN, and
AMAP. Stop criterion can be found in Matlab order 𝑙𝑖𝑛𝑝𝑟𝑜𝑔.
The results are presented in Table 2.

From Table 2, the object function values of the new mul-
tivariate Markov chain model and the multivariate Markov
chain model are nearly the same. The CPU time of the new
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multivariate Markov chain model is the CPU time of the
multivariate Markov chain model’s 1/5. The number of the
parameters in the new multivariate Markov chain model is
one-third of those in the multivariate Markov chain model.
The new multivariate Markov chain model is better than the
multivariate Markov chain model in time consumption and
controlled parameters.

6. Conclusions

In this paper, a new multivariate Markov chain model is
proposed.The convergence of the newmodel is proved.With
the results of the multivariate Markov chain model for 𝑠
categorical data sequences, the relations of the 𝑠 categorical
data sequences and the new sequence can be detected by
our new model. The new multivariate Markov chain model
only needs O(3𝑠) parameters less than O((𝑠 + 1)

2
) which

is the number of the parameters in multivariate Markov
chain model. Numerical experiments illustrate the benefits
of our new model in saving computational resources. The
performances of the new multivariate Markov chain model
are nearly the same as themultivariateMarkov chainmodel in
prediction. Certainly, our model can also be applied in credit
risk and other research areas.

Appendix

Consider
BIDU = {168.33, 171.49, 170.39, 173.36, 172.30,

168.58, 167.28, 173.77, 173.99,

177.88, 179.99, 175.28, 176.63, 178.82,

181.79, 175.52, 179.66, 171.00,

172.87, 170.50, 173.00} ,

CTRP = {47.93, 48.39, 47.66, 48.68, 50.62, 50.95, 50.34,

52.55, 51.22, 49.62, 49.41,

45.53, 44.43, 46.02, 44.51, 40.49, 38.95,

39.14, 40.10, 40.34, 41.15} ,

GA = {11.08, 11.15, 11.12, 11.12, 11.26, 11.25, 11.27,

11.27, 11.28, 11.24, 11.19,

10.93, 10.93, 11.00, 10.95, 10.85, 10.84, 10.79,

10.84, 10.86, 11.10} ,

EDU = {28.93, 29.66, 29.70, 29.79, 29.96, 30.57, 30.02,

29.93, 31.00, 31.50, 30.62,

30.27, 30.38, 31.26, 32.41, 32.54, 32.63,

32.66, 32.77, 33.07, 33.00} ,

SINA = {77.32, 78.84, 79.71, 79.91, 80.09, 79.76, 79.22,

82.64, 82.21, 84.25, 84.77,

82.68, 84.35, 87.30, 88.96, 84.96, 85.72,

83.07, 84.99, 84.60, 80.58} ,

SOHU = {67.26, 68.53, 69.85, 70.04, 70.16, 72.58, 70.60,

71.07, 72.11, 72.93, 73.28,

71.96, 73.94, 76.61, 78.55, 75.89, 76.54,

74.23, 75.95, 75.87, 75.57} ,

YOKU = {28.91, 29.15, 29.14, 28.67, 30.13, 30.11, 30.72,

30.94, 30.28, 30.30, 31.80, 31.50,

33.92, 34.82, 33.55, 33.00, 33.69,

33.30, 34.51, 34.79, 35.55} ,

XRS = {19.78, 19.89, 19.89, 19.87, 20.00, 21.50, 21.98,

21.83, 21.99, 21.99, 21.15, 21.49,

21.58, 22.18, 23.49, 22.53, 22.91,

32.01, 23.36, 23.40, 24.20} ,

QIHU = {77.48, 76.40, 77.61, 78.72, 81.08, 80.81, 80.48,

81.24, 81.02, 82.05, 81.85, 79.78,

80.10, 81.40, 89.00, 81.17, 81.04,

83.48, 86.58, 89.08, 91.26} ,

HTHT = {26.25, 26.27, 26.07, 26.20, 28.85, 30.02, 30.92,

30.58, 30.37, 30.48, 31.02, 30.61,

29.37, 29.21, 30.08, 28.98, 29.02,

27.98, 28.37, 28.56, 28.8} ,

HMIN = {41.46, 41.21, 41.25, 40.73, 42.24, 43.70, 43.07,

43.69, 42.94, 43.64, 43.51, 41.94,

40.77, 41.37, 43.43, 40.07, 40.41,

39.04, 39.39, 40.88, 40.48} ,

AMAP = {13.97, 13.70, 13.80, 14.17, 14.10, 14.15, 14.56,

14.77, 14.57, 14.25, 14.98, 15.46,

15.55, 15.73, 15.92, 15.60, 15.96,

15.75, 15.57, 15.22, 15.14} .

(A.1)
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