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Abstract: 

Two-dimensional dislocation dynamics simulations are used to study precipitate 

strengthening effects in duralumin micro-pillars. The results show that a refined microstructure 

may resist and slow down the movement of dislocations inside the confined volume, leading to 

hardening and weak size dependence of strength. This study illustrates that the deformation 

behavior of small crystals is controlled by the combined effect of internal length scale and 

external size of the crystal.  
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The size effect on the deformation behavior of metallic materials has been intensively 

studied in recent years. One of the significant findings is that metallic single crystals show a 

power-law size dependence of strength [1-3], and jerky stress-strain behavior in a stochastic 

manner [1, 4-9]. With evidences gained from in situ transmission electron microscopy [9, 10] 

and Laue micro-diffraction [11, 12], a number of physical models have been devised to explain 

the deformation behavior of small crystals. The “dislocation starvation” [6, 13] theory considers 

that mobile dislocations in the small crystal would easily slip through the small crystal without 

accumulation and multiplication, so that the crystal is constantly maintained in a dislocation-free 

state. Another group of models considers that the small crystal is not dislocation free initially, 

but the operation of dislocation sources [14, 15]  and the interaction of dislocations in a confined 

environment lacking the mean-field averaging effect [16, 17] may result in the unusual 

deformation behavior. Another model [18] explicitly predicts that a power-law size dependence 

of strength stems from Taylor-type interactions in a fractal dislocation network, and that the 

power-law exponent is inversely related to the fractal dimension of the dislocation network.  

In addition to the extrinsic size effect, several recent studies have also explored how the 

mechanical properties of small crystals are affected by changes in the intrinsic microstructural 

length scale, such as decreasing the interaction distances between dislocations by trapping them 

inside the crystal by surface coating [19-22], introducing precipitates [23], grain boundaries [24, 

25], and nano-crystalline [26, 27] or nano-twinning [22, 28, 29] microstructures into the crystal. 

Our previous experimental study [23] on the deformation behavior of duralumin micro-pillars 

has shown that with the presence of second-phase precipitates, strength is much improved and 

less size-dependent, and a very high density of dislocation debris is retained in the deformed 

microstructure suggesting that mobile dislocations are slowed down by viscous drag from the 

precipitates. In this study, two-dimensional (2D) dislocation dynamics simulations [30-33] are 

used to study the deformation behavior of these duralumin micro-pillars. The distribution of the 

precipitate particles and the external size of the specimen are varied to investigate their effects on 

the plastic properties of the micro-pillars.  

In the present 2-D simulations, screw dislocations are considered and they are randomly 

distributed in a simulation region with a given initial density    . The simulation region is 

rectangular where the short and long sides, in a ratio of 1:3, respectively represent surfaces 
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parallel and perpendicular to the radial direction of a micro-pillar. Periodic boundary conditions 

are applied at the two short sides of the simulation region, which means that as a dislocation 

escapes from one side it re-enters into the region from the opposite side. The other two long sides 

are regarded as free surfaces where nearby dislocations would be affected by image forces and 

may therefore be likely depleted on them. Two orthogonal slip systems are considered in the 

simulation region, which are oriented with       and        from the radial direction. The 

material properties of aluminum are used in this simulation. Dislocations gliding in the slip plane 

may sustain three types of forces without meeting any precipitates: (i) the pair-wise elastic 

interaction force     
   

     
 between dislocations, where     is distance between two interacting 

dislocations,          is shear modulus and           is the magnitude of the Burgers 

vector; when a dislocation is moving into a region within a distance of cut-off radius from a free 

surface, the image force is also worked out by this relation. (ii) A resistance stress opposite to the 

glide direction due to Taylor-type forest interactions [33, 34], which can be written in the form of 

        
     √ , where   is mobile dislocation density and   is a constant. (iii) An external 

stress linearly increasing with time applied to the simulation region normal to the radial direction. 

The resultant force decomposed along the slip direction    can be calculated, and the velocity of 

a mobile dislocation    can be worked out by the simplified law     . 

Sources resembling the Frank-Read type are randomly distributed in the simulation 

region with a given density     . Each of them may probably nucleate a dislocation dipole when 

subjected to a resultant stress larger than a critical value       continuously over 50ms.  The 

value of       for these nucleation sources follows a Gaussian distribution with mean stress of 

~15MPa and standard deviation of ~6MPa. The spacing of the nucleated dislocation dipole 

is       
 

  

  

     
, so that the nucleated dipole cannot annihilate immediately by its own 

attraction force. Each dislocation source can only operate once until it has relaxed for an enough 

time of 250ms. Precipitate particles are randomly placed in the simulation region. The 

interactions between dislocations and precipitates are various and complex[35] due to the 

different precipitate geometries and physical/chemical properties; therefore for simplicity we 

only consider particle shearing and cross slip in this work. The distance between two 

neighboring precipitates on a slip plane is supposed to obey a Gaussian distribution, with average 
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spacing      and standard deviation        , so that the probability of meeting an obstacle when a 

dislocation has freely moved a distance d can be calculated as the accumulated integral of the 

Gaussian distribution. Once a dislocation meets a precipitate, if the resultant stress along the 

glide plane    is larger than the critical shear stress   , then the dislocation can overcome the 

precipitate and keeps on moving in the slip plane in a slower speed of      (     ) . 

Otherwise, if the resultant stress normal to the slip direction is larger than another critical 

stress      (        ), the dislocation may have a chance (of 10%) to cross slip over the 

particle. If the above conditions are not met, then the dislocation is considered to be pinned up by 

the precipitate.  

In each time step, a dislocation would move a distance of         , and so the total 

strain in this time step can be worked out according to the Orowan equation as       ̅     

(   )∑   
  
      , where   is the area of the simulation region, and   is the total number of 

active dislocations in the current time step. In the simulation, the value       μms
-1

(MPa)
-1

 in 

the velocity law is assumed, the time step    is set as     and the loading rate  ̇ is           . 

The width of the simulation region is varied from        to        , while the lengths are 

maintained as three times of the width. The average spacing between precipitates      as well as 

the critical resistance by precipitates    are varied to study their effects on the stress-strain 

behavior. The initial dislocation density     and dislocation source density      for pure Al 

micro-pillars are respectively assumed to be               and             , while for 

the duralumin case, both     and      are increased to two times higher                

and            , as the presence of precipitates may introduce more defects into the matrix.  

Figure 1(a) shows typical simulated stress-strain curves of pure aluminum pillars with 

varied size, where the diameters of the micro-pillars are distinguished by different colors. These 

results are broadly in accordance with experimental observation [8, 21], namely, the strength and 

deformation curves depend on the size of the specimen – the smallest        pillars exhibit the 

steepest stress-strain curves with successive fluctuations and largest scatter between different 

simulation runs, while the largest        pillars show the softest and smoothest stress-strain 

behavior, with less scattering as well. The simulated 2% proof strength of pure aluminum micro-

pillars is found to approximately obey a power-law size dependence as shown in Figure 1(b). 

The simulation data are very close to the experimental observation, and the exponent   in the 



5 

 

power-law relation           is about            , while experiment data [21] show 

           .  

Figure 2(a,b) show the simulated stress-strain behaviors of duralumin micro-pillars, when 

average spacing of precipitate particles     , is 3nm and 10nm respectively, and in both cases the 

critical shear stress    is 51.8MPa. Both groups exhibit much higher strength than the pure Al 

case, and an inverse relation between size and strength is still very significant. The stress-strain 

curves with       =      (Figure 2(a)) show that when the pillar size is larger than       , the 

three stress-strain curves of the same size on repeated simulation trials are relatively smooth and 

coincident with very little scattering, while the curves for smaller sizes are much scattered and 

fluctuating. When       is increased to      , Figure 2(b), the stress-strain curves for pillars 

with diameter of             are all jerky with occasional strain bursts occurring even for 

pillar size of       . It is suggested that as the precipitate spacing decreases, mobile dislocations 

in a big pillar has higher chance to meet precipitates which may resist and slow down 

dislocations before they glide to free surfaces, so that their deformation curves are smoother and 

more stable. Figure 2(c) shows the relation between the pillar strength and precipitate spacing. 

As        varies from      to     , the 2% proof strength of pillars of the same size does not 

exhibit any significant correlation with      , but as       increases beyond       , small pillars 

1.5-2.0     big can show much higher strength on increasing      , while pillars larger than 

       do not exhibit such a trend and their strength almost remains at the same value, revealing 

that small sized specimens are more sensitive to a change of the intrinsic structure and the size-

dependence of strength may be intensified as the internal length scale increases.  

Figure 3 shows the simulated 2% proof strength     versus diameter of pillars with 

precipitates of different critical shear stress     when spacing      is a constant of      , together 

with the experimental data for peak-aged duralumin case [23]. It is obvious that the strength of 

duralumin micro-pillars exhibits a positive correlation with   , and that their     still shows 

power-law scaling with diameter    as          , where   is           and           

respectively for     equal 25.9MPa and 51.8MPa, indicating that the size dependence of strength 

is weakened with presence of precipitate particles. It is also evident that the value of     = 

51.8MPa can fit the experimental data very well.  
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Figure 4(a,b) show the variation of the dislocation density inside the specimen with the 

applied stress. For both the pure Al and duralumin micro-pillars of diameter 6.5  , their 

dislocation density increases with the applied stress initially to a plateau and then decreases with 

further increase of stress, and the pure Al pillars exhibit the lowest dislocation density compared 

with the ones with precipitates, which agree well with experimental observations [23]. Although 

pillars with different precipitates show varied peak values of dislocation density, the plateau is 

very close to the point when the plastic strain starts to rapidly increase with stress as shown in 

Figures 1(a) and 2(a,b). The results here show that initially dislocations can accumulate and 

multiply quickly in the specimen with increasing applied stress, and the precipitates may resist 

the dislocations from moving, until the applied stress is large enough to overcome the critical 

shear stress of the precipitates   . The dislocations will then keep on gliding and deplete at free 

surfaces, so that the number of dislocations in the specimen will decrease, even strain bursts will 

occur on the stress-strain curve. Figure 4(a) also reveals that pillars with precipitates of large    

and dense spacing can show high yield strength and peak value of dislocation density, because in 

this case the precipitates are more capable and have high probability to resist the mobile 

dislocations, making them stay inside the confined volume. For the 1.5    case shown in Figure 

4(b), the dislocation density versus stress curves fluctuate rather severely but still exhibit the 

above-mentioned trend except for the case of pure Al pillars due to the dramatic fluctuations. 

Because these pillars are so small, even the nucleation or annihilation of only one dislocation 

would significantly change the average number of active dislocations in the specimen.  

This simulation study shows that duralumin micro-pillars exhibit much higher strength 

than pure Al micro-pillars, while their size dependence of strength is much milder, and all these 

are comparable to our previous experimental observations [23]. The strength as well as spacing 

of the precipitates can significantly affect the stress-strain behavior of the micro-pillars. Figure 2 

shows that when the precipitate spacing        rises from 3 to 20 nm, the pillar strength does not 

vary significantly, but the stress-strain curves of big pillars ~5-6    in size become rough and 

jerky. As the precipitate spacing       increases to ~30-40 nm, small pillars ~1-2    in diameter 

exhibit even higher strength with increasing       but the bigger pillars do not show any 

significant change; as a result, the exponent   in the scaling law           becomes larger as 

      is increased to ~30-40 nm. Previous experiment results [23] show a similar behavior, 
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namely, duralumin pillars aged at the peak condition in which the precipitates are larger but more 

sparsely distributed are found to exhibit a stronger dependence of strength on size, compared 

with pillars aged at room temperature where the precipitates are smaller in both size and spacing. 

It is suggested that in a very small crystal, as the precipitate spacing increases, a mobile 

dislocation may encounter only a few obstacles so that it has a high chance to glide to a free 

surface, leaving the confined volume in a starved state as shown in Figure 4(b), where the 

dislocation number decreases significantly when the applied stress is ~150MPa and plastic strain 

is only ~1%. The Orowan equation  ̇      suggests that as the dislocation density is decreasing, 

a higher stress is required to make the limited number of mobile dislocations slip faster so as to 

maintain a given strain rate. So it is not surprising that small pillars with relatively sparsely 

distributed precipitates can exhibit even higher strength, and the size dependence of strength can 

be enhanced. 

To conclude, the present simulations show that precipitate hardened duralumin micro-

pillars exhibit power-law size dependent strength, which is mainly determined by the strength 

and dispersion distance of the precipitates. The fine microstructure can weaken the size 

dependence of strength, and smooth the stress-strain behavior of duralumin micro-pillars. This 

work is supported by funding from Kingboard Endowed Professorship in Materials Engineering. 
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Figure Captions: 

Figure 1 – (a) Simulated stress-strain behaviors of pure Al micro-pillars, and their (b) 2% proof 

strength versus diameter relation, in comparison with experimental data [21]. 

Figure 2 – Simulated stress-strain behaviors of duralumin micro-pillars with mean precipitate 

spacing of (a) 3nm and (b) 10 nm, and (c) their 2% proof strength with varying precipitate 

spacing.   

Figure 3 – 2% proof strength versus diameter of duralumin micro-pillars with mean precipitate 

spacing of 3 nm, in comparison with experimental data [23].   

Figure 4 – Dislocation density of duralumin (a) 6.5μm and (b) 1.5μm pillars varied with applied 

stress in the simulation.  
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(a)                                                           (b) 

Figure 1 – (a) Simulated stress-strain behaviors of pure Al micro-pillars, and their (b) 2% proof 

strength versus diameter relation, in comparison with experimental data [21]. 
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(a)                                                                 (b) 

 

(c) 

Figure 2 – Simulated stress-strain behaviors of duralumin micro-pillars with mean precipitate 

spacing of (a) 3nm and (b) 10 nm, and (c) their 2% proof strength with varying precipitate 

spacing.   
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Figure 3 – 2% proof strength versus diameter of duralumin micro-pillars with mean precipitate 

spacing of 3 nm, in comparison with experimental data [23].   

 

 

   

Figure 4 – Dislocation density of duralumin (a) 6.5μm and (b) 1.5μm pillars varied with applied 

stress in the simulation.  

 

 

 


