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Orbital-free density functional theory (OFDFT) replaces the wavefunction in the kinetic energy by an

explicit energy functional and thereby speeds up significantly the calculation of ground state

properties of the solid state systems. So far, the application of OFDFT has been centered on closed

systems and less attention is paid on the transport properties in open systems. In this paper, we use

OFDFT and combine it with non-equilibrium Green’s function to simulate equilibrium electronic

transport properties in silicon nanostructures from first principles. In particular, we study ac transport

properties of a silicon atomic junction consisting of a silicon atomic chain and two monoatomic

leads. We have calculated the dynamic conductance of this atomic junction as a function of ac

frequency with one to four silicon atoms in the central scattering region. Although the system is

transmissive with dc conductance around 4 to 5 e2=h, capacitive-like behavior was found in the finite

frequency regime. Our analysis shows that, up to 0.1 THz, this behavior can be characterized by a

classic RC circuit consisting of two resistors and a capacitor. One resistor gives rise to dc resistance

and the other one accounts for the charge relaxation resistance with magnitude around 0:2 h=e2 when

the silicon chain contains two atoms. It was found that the capacitance is around 5 aF for the same

system. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825127]

I. INTRODUCTION

With the rapid development of nanotechnology, elec-

tronic transport study in nano-devices has attracted increas-

ingly theoretical and experimental research interests in the

past few decades. In modeling the functionality of nanostruc-

tures, the ab initio methods are widely used for ground state

properties of isolated or periodic systems since they are very

accurate and parameter free. For open systems, one of the

important formalisms to study transport properties from first

principles is the Kohn-Sham density functional theory

(KSDFT) combined with non-equilibrium Green’s function

(NEGF) method. KSDFT1 has been successfully employed

in computation of ground state properties of electronic sys-

tems.2 On the other hand, NEGF theory3 is capable of

describing systems which have many body interactions and

are far away from equilibrium. The combination of them,

KSDFT-NEGF formalism,4,5 is currently the most popular

approach in first principles investigation of non-equilibrium

quantum transport of nanostructures. In this formalism, elec-

tron density of the non-equilibrium system is constructed

from the lesser Green’s function as a function of the KS

Hamiltonian, which connects the KSDFT and NEGF. The

KSDFT-NEGF method has been realized in several simula-

tion software, for instance, MatDcal,6 NanoDcal,4,7

ABINIT,8 and ATK.5,9 It has been regarded as one of the

standard techniques in non-equilibrium transport study of

nanoscale devices. However, the heavy numerical cost of

KSDFT has limited its application on large-scale systems.

Generally speaking, the NEGF combined with KSDFT for-

malism is appropriate for studying systems with thousands of

atoms. Moreover, the self-consistent solution of KSDFT-

NEGF could be very difficult to reach for large systems. This

is because the charge transfer is the salient feature in quantum

transport and it is much harder to re-distribute the charge for

large systems. Since a typical nanostructure usually contains

dozens of thousands of atoms, it is very difficult to achieve a

self-consistent calculation within KSDFT-NEGF methodol-

ogy and a huge computation resource is required.

On the other hand, together with the progress in con-

structing more accurate density functionals, orbital-free den-

sity functional theory (OFDFT)10,11 has regained many

research interests for large scale calculation. It has been used

to numerically simulate equilibrium properties of a metallic

system with 1 � 106 aluminum atoms,12 showing the poten-

tial application in large systems. Compared with KSDFT,

OFDFT has its advantage on linear-scaling with the number

of degrees of freedom and existence of minimization princi-

ple. The trade-off is on the numerical accuracy, which

mainly arises from the lack of single electron orbital ortho-

normalization. At present, the difference between OFDFT

simulation on some bulk properties and that from the

KSDFT has been reduced to several percent for a variety of

materials.13 Very recently, there is a breakthrough of

OFDFT simulation on transition metal.14 Using the electron

density decomposition technique, the OFDFT simulation of

many bulk properties on Ag can quantitatively reproduce the

KSDFT predictions.14 There are also progress on benchmark

test on OFDFT in comparison with KSDFT. In Ref. 15, it

was found that the OFDFT-calculated bond dissociationa)Electronic address: jianwang@hku.hk
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energy, equilibrium bond length, and vibrational frequency of

a variety of homonuclear diatomic molecules are in remark-

ably good agreement with that of KSDFT results. OFDFT has

also been used to calculate the transport properties in open

two dimensional quantum structures, which allows us to

examine the effect of exchange and correlation effect on trans-

port, in addition to direct Coulomb interaction.16,17 In this cal-

culation, the potential landscape has been calculated within

Thomas-Fermi-Dirac-von Weizsacker formalism and atomic

core has been approximated using jellium model. Given

successful application of OFDFT in equilibrium systems, it is

important and timely to apply OFDFT method in fully atomic

study of transport through nanostructures.

In this paper, we have applied OFDFT in transport

calculation of nano-devices when the system is in equilib-

rium. Different from periodic systems or isolated molecular

systems, a transport calculation deals with an open system

(see Fig. 1). In the screening approximation,19 the problem

is solved in two steps. First, the potential profiles of two

semi-infinite leads are computed with periodic boundary

conditions, which will be used as the boundary conditions

for the central scattering region. Then, the potential land-

scape is solved for the central scattering region with the

boundary conditions calculated from leads. Second, once

the potential landscape is known the transport properties

are calculated using NEGF theory. Due to the nature of

open systems, we have to choose appropriate density func-

tionals, which are suitable for transport calculation. After

some analysis, we decide to use Thomas-Fermi-Dirac-von

Weizs€aker kinetic energy functional in our calculation. The

effective potential is obtained by directly minimizing

total energy under the constraint of total number of elec-

trons in the system. Then, the real space ground state effec-

tive potential is transformed into linear combination of

atomic orbital (LCAO) to construct the single-electron

Hamiltonian in orbital space. Next, the Green’s function is

constructed and the transport properties are calculated

within NEGF theory. We performed such calculation on a

silicon atomic junction shown in Fig. 1, which contains a

single-atomic chain and two body-centered cubic leads

extending to infinite long. Numerical results suggest that,

ac response of the silicon system at small frequency shows

capacitive-like behavior and its dynamic conductance at

sub-terahertz is well described by a classic RC circuit. The

calculation also reveals that, with the increasing of atom

number in the atomic chain, the zero-frequency conduct-

ance is reduced and the capacitance of the silicon system is

enhanced.

The paper is organized as follows: Sec. II reviews theo-

retical foundations of OFDFT method, accompanied by the

detailed procedure in implementation on open boundary sys-

tems. In Sec. III, we use this method to calculate dynamic

conductance of a silicon nanostructure and give discussion

on the numerical results. Finally, conclusion will be given in

Sec. IV.

II. THEORETICAL FORMALISM

In this section, we give a detailed description on apply-

ing OFDFT in transport study. Here is our general strategy.

First, we divide the system into three regions: central scatter-

ing region as well as left and right leads regions. With the

proper boundary conditions discussed below, open scattering

problem reduces to that in a finite closed system. Second,

OFDFT is used to find out the ground-state scattering poten-

tial landscape for the closed system. This is a minimization

problem and very efficient to converge. Finally, with the

converged potential landscape, NEGF is adopted to calculate

the transport properties through the atomic junctions. Now

we start with the special requirements of applying OFDFT

on open boundary systems.

A. OFDFT with open boundaries

It is well known that, in OFDFT, all the energy terms in

the total energy expression are explicit functionals of elec-

tron density, especially the kinetic energy. The total energy

of an electronic system in OFDFT reads

EOF
tot ¼ Ts½q� þ EH½q� þ Exc½q� þ

ð
VpsðrÞqðrÞdr; (1)

where the first term Ts½q� is the non-interacting kinetic

energy functional of electron density (usually refereed as

KEDF, kinetic energy density functional). The second one is

the Hartree energy arising from the classical electron-

electron interaction. Exc is the exchange-correlation energy

functional. The last term is the energy from the pseudopoten-

tial of ions. Due to the lack of electron orbitals, the nonlocal

pseudopotential18 in KSDFT has to be replaced by the local

pseudopotential (LP). Before presenting these energy density

functionals, we should first consider the special requirement

in boundary conditions needed for transport calculation.

A typical setup of an atomic device is schematically

plotted in Fig. 1. The device consists of a silicon chain, con-

nected by two semi-infinite leads to the electron reservoirs.

The transport is through the longitudinal direction and we

leave enough vacuum region in the transverse directions and

a few atomic layers of leads in the simulation box. To deal

with transport properties of this system, we should consider

two different kinds of boundary conditions. The two semi-

infinite leads can be easily handled with conventional peri-

odic boundary conditions. The central simulation box is an

open system, which is neither periodic nor isolated system.

To treat the open boundary condition, we adopt the empirical

screening approximation,19 which argues that the influence

of scattering region is screened by the atomic leads of buffer

layer so that the effective potential a few layers away from

FIG. 1. Schematic representation of a silicon atomic device. The central

region contains a silicon chain and two unit cells of the left and right leads,

which have simple cubic structure. The two periodic leads extend to infin-

ities, connecting the central region to electron reservoirs. The whole system

is under equilibrium condition.

153703-2 Xu et al. J. Appl. Phys. 114, 153703 (2013)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

147.8.204.164 On: Thu, 10 Apr 2014 08:27:28



the scattering region is close to the effective potential of the

lead. A natural boundary condition for the central simulation

box is given by19

Vef f ðzÞjcentral ¼ Vef f ðzÞjlead; (2)

where z labels a surface on the boundary. In principle,

Eq. (2) holds for z located deeply enough in the lead. In prac-

tice, a few layers of atomic lead can give very good screen-

ing. After the self-consistent calculation of OFDFT is done

and the ground state of the system is reached, electron den-

sity at these surfaces should be equal, which makes sure that

the effective potential matches perfectly on the interface. In

this way, the open system can be treated as a finite one where

variational principle is applicable. Later we will show that,

how this treatment affects the choice of energy density func-

tionals when applying OFDFT in open boundary problems.

Expressions of each term in Eq. (1) used in our calculation

are listed below.

1. Kinetic energy density functional Ts ½q�

The major difference between KSDFT and OFDFT lies

in kinetic energy functional. Unlike the KS kinetic energy

which is exactly expressed in terms of the non-interacting

single electron orbitals, KEDF does not have an explicit rela-

tion with electron density but can be approximated to

approach the KS kinetic energy as close as possible. Since

the kinetic energy accounts for a large part of the total

energy, it affects the accuracy of OFDFT simulation in a cru-

cial way. In the past decades, most research efforts in

OFDFT field have been focused on designing more accurate

KEDFs. One popular strategy is forcing the KEDF to fulfill

the linear response behavior of electron gas. KEDF of this

type is usually expressed as20

Ts½q� ¼ TTF þ TvW þ TK½q�;

TTF½q� ¼ CTF

ð
q5=3ðrÞdr; CTF ¼

3

10
ð3p2Þ2=3;

TvW ½q� ¼
ð ffiffiffiffiffiffiffiffiffi

qðrÞ
p �

� 1

2
r2

� ffiffiffiffiffiffiffiffiffi
qðrÞ

p
dr;

TK½q� ¼
ð ð

qaðrÞKa;bðr� r0Þqbðr0Þdr0dr; (3)

where TTF is the Thomas-Fermi kinetic energy21 derived

from homogeneous electron gas and TvW is the von

Weizs€aker (vW) kinetic energy,22 which is exact for a

bosonic system.

The third term in KEDF, TK½q�, has to be approximated

according to the Lindhard response function23 and a and b are

parameters to be determined. The nonlocal kernal Ka;bðr� r0Þ
was originally designed as electron density independent.20

Later it was generalized to density dependent version. This

linear response KEDF greatly improves the performance of

OFDFT in modeling bulk properties of main group metals.24

Most recently, by forcing the KE to satisfy the correct asymp-

totic behavior, TK½q� has been extended to simulate semicon-

ductors.13 To our knowledge, the linear response KEDF

represents presently the most accurate kinetic functional

which greatly improves the performance of OFDFT in many

aspects. But the nonlocal kernal Ka;bðr� r0Þ has to be eval-

uated in momentum space and usually Fast Fourier transfor-

mation (FFT) is required. Hence, periodic boundary

conditions are necessary in applying this KEDF, which means

that it is not applicable in open boundary problems.

In OFDFT research field, there are also other strategies

to construct KEDFs from distinct considerations. For

instance, in Ref. 25, constraint-based local approximate

KEDF is proposed by requiring that the KE generates

adequate interatomic forces, not total energies nor general

linear response. This type of KEDF is particularly suitable

for multiscale molecular-dynamics (MD) simulations.

Another kind of KE is constructed as TvW, the exact KE for

bosonic systems, plus one or more positive-definite terms

arising from the fermi nature of electrons, which also attracts

considerable research interest.26 The generalized-gradient-

approximation (GGA) type KEDF also has a long history27

and new developments are continuously made.28

Given these choices of KEDFs, our primary concern is

easy to implement in open boundary condition and cheap in

numerical cost. Based on this consideration, the Thomas-

Fermi plus von Weizs€aker model29,30 is chosen as the kinetic

energy functional in our calculation, which reads

Ts½q� ¼ TTF þ kTvW ; (4)

where k is an adjustable parameter. To ensure the accuracy

when evaluating TvW, for the periodic leads we use the FFT

technique and for the central region high-order finite differ-

ence method is employed.31 In the latter case, density distri-

bution of a few adjacent layers in the leads is required,

which closely connects the central region and leads on the

interface.

2. Hartree energy EH ½q�

The second functional of the total energy defined in Eq.

(1) is the classical Hartree energy

EH½q� ¼
1

2

ð ð
qðrÞqðr0Þ
jr� r0j dr0dr: (5)

Usually, we calculate the Hartree potential first, which is the

functional derivative of EH on density qðrÞ

VHðrÞ ¼
ð

qðrÞ
jr� r0jdr0; (6)

which is equivalent to solve the Poisson equation

r2VHðrÞ ¼ �4pqðrÞ: (7)

To solve the Poisson equation, we use the FFT technique

when handling the periodic leads. For the central scattering

region, FFT is adopted in the transverse directions since

there is enough vacuum region and finite difference method

is applied in the longitudinal direction. Potential and density

profiles on the interface between the periodic leads and cen-

tral region are required in this step.

153703-3 Xu et al. J. Appl. Phys. 114, 153703 (2013)
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3. Exchange-correlation energy Exc½q�

The exchange-correlation energy functional can be

made as the same in KSDFT, as long as it is only density de-

pendent. One can either use local density approximation

(LDA) or GGA type Exc. We adopt LDA in our calculation,

which reads

Exc½qðrÞ� ¼
ð

qðrÞexc½qðrÞ�dr; (8)

with the short range exchange-correlation energy density

given by33

exc ¼ �
a0 þ a1rs þ a2r2

s þ a3r3
s

b1rs þ b2r2
s þ b3r3

s þ b4r4
s

(9)

here rs ¼ ð3=ð4pqÞÞ1=3
, defined as the local Seitz radius.

Coefficients for different orders of rs are respectively

a0 ¼ 0:458165 a1 ¼ 2:217059;
a2 ¼ 0:740555 a3 ¼ 0:019682;
b1 ¼ 1:000000 b2 ¼ 4:504130;
b3 ¼ 1:110667 b4 ¼ 0:023592:

(10)

In principle, other types of LDA Exc functional34 and GGA

form Exc
35 are also applicable in OFDFT.

4. Local pseudopotential

The isotropic local pseudopotential represents another

error source in OFDFT compared with KSDFT. Historically,

local pseudopotentials are defined either in real space36 or re-

ciprocal space37 in parameter-dependent forms. Take the sili-

con atom as an example. Its local pseudopotential was

defined in reciprocal space as a function of k37

VpsðkÞ ¼ �
4pZa1

k2
½cosða2kÞ þ a3�ea4k4

: (11)

The relevant parameters are, respectively, a1 ¼ 2=ð1þ a3Þ;
a2 ¼ 0:79065; a3 ¼ �0:35201, and a4 ¼ �0:01807. The main

part of VpsðkÞ is �4pZ=k2, which is the Fourier transform of

Coulomb potential �Z/r. The exponential term makes sure that

VpsðkÞ does not fluctuate at large k, hence the corresponding

pseudopotential in real space recovers the �Z/r form at certain

distance.

This type of local pseudopotentials has analytic defini-

tions either in real space or k space with several adjustable

parameters. Their simple expressions are convenient to be

implemented in calculation of different atomic structures.

But the parameters can only be adjusted to properties of one

specific structure; they are less accurate to other environ-

ments. The poor transferability of these parameter-dependent

LPs is unpleasant in computation.

In the past decade, the optimized effective potential

(OEP) method38 was used to design numerical local pseudo-

potential.39,40 Employment of these accurate and transferable

local pseudopotential systematically improves the perform-

ance of OFDFT calculation on many bulk properties. We

plot in Fig. 2 the local pseudopotentials of silicon from

different definitions. The Ihm and Cohen type LP has a slow

transition behavior to �Z/r. OEP resultant LP40 has the most

smooth curvature and the hardest core. Both of them are hard

potentials and reserve a local maximum at the atom center

r¼ 0, which is the genetic feature of local pseudopotential.

This hard core represents the repulsion of core electrons to the

valence electron, preventing them to accumulate in the closed

inner shell. At certain distance, all LPs recover the Coulomb

tail �Z/r. In the following calculation, we will test the accu-

racy of these LPs when employed in transport study.

It is noticed that there are two long-range potentials

which have Coulomb tails at large distance L

VHðrÞ ¼
ð

qðr0Þ
jr� r0jdr0 � Ne

L
;

VpsðrÞ � �
Ne

L
: (12)

Ignoring the dipole and higher moments induced by the elec-

tron distribution, these two terms cancel to each other at

large distance according to the Gauss’s law. In periodic sys-

tems, VH and Vps are easily constructed using geometric

structure factor and Fourier transform. When periodic

boundary condition is absent, the long range behavior results

in a heavy numerical burden in real space calculation.

Taking advantage of the cancelation of VH and Vps, their

long range influence can be screened by adding and subtract-

ing the potential from a neutral charge density. The neutral

charge density around each ion is normalized toÐ
qNA

I ðrÞdr ¼ ZI, with ZI the charge of the Ith ion. The

screened forms of Hartree potential and pseudopotential are,

respectively,41

VdH ¼
ð ðqðr0Þ � qNAðr0ÞÞ

jr� r0j dr0; qNA ¼
X

I

qNA
I ;

VNA ¼
X

I

VNA;I ¼
X

I

Vps;I þ
ð

qNA;Iðr0Þ
jr� r0j dr0

( )
; (13)

where
Ð

qNAðrÞdr ¼ Ne makes sure the charge neutrality in

the simulation region. This technique is originally from the

FIG. 2. Local pseudopotentials of silicon defined in reciprocal space, and

from optimized effective potential method, respectively. Coulomb potential

�Z/r is plotted for comparison.

153703-4 Xu et al. J. Appl. Phys. 114, 153703 (2013)
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SIESTA code and presented in Refs. 9 and 41. Introduction

of qNA produces short range screened Hartree potential VdH

and neutral atom potential VNA, and one can easily prove that

VH þ Vps ¼ VdH þ VNA (14)

so that the effective potential remains the same. There are

two advantages when the neutral atom density is introduced

(1) since VNA is short range, it is numerically convenient and

efficient to add up VNA for all the ions.

(2) In practical implementation, it is difficult to match the

boundary conditions using Eq. (2). It is more conven-

ient to match the boundary conditions of the screened

potential VdH induced by charge neutral distribution

qðrÞ � qNAðrÞ. The corresponding Poisson equation

reads

r2VdHðrÞ ¼ �4pðqðrÞ � qNAðrÞÞ: (15)

The detailed technique can be found in Refs. 19 and 32.

Once the total energy functional in Eq. (1) is con-

structed, the ground state electron density can be reached by

minimizing EOF
tot with respect to the electron density, which

is ensured by the second HK theorem.1 The theorem also

requests two constraints on the electron density

(1) Electron density is non-negative definite, qðrÞ � 0.

(2) Number of electrons in the system should be conserved,Ð
qðrÞdr ¼ Ne.

By making a simple variable substitution v ¼ ffiffiffi
q
p

to

ensure the first constraint, and defining a new functional

P½q� ¼ EOF
tot � l

�ð
v2ðrÞdr� Ne

�
(16)

to satisfy the second one. Here, l is the Lagrangian multi-

plier, evaluated as the mean value of total energy functional

derivative.10 By variational principle, P½q� preserves a mini-

mum value when the system is at its ground state,

dP½q�
dq

¼ dEOF
tot

dq
� l ¼ 0 (17)

or

dP
dv
¼ dEOF

tot

dv
� 2lv ¼ 0: (18)

Equations (17) and (18) provide the numerical condition in

reaching the ground state.

Many numerical methods can be used in finding mini-

mum of functional P½v�. For example, steepest descent

method and conjugate gradient methods,42 truncated Newton

method.10 It is more efficient if the descent direction fulfills

the electron number constraint, which can be realized in con-

structing a normalized direction.43 When the ground state is

reached by direction minimization, we obtain the ground

state effective potential of the system, which satisfies the

Euler equation

dTs

dq
þ Vef f ðrÞ ¼ 0: (19)

B. Implementation in electronic transport

In OFDFT, we solve the Euler equation to find the

ground state effective potential needed for transport calcula-

tion. In Matdcal6 software, the Hamiltonian operator is pro-

jected in orbital basis consisted by LCAO.

The atomic orbitals fflg are localized in real space. fl

has the following expression:19

flðr� RIÞ ¼ Rlðjr� RIjÞYlmðXr�RI
Þ;

where RI indicates the position of this atom and Rl is an iso-

tropic radial function, which has a cut-off radius Rcut. Here,

Ylm is the spherical harmonics function with lm the angular

momentum index, containing the other two degrees of free-

dom in the spherical coordinate system.

In terms of the fflg basis set, the single electron eigen-

function wi in the Kohn-Sham equation is expressed as the

linear combination of fl

wi ¼
X

l

ci
lfl:

The Kohn-Sham equation is then transformed into

Hl�c
i
� ¼ eiSl�c

i
�; (20)

where Sl� is the overlap matrix describing the overlapping

between the orbitals fl from different atoms. Sl� and the

Hamiltonian matrix elements in orbital space read

Sl� ¼
ð

drf�lðrÞflðrÞ;

Tl� ¼
ð

drf�lðrÞ �
1

2
r2

� �
f�ðrÞ;

Veff ;l� ¼
ð

drf�lðrÞVef f f�ðrÞ:

(21)

We can construct Hamiltonian in orbital space once the

ground state effective potential is obtained. The advantage of

employing the localized orbital basis fflg is that, it leads to a

sparse form of the Hamiltonian matrix in orbital space, which

greatly reduces the numerical cost in solving the matrix equa-

tion. In contrast to the real space grid with a common sub-

million dimension (a typical 64� 64� 64 mesh grid in real

space), the single-zeta basis in MatDcal only involves 4 bases

(one s orbital and 3p orbitals) per electron. Hence, the dimen-

sion of orbital space Hamiltonian matrix is rather small. The

tradeoff is the loss of accuracy in fl basis, since it is an

incomplete one. Careful attention has to be paid on choosing

suitable numbers of fl bases and their cutoff radii.

In terms of the orbital space Hamiltonian Hl� , the re-

tarded Green’s function is conventionally defined as45

Gr ¼ 1

ES� H � Rr ; (22)
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where S is the overlap matrix and Rr is the self-energies of

the leads, calculated from the lead Hamiltonian in advance.

Once Gr is established, transport properties can be computed

within the NEGF formalism. At this stage, we have applied

OFDFT in electronic transport through open systems. Our

code is realized on MatDcal package.6

The detailed procedure of applying OFDFT on transport

of open systems is schematically plotted in the flowchart of

Fig. 3. The LCAO basis set has played a critical role in con-

structing the single electron Hamiltonian. Compared with

the KSDFT-NEGF formalism, the OFDFT method is prefer-

able on these properties:

(1) Linear-scaling numerical cost and fully real space

implementation.

(2) No need of frequent transformation between LCAO or-

bital space and real space needed for solving Poisson

equation.

(3) Fast and stable direct minimization algorithm with no

charge sloshing.

(4) Low memory cost in the converging process.

These favorable features make the OFDFT method a

promising candidate in studying electronic transport of

large-scale atomic systems. The validity of variational prin-

ciple enables fast direct minimization numerical methods,

but also limits its applicability on non-equilibrium transport

problems. Hence, we can only study systems under equilib-

rium conditions.

To end this section, we would like to emphasize the key

steps to apply OFDFT on equilibrium transport problems.

The self-consistent OFDFT simulation on the equilibrium

system generates the scattering potential. The Hamiltonian

of the system is then constructed on the LCAO basis. With

this Hamiltonian, the Green’s function is defined in a con-

ventional manner, and the transport properties of the system

are investigated within the NEGF theory. In Sec. III, we will

discuss the applicability of the OFDFT method on transport

study.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we perform the OFDFT transport study

on a silicon atomic structure. The system is depicted in

Fig. 1, which has the typical lead-atomic junction-lead

setup. The central scattering region of this system contains

several silicon atoms and enough buffer layers of the peri-

odic leads. Such kind of single-atomic chain structure has

been experimentally realized on Au, Pt, and Ir materials

using mechanically controllable break junction technique.44

It is possible to fabricate a silicon single-atomic chain

structure by this technique. The left and right leads are

identical and both have body-centered cubic lattices in z
direction. Sufficient vacuum has been included in the whole

simulation region to make sure that electron density at the x
and y boundaries decays to zero. The two leads spread to

61 and connect the electron reservoirs. The whole struc-

ture is in equilibrium where the variational principle is ap-

plicable. We choose k ¼ 0:2 in the TvW kinetic energy

functional and 6th order finite difference method31 with

boundary values of electron density interpolated from the

leads are used to calculate TvW of the central region. Local

pseudopotential is constructed from both analytic method37

and numerical OEP method.40 To test the accuracy of dif-

ferent local pseudopotentials, results from KSDFT-NEGF

with both nonlocal and local pseudopotentials are also cal-

culated for comparisons. Then, the ground state density dis-

tribution and effective potential are obtained by direct

minimization method. Before the discussion of transport

properties, we first present the ground state density distribu-

tion and potentials in real space grid.

A. Density and potential landscapes in real space

The numerical results of OFDFT simulation on one unit

cell of the bcc lead are shown in Fig. 4. For comparison pur-

pose, we have performed four different realizations of the

ground state system within various schemes. There are,

respectively, OFDFT with Ihm-Cohen37 type LP (OF-LP1),

OFDFT with OEP40 type LP (OF-LP2), KSDFT with the

same OEP LP (KS-LP2), and KSDFT with non-local pseudo-

potential (KS-NLP). In panel (a) of Fig. 4, ground state den-

sity distribution along the central z axis is plotted, where the

position of one atom is shown as a black sphere for

illustration.

Take the KS-NLP result as the reference, density distri-

bution from KS-LP2 calculation has nearly the same profile

(Fig. 4(a)). To be specific, the difference between them is

less than 1%. Compared with the KS results, the outcomes

from OFDFT are less accurate. The potential of LP2 is much

harder than that of LP1 in the ion center, which leads to

smaller density in the core region. OF-LP2 predicts the cor-

rect maximum position of density, but the magnitude is

higher than the KS results. Difference between OF-LP2 and

KS-LP2 reveals that accuracy of KEDF is the critical aspect

in OFDFT, which is also the central research issue in this

field. OF-LP1 only produces a smeared density distribution,

which appears less preferable than the OF-LP2 result.

Apparently, it is the effective potential that determines

the transport properties of a nanostructure, which is given by
FIG. 3. Flowchart of the OFDFT method on electronic transport, realized on

LCAO basis set of the MatDcal package.6
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Vef f ¼ VdH þ Vxc þ VNA. In panel (b), we show the effective

potential obtained from three different cases. The hard core

of LP2 is clearly seen as high peaks in the figure. With the

same local pseudopotential, OF-LP2 and KS-LP2 give very

close effective potential landscapes, which is crucial in con-

structing the orbital space Hamiltonian defined in Eq. (21).

From the results shown in panels (a) and (b), the OEP local

pseudopotential is adopted in the following transport study

of OFDFT method.

B. Dynamic response under finite ac bias

Compared with the dc transport, nanoscale systems

show distinct properties under ac bias. For instance, a quan-

tum electron pump generates dc current at zero bias by peri-

odically deforming the confining potential of the system.

The idea of electron pump was first proposed by Thouless46

and then experimentally explored by Switkes and co-work-

ers.47 The underlying mechanism is well described by scat-

tering matrix theory.48 In addition, it was predicted

theoretically that the charge relaxation resistance of a quan-

tum capacitor is half of resistance quanta.49 This was later

verified experimentally in a quantum capacitor realized on

2-dimensional electron gas (2DEG), where a single spin-

polarized conducting channel exists in the system.50

Furthermore, the dynamic response of a single-walled carbon

nanotube was measured at Terahertz frequencies in the ex-

perimental work, Ref. 51, and the results were well described

by finite frequency ac transport theory derived within NEGF

frame.52 Recently, the dynamic admittance of a quantum dot

coupled to 2DEG at different tunnel rates was measured at

microwave frequencies,53 where experimental observations

are well explained by the scattering matrix theory.54

The success of quantum transport theories in these cases con-

solidates the validity of these theories on predicting the ac

transport properties through nanostructures.

In this section, we numerically study the dynamics

response of the silicon nanostructure presented above in lin-

ear response regime.49,55 As discussed in detail in Refs. 49,

55, and 56, the dynamic conductance can be expressed in

equilibrium Green’s function. Here, we investigate the fre-

quency dependent conductance of the silicon nanostructure.

It is noted that ac transport properties of a similar silicon de-

vice at low frequencies were investigated with orbital-free

type method in real space using scattering matrix approach,

but the leads are treated by jellium model.17 The even-odd

symmetry of dynamic conductance in Al-Cn-Al structure has

been studied with the KSDFT-NEGF method.57

The dynamic conductance of a two-probe device under

finite frequency is given by56

GabðxÞ ¼ Gc
abðxÞ � Gd

bðxÞ

X
c
Gc

acðxÞX
c
Gd

c ðxÞ
; (23)

where the subscripts a; b and c ¼ L;R are indices of the two

leads. The definition is applicable to systems near or far

from equilibrium. Gc and Gd are the conductance due to the

particle current and displacement current, respectively.

Under the wideband condition, Gc
abðxÞ is expressed in terms

of the NEGF as56

Gc
abðxÞ ¼ �

ð
dE

2p
f � �f

x
Tr½� �G

r
0CbGa

0Ca

þ �G
r
0CGa

0Cadab � ix �G
r
0Ga

0Cadab�; (24)

where f and �f ¼ f ðEþ xÞ are the Fermi distribution func-

tions. Gr
0 and �G

r
0 are the retarded Green’s function at ener-

gies: E and Eþ x. The conductance due to the displacement

current is written as56

Gd
bðxÞ ¼ �iqx

ð
dE

2p
f � �f

x
Tr½ �Gr

0CbGa
0�: (25)

This term is induced by the non-equilibrium charge distribu-

tion when an ac bias is applied. One can easily verify the

current conservation and gauge invariance from definition

(23), which fulfills the requirements
P

aGab ¼ 0 (current

conserving) and
P

bGab ¼ 0 (gauge invariance).

The dynamic conductance GLRðxÞ of the silicon system

shown in Fig. 1 is calculated based on the above definitions and

the numerical results are depicted in Fig. 5. We choose sub-

terahertz ac frequency regime x 2 ½0; 0:25� THz and the sys-

tem consists of two silicon atoms sandwiched between the

leads. The real and imaginary parts of GLRðxÞ are plotted in

panels (a) and (b), respectively. The results from OFDFT calcu-

lation and KSDFT simulation with both LP and NLP are also

shown for comparison. In Fig. 5(a), it is observed that, real part

of GLR is finite at zero frequency, and increases gradually in the

frequency interval. Meanwhile, imaginary part of the dynamic

conductance in Fig. 5(b) starts from zero at x ¼ 0 and grows

in negative value almost linearly with the increase of frequency.

FIG. 4. Black sphere represents the silicon atom and the dashed line through

the whole picture indicates its position. Panel (a) shows the density distribu-

tions along z axis, where x ¼ Lx=2 and y ¼ Ly=2, in four different imple-

mentations. Panel (b) plots the effective potential for calculations with local

pseudopotentials. LP1 corresponds to the Ihm-Cohen type LP,37 and LP2 is

obtained from optimized effective potential method.40
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Upon larger frequencies, the magnitude of ImðGLRÞ starts to

decrease. These general observations apply to both OF and KS

results. In another word, the OF description on the silicon sys-

tem is physically the same as the KS simulations. And the OF

result is quantitatively comparable with the KS results with

both LP and NLP. These conclusions imply that the OFDFT

method is applicable in describing the equilibrium ac transport

properties through the silicon nanostructure. In the following,

we will focus our analysis on the physical properties of the sys-

tem based on the OFDFT results.

We focus on the small frequency range x 2 ½0; 0:1� THz

and plot the OFDFT simulation of GLR in Fig. 6. We notice

that ImðGLRðxÞÞ is negative, indicating that the system

shows capacitor-like behavior, although the system is trans-

missive with zero-frequency conductance GLRðx ¼ 0Þ ¼ 2:4
in unit of 2e2=h.

Physically, the silicon nanostructure we studied can be mod-

eled by the equivalent classic RC circuit shown in the inset of

Fig. 6(a), whose dynamic response to ac frequency is given by

GðxÞ ¼ 1

R
þ 1

Rq þ i=xC
: (26)

Since the frequency of terahertz is a small quantity compar-

ing with atomic energy scale, we expand the above expres-

sion in the power series of x and obtain

GðxÞ ¼ 1

R
� ixCþ x2C2Rq þ Oðx3Þ: (27)

Here, R stands for the dc resistance which is determined by

the zero-frequency conductance, R ¼ 1=GLRðx ¼ 0Þ and Rq

is the charge relaxation resistance.49,52,58 The numerical

result from OFDFT simulation is well fitted by Eq. (27),

shown as the blue solid lines in Fig. 6. From Fig. 6(a), we

have R ¼ 1=2:4 h=2e2. The charge relaxation resistance

Rq and capacitance C is obtained by least-square fitting

of the numerical data. In the case of Fig. 6, they are

Rq ¼ 0:39 h=2e2 and C ¼ 4:7 aF, respectively. Specifically,

the capacitance C is the slope of ImðGLRðxÞÞ in Fig. 6(b).

These fitted parameters are valid for frequency up to

0.1 THz.

We have further investigated the dynamic response of

the nanostructure with the OFDFT method when the number

of silicon atoms in the silicon chain is changed. Calculation

has been done for one, two, three, and four evenly spaced sil-

icon atom(s) in the central scattering region of Fig. 1. The

numerical results are included in Fig. 7. It is seen from Fig.

7(a) that the real part of dynamic conductance for different

systems shares similar trend, increasing with the frequency

x, and the four curves almost parallel with each other. And

with the adding of more silicon atoms, the ReðGLRðxÞÞ
curves get lower and lower. In Fig. 7(b), one can see that the

imaginary part of GLRðxÞ behaves nearly linearly as the

function of the frequency. With the increasing of the silicon

chain length, the magnitude of their slopes also increases. As

explained above, the slope gives rise to the capacitance of

the atomic system at low frequency. Clearly, all the four

cases can be described by Eq. (27) with different parameters,

implying that the silicon nanostructures we studied have a

generic capacitive-like nature. These observations are physi-

cally interpreted as follows. Since the atomic junction is not

completely transmissive, the atomic chain in the scattering

region serves as a tunneling barrier and the length of the

atomic chain can be viewed as the barrier width. Therefore,

upon increasing the number of atoms in the atomic chain, it

FIG. 5. Panel (a): real part of the dynamic conductance GLR at different fre-

quencies. Panel (b): imaginary part of GLRðxÞ versus x. Black spheres cor-

respond to numerical results from OFDFT calculation and red triangles are

from KSDFT simulation with non-local pseudopotential. The system under

investigation is the silicon nanostructure with two silicon atoms in the cen-

tral region. Fermi energy is chosen to be Ef ¼ 0 in the calculation.

FIG. 6. Panel (a): real part of GLR at different frequencies. Panel (b): imagi-

nary part of GLRðxÞ versus x. Black spheres correspond to numerical results

from OFDFT calculation and the blue solid lines are fitted using Eq. (20).
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gradually increases the effective barrier width thereby

decreasing the dc conductance GLRðx ¼ 0Þ. Meanwhile, the

classical capacitance of the atomic systems is slowly

increased due to the charge accumulation as a result of

decreasing dc conductance.

IV. CONCLUSION

In conclusion, we have used OFDFT-NEGF method to

study electronic transport in nanoscale systems. Making use

of the LCAO basis set, the single electron Hamiltonian is

constructed from the effective potential obtained by OFDFT

optimization on the scattering system. Then, the Green’s

function and transport properties can be calculated within

the NEGF formalism. The OFDFT method is implemented

on silicon nanostructures, which are atomic chains sand-

wiched between two monoatomic leads. The dynamic con-

ductance of the silicon system is calculated at sub-terahertz

frequency. It was found that the system responses

capacitive-like to the external ac voltage. With the increasing

of the number of atoms in the atomic chain, the zero-

frequency conductance is suppressed and the capacitance is

enhanced in the system. Our analysis shows that, up to

0.1 THz, the ac transport properties of the system are well

characterized by a classic RC circuit with two resistors for

dc resistance as well as charge relaxation resistance and one

capacitor.
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