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The experimental observation of the long-sought quantum anomalous Hall effect was recently reported

in magnetically doped topological insulator thin films [Chang et al., Science 340, 167 (2013)]. An

intriguing observation is a rapid decrease from the quantized plateau in the Hall conductance, accom-

panied by a peak in the longitudinal conductance as a function of the gate voltage. Here, we present a

quantum transport theory with an effective model for magnetic topological insulator thin films. The good

agreement between theory and experiment reveals that the measured transport originates from a

topologically nontrivial conduction band which, near its band edge, has concentrated Berry curvature

and a local maximum in group velocity. The indispensable roles of the broken structure inversion and

particle-hole symmetries are also revealed. The results are instructive for future experiments and transport

studies based on first-principles calculations.

DOI: 10.1103/PhysRevLett.111.146802 PACS numbers: 73.50.�h, 73.63.�b, 85.70.�w

In some metallic ferromagnets, a transverse current can
be induced by a longitudinal electric field, known as the
anomalous Hall effect [1,2]. The phenomenon does not
need an external magnetic field, thus, it is distinct from the
ordinary Hall effect. It has been perceived that in some
insulating ferromagnets the anomalous Hall conductance
could be quantized in units of the conductance quantum
e2=h, meanwhile, the longitudinal conductance vanishes
[3], leading to the quantum anomalous Hall effect, the last
and long-sought family member of the Hall effects. In the
quantum anomalous Hall system, the nontrivial topology
of the bulk states and broken time-reversal symmetry give
rise to chiral edge states in the energy gap. The dissipation-
less transport of the topologically protected edge states
gives the quantized conductances, and is believed to have
promising applications in quantum electronic devices with
low power consumption. Solutions and mechanisms to
realize the quantum anomalous Hall effect have attracted
tremendous efforts in past decades [4–12]. One of the most
promising schemes [5] is based on the magnetically doped
topological insulators [13–15], where the interplay of
strong spin-orbit coupling and magnetic exchange interac-
tion gives rise to the band inversion required by the quan-
tum anomalous Hall effect.

Recently, the experimental observation on the quan-
tum anomalous Hall effect was reported in Cr-doped
ðBi;SbÞ2Te3 ultrathin films [16]. The measured Hall con-
ductance exhibits a quantized plateauwhile the longitudinal
conductance decreases drastically at lower temperatures. A
more subtle behavior appeared on the positive gate voltage
side of the quantized plateau: the Hall conductance shows a
sudden drop, accompanied by a peak in the longitudinal
conductance (the inset of Fig. 1). Understanding themecha-
nisms beneath the subtle behavior is crucial because they
are closely related to the topological origin of the quantized
plateau. In this Letter, we present a quantum transport

theory, based on an effective microscopic model for the
topological insulator thin films grown on substrates. With
the single model, both the calculated Hall and longitudinal
conductances match the measured data very well (see
Fig. 1). The good agreement between theory and experi-
ment reveals the following. (1) The conduction and valence
bands closest to the quantized plateau are always topologi-
cally nontrivial. The transport features in Fig. 1 come from
the nontrivial conduction band, which has concentrated
Berry curvature and a local maximum in group velocity
near its band edge. (2) To induce the band inversion for the
quantum anomalous Hall effect, a stronger magnetic ex-
change field is required to overcome not only the finite-size

0 5
0.0

0.5

1.0

0.0 0.1 0.2

0.0

0.5

1.0

[e
2 /h

]

EF [eV]

 σxy

 σxx

Gate voltage [V] 

 

  

FIG. 1 (color online). Calculated Hall (square) and longitudi-
nal (circle) conductances as functions of the Fermi energy EF.
Parameters: � ¼ 0:01 eV, B ¼ �30 eV � �A2, � ¼ 3 eV � �A,
m ¼ �0:06 eV, D ¼ 28 eV � �A2, V ¼ 0:01 eV, nu21 ¼ nu22 ¼
100 ðeV � �AÞ2, and nu23¼nu24¼10 ðeV � �AÞ2. The energy-related
parameters are up to a scaling compared to the experiment. Inset:
the Hall and longitudinal conductances measured in the experi-
ment (adopted from Ref. [16]).
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gap of the thin film but also the effect of structural inversion
asymmetry (SIA), which is caused by the potential
difference between the top and bottom surfaces. Usually,
SIA is stronger in thicker films, resulting in a possible
obstacle to realize the quantum anomalous Hall effect in
thicker samples. (3) The transport is in the diffusive regime:
the longitudinal transport depends on the group velocity
rather than the density of states, which will be helpful for
further transport studies based on first-principles calcula-
tions. (4) The broken particle-hole symmetry is also indis-
pensable, which gives rise to the local maximum in the
group velocity and the asymmetry around the quantized
plateau.

Ferromagnetic insulators were predicted to form in
magnetically doped topological insulators such as Cr or
Fe doped Bi2Te3 and Sb2Te3, and their thin films have a
topological band structure, leading to the quantum anoma-
lous Hall effect [5]. Starting from the three-dimensional
effective model for topological insulators [17,18] with the
exchange field splitting, and using the solution of the
confined quantum states at the � point (kx, ky ¼ 0) in a

thin film as a basis [19,20], we obtain the effective
model [21]

H ¼ H0 þm

2
�0 � �z: (1)

m is the exchange field from the magnetic dopants [4,5],
which acts effectively like a Zeeman field. �0 is a 2� 2
unit matrix. �z is the z Pauli matrix. H0 is the effective
model for the thin films of the topological insulator [19,20]

H0¼�Dk2þ

�
2�Bk2 i�k� V 0

�i�kþ ��
2þBk2 0 V

V 0 ��
2þBk2 i�k�

0 V �i�kþ �
2�Bk2

0
BBBBBB@

1
CCCCCCA
;

(2)

where (kx, ky) is the wave vector, k2 ¼ k2x þ k2y. The D

term breaks the particle-hole symmetry, and the band gap
opening requires jDj< jBj. � is the hybridization of the
top and bottom surface states of the thin film [19,22,23],
which becomes relevant for thin films, e.g., Bi2Se3 thinner
than 5 nm [24,25]. Both � and B are functions of the
thickness of thin film, and approach zero simultaneously
for a thicker film. � ¼ v@, with v the effective velocity. V
measures the SIA between the top and bottom surfaces of
the thin film. The inclusion of SIA here is a natural con-
sequence for a realistic thin film grown on a substrate,
which always induces a potential distribution along the
film growth direction [20]. The potential shifts the gapless
Dirac cones on the top and bottom surfaces, and gives
the Rashba-like splitting in the band structure when the
top-bottom hybridization � is present [Fig. 2(a)] as
observed by ARPES [24].

It can be explicitly shown that the SIA increases the
exchange field required by the quantum anomalous Hall
effect. Under a unitary transformation [21], the
Hamiltonian can be diagonalized into two 2� 2 blocks

hs ¼ �Dk2 þ �zð�þ s�Þ þ s�ðkx�y � ky�xÞ cos�;

where s ¼ �1 for the outer and inner blocks, respectively.
The outer (inner) block has a larger (smaller) band gap at

k ¼ 0. We have defined � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm=2Þ2 þ �2k2sin2�
p

, � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�=2� Bk2Þ2 þ V2
p

, and cos� ¼ ð�=2� Bk2Þ=�. �x;y;z

are the Pauli matrices. For s ¼ þ1, the dispersions of the

two bands (denoted as the outer bands) are Ei ¼ �Dk2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þ �Þ2 þ ð�kÞ2cos2�p
(i ¼ 1 for �, and 4 for þ), and

the outer energy gap at k ¼ 0 is jmj þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4V2

p
, which

is always positive. For s ¼ �1, the dispersions of the two

inner bands are Ei ¼ �Dk2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �Þ2 þ ð�kÞ2cos2�p
(i ¼ 2 for�, and 3 forþ). The inner energy gap at k ¼ 0 is

jmj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4V2

p
. Without m, the inner bands and outer

bands touch at k ¼ 0 [Fig. 2(a)]. A finite m can lift the
degeneracies at k ¼ 0 [Fig. 2(b)]. Increasing m then
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FIG. 2 (color online). (a) Solid and dashed curves depict the
top and bottom surface states, respectively, of a thin film of
topological insulator on the substrate before magnetic doping.
[(b)–(d)] The exchange field from magnetic dopants can lift the
degeneracies at k ¼ 0 and induce a band inversion, whereas SIA
induced by the substrate is competing against the exchange field.
(d) No band crossing at finite k if �B < 0. (e) Band crossings at
finite k are expected if the band inversion is achieved by doping a
thin film with �B> 0. (f) SIA can turn the band crossings to
anticrossings while exchanging the topological properties be-
tween inner and outer bands. 0, �1 indicate the contribution to
�xy (Chern number) of a band if the band is fully occupied.
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produces a band inversion for bands 2 and 3 at k ¼ 0,
when

jmj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4V2

p
; (3)

and changes their topological properties from trivial to
nontrivial or vice versa [Figs. 2(c) and 2(d)]. We have
shown in Eq. (3) that, in the presence of SIA, the band
inversion requires the exchange fieldm to exceed not� but

a larger value
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4V2

p
.

Moreover, we find that SIA also leads to qualitative
differences: it makes the bands closest to the gap always
topologically nontrivial. Without SIA (V ¼ 0), the model
reduces to the one proposed by Yu et al [5]. From the band
structure, we can show that if �B> 0, there will be band

crossings at a finite k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=2B

p
[Fig. 2(e)]. We find that

SIA can turn the band crossings at finite k into band anti-
crossings, leading to a change of topological properties
[Fig. 2(f)]. As a result, the inner two bands, 2 and 3, become
nontrivial. To show this, we investigate the topological
properties of the bands with the help of the Berry curvature

�z
i ðkÞ ¼ �2

X
j�i

Imhij@H=@kxjjihjj@H=@kyjii
ðEi � EjÞ2

;

where for givenk, jii is the eigenstate in band iwith energy
Ei. Usually,�

z
i ðkÞ of band i is a function of k, and can have

either positive or negativevalues. Its integral over all the k in
the first Brillouin zone is always an integer, i.e., the Chern
number. If the Chern number is zero, the energy band is
topologically trivial. However, if �z

i ðkÞ is always positive
or negative, its integral must be a nonzero integer, meaning
that the band is nontrivial. Figure 3 shows a case in which
the quantum anomalous Hall phase is created from a thin

film with�B> 0 andm has already overcome
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4V2

p
to invert bands 2 and 3 at k ¼ 0 [Fig. 3(a)]. Without SIA
(V ¼ 0), the Berry curvature in Fig. 3(b) shows that bands 2
and 3 are trivial while bands 1 and 4 are nontrivial.With SIA
(V � 0), the band crossings in Fig. 3(a) turn into anticross-
ings in Fig. 3(c). Meanwhile, bands 2 and 3 exchanged

their Berry curvature with bands 1 and 4 for k >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=2B

p
[Fig. 3(d)]. As a result, bands 2 and 3 become nontrivial.
Therefore, we have shown that the inner bands are always
nontrivial. In contrast, if�B< 0 there is no band crossing-
anticrossing transition (see Fig. 1 of the Supplemental
Material [21]), and the inner two bands are topologically
nontrivial only because of the band inversion at k ¼ 0.
Thus, in the presence of SIA, the bands closest to the gap
are always topologically nontrivial. We shall show that the
nontrivial bands account for the measured longitudinal and
Hall conductances in the following calculation.

Hall conductance.—According to the linear response
theory, the intrinsic Hall conductance is given by the
integral of the Berry curvature over occupied states in k
space [2]

�xy ¼ � e2

h

X
i

Z d2k

ð2�Þ2 fðEi � EFÞ�z
i ðkÞ;

where fðxÞ ¼ ½expðx=kBTÞ þ 1��1 is the Fermi function
and EF is the Fermi energy. Without SIA, it has been
shown that [19] the in-gap Hall conductance �

gap
xy ¼

�ðe2=2hÞ½sgnð�þmÞ þ sgnð��þmÞ�. For the quan-
tized anomalous Hall effect, jmj must be larger than j�j,
and then �gap

xy ¼ �ðe2=hÞsgnðmÞ, which only depends on
the sign ofm. A positive quantized plateau of �xy indicates

that m< 0. In the presence of SIA, the value of the
quantized Hall conductance remains the same, but the

quantum anomalous Hall phase requires jmj>ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ4V2

p
. In the experiment [16], the drop of the Hall

conductance (inset of Fig. 1) from the quantized plateau is
rather prompt on the positive gate voltage side. This behav-
ior implies that the band closest to the gap is topologically
nontrivial (band 3). The nonzero Berry curvature of the
band is mainly distributed near its band edge, leading to the
prompt drop of �xy. The concentrated Berry curvature

distribution is probably given by a relatively narrow band-
width, and small band gap. Another feature in �xy is a

small dip in �xy (marked by the arrow in Fig. 1). This is

given by a trivial band at higher energy (band 4). If band 4
is fully occupied, it has no contribution to the total Hall
conductance. But before being fully occupied, with
increasing EF, it first reduces then enhances the Hall con-
ductance, giving rise to the dip. By definition, the intrinsic
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FIG. 3 (color online). (a) There are band crossings if the band
inversion is achieved by magnetically doping a thin film with
�B > 0. (b) The Berry curvature of the corresponding bands in
(a). We have adopted polar coordinates so �z

i ðkÞ ! k�z
i ðkÞ.

(c) The band crossings in (a) turn to anticrossings in the presence
of SIA (V � 0). (d) The Berry curvature of the bands in (c).
Parameters: � ¼ �0:01 eV, B ¼ �30 eV � �A2, � ¼ 3 eV � �A,
m ¼ �0:06 eV, D ¼ 28 eV � �A2. Left: V ¼ 0. Right: V ¼
0:01 eV. The band with the lowest (highest) energy at k ¼ 0 is
indexed as band 1 (4). Band 1: red dashed. Band 2: blue solid.
Band 3: green solid. Band 4: black dashed.
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Hall conductance will always vanish at higher energy.
However, �xy, in the experiment, saturates at some finite

values, in particular, rather high (�0:5e2=h) on the nega-
tive gate voltage side. The pinning of the Fermi surface
probably does not account for the saturation, because�xx is
still increasing meanwhile. The impurity scattering in-
duced extrinsic Hall conductance [1] may be one of the
reasons. We calculated the extrinsic contribution from
the side-jump mechanism [21]. However, it turns out that
the perturbation theory assuming weak impurity scattering
[26–29] may not be enough, because the experiment was in
a strong disordered or bad-metal regime [11,16].

Longitudinal conductivity.—Considering the low mobil-
ity in the experimental sample, the electronic transport
outside the gap is diffusive. To the leading order, the
longitudinal conductivity in the diffusive regime is given
by the Einstein relation [30] �xx ¼ e2NFD, where NF is
the density of states at the Fermi energy, the diffusion
coefficient D ¼ v2

F�=2, with the Fermi velocity defined
as vF ¼ ð@E=@kÞ=@, the scattering time � ¼ @=ð2�NFnu

2Þ
where n is the impurity concentration, u measures the
scattering strength. For simplicity, we use nu2 to account
for the overall effect from both the nonmagnetic and
magnetic scattering. Both �xx and � depend on NF, indi-
cating that a large density of states also means strong
scattering on the Fermi surface. As a result, the density
of states cancels out in �xx, and we arrive at

�xx ¼ e2

h

X4
i¼1

1

2

��������
@Ei

@k

��������
2

Ei¼EF

1

nu2i
(4)

for multiple bands. Suppose that nu2i varies slowly with the
Fermi energy; the peak in �xx, therefore, corresponds to a
local maximum in the group velocity. This behavior can be
captured by the parameters of the same orders as those in
the experiments. In Fig. 4, we show the group velocity and
the density of states [given by kF=ð2�jdE=dkjkF Þ in polar

coordinates, kF the Fermi wave vector]. Compared with
Fig. 1, it is clear that �xx is dominantly determined by the
group velocity rather than the density of states. It is found
that the peak is better produced by comparable jBj and jDj.
Although Fig. 4 shows only a case with �B< 0, similar
�xx can be produced with �B> 0.

Thick films.—For those thicker films (e.g., typically
more than 5 nm for Bi2Se3), the hybridization between
the top and bottom surfaces becomes negligibly small,
and both � and B may be abandoned. In this case, the
Hamiltonian can be projected to the top and bottom sur-
faces [21]

UyHU ¼ �Dk2 � V þm

2
�z þ �ðkx�y � ky�xÞ;

where U ¼ ð�0 � i�yÞ � �0=
ffiffiffi
2

p
, and �V shows that

SIA can shift the relative positions of the bands from the
top (þ ) surface with respect to those from the bottom (�)
surface. As massive Dirac fermion systems, each of the top

and bottom surfaces contributes �ðe2=2hÞsgnðmÞ to the
Hall conductance when the Fermi level is located in the gap
[31,32], so the total Hall conductance is �ðe2=hÞsgnðmÞ.
For a smaller jVj< jmj=2, there is still an energy gap that
protects the quantized Hall conductance. However, for a
larger V > jmj=2, the energy gap closes and the Hall
conductance is not quantized. Since the SIA comes from
the substrate-induced electric field along the growth direc-
tion, a thicker film has a larger V [24]. Thus, if no other
mechanism is taken into account, it may be hard to realize a
quantized anomalous Hall conductance in thicker films,
although the finite-size � is smaller. Also, in this case, the
surface states of the lateral sides of the film contribute to
the longitudinal conductance [10], which forces the Hall
resistance to deviate from the quantized value.
We thank Michael Ma for helpful discussions on the

longitudinal transport. This work was supported by the
Research Grant Council of Hong Kong under Grant
No. HKU7051/11P.
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