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Abstract 
 
Green living wall is an emerging new technology and a sustainable design strategy for high 
performance green buildings. By using the natural processes of the vegetation, it can provide 
the potential benefits for mitigating urban heat island, enhancing building’s thermal 
performance and improving air quality. For densely populated urban cities like Hong Kong, 
the space available for greening is very limited and green living walls can be applied to the 
exterior and interior surfaces of buildings to improve the city environment. 
 
This research aims to investigate the thermal regulation performance of green living walls. 
The basic principles and mechanisms of thermal regulation of green living walls were 
studied. The major characteristics of the heat transfer processes were evaluated and the key 
factors affecting the thermal regulation were identified. Theoretical models were developed 
for assessing the thermal regulation performance of different types of green living wall 
systems. It is hoped that the information obtained can offer useful knowledge and hints for 
designing and applying green living walls in urban cities. 
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Thermal regulation performance of green living walls in buildings 
 
1. INTRODUCTION 
 
A healthy and comfortable environment is the basic desire for human beings. However, the 
rapid urbanization and industrialization have brought about many environmental problems, 
such as urban heat island and air pollution. These problems are often caused by replacing the 
natural vegetation with concrete buildings and the imbalance of ecosystems. In recent years, 
some measures and attempts are taken to strengthen the connection between nature and cities. 
Obviously, greening the city is the best choice to bring about a new sustainable urban 
lifestyle (Sheweka and Mohamed, 2012). 
 
Green roofs are believed to provide a cooler interior environment (Takakura et al., 2000) and 
have the potential to save building energy consumption (Castleton et al., 2010). However, the 
limited space for greening on rooftop leads to the application of vertical greenery in densely 
populated urban areas. Actually, it is not a new concept when using green living walls for 
decorating and cooling a building during hot summer. In recent decades, vertical greenery has 
attracted an increasing attention as it can contribute to preventing the urban areas from 
changing into a deteriorated environment and adjusting urban microclimate (Cheng et al., 
2010; Chiang and Tan, 2009; Jaafar et al., 2011).  
 
The microclimate could be adjusted by plants absorbing a large amount of solar radiation for 
their growth and their biological functions, such as photosynthesis, respiration, transpiration 
and evaporation (Holm, 1989). In addition, the plant-covered layer acts like a solar barrier 
that would reduce the absorption of solar energy by reflecting the incident solar radiation. 
Furthermore, plant-covered walls not only could offer the thermal comfort within building 
(Sunakorn and Yimprayoon, 2011), but also could restrict the wind effect and manage the 
humidity of the building environment (Eumorfopoulou and Kontoleon, 2009). Thus, vertical 
greenery offers an alternative way to overcome the open land scarcity due to its flexible 
shape, aesthetic value and heat island mitigation impact (Cheng et al., 2010). 
 
However, a good understanding of the thermal process and characteristics of green living 
walls is still lacking. In this research, the basic principles and mechanisms of thermal 
regulation of green living walls will be studied. The major characteristics of the heat transfer 
processes were evaluated. Then, thermal model of living wall systems will be developed for 
assessing their thermal performance. Some practical factors affecting the thermal 
performance would be examined as well. 
 
2. GREEN LIVING WALLS 

 
Green wall, green façade, living wall, vertical green and vertical garden are descriptive terms 
that are used to refer to all forms of vegetated wall surfaces (Ottelé, 2011). According to their 
growing method, there are two major categories namely: “support” and “carrier”. The support 
systems use some structures to assist plants upwards while carrier systems are installed on the 
vertical surface with media. The support systems are commonly termed as “green facades” 
and the carrier are called “living walls” (Jaafar et al., 2011). 
 
Living wall systems (LWS) include pre-cultivated panels, vertical modules or planter boxes 
filled with artificial substrate/potting soil that are vertically fixed to a support or on the wall 
(Pérez et al., 2011). The panels can provide support to great varieties and density of plant 
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Table 1. Benefits of living wall systems  
(Source: Chiang and Tan (2009), Sheweka and Magdy (2011)) 

Category Benefits 
Environment  Reduce urban heat island effect and regulate the microclimate 

 Improve both outdoor and indoor air quality by absorbing pollutants and regulating the 
concentration of CO2 

 Increase the biodiversity and beautify the environment  
Social  Offer aesthetic value in urban environment 

 Improve human health and mental well-being  
 Enhance public spaces 
 Adding identity of a building  

Economic  Improve energy efficiency through better insulation and shading  
 Protect building structures  
 Reduce noise  
 Increase property values 

 
3 BASIC PRINCIPLES AND MECHANISMS 
 
As mentioned before, there are three main types of LWS. However, the basic principles of 
LWS that regulate the temperature both indoor and outdoor are the same. LWS could affect 
the temperature both indoor and outdoor, contribute to saving energy consumption and 
mitigating the urban heat island based on the four mechanisms described below. 
 
3.1 Shading Effect 
 
The green wall could provide shading to the building. It is very straightforward that more 
thermal energy flows into the non-shade walls due to direct exposure to the sun (Papadakis et 
al., 2001). A facade fully covered by greenery is protected from intense solar radiation in the 
summer and can reflect or absorb in its leaf cover between 40% and 80% of the received 
radiation, depending on the amount and type of greenery. The shading effect could 
significantly reduce the heat flux flow through the wall and thus the temperature in the 
ambient.  
 
3.2 Evaporative Cooling 

 
In tropical or sub-tropical climate, the evaporative cooling effect of plants is significant 
which leads to reducing the temperature and enhancing the humidity around the building 
(Wong et al., 2003). The ivy covered model demonstrated evapotranspiration had a large 
cooling effect on the indoor temperature (Takakura et al., 2000). Through the 
evapotranspiration, large portion of the solar radiation can be converted into latent heat which 
would decrease the temperature around the building. This physical process generates the so-
called “evaporative cooling”, which represents 2450 J for every gram of water evaporated. 
This evaporative cooling of the leaves depends on the type of plant and climatic conditions. 
 
3.3 Inhibition of Wind  

 
In winter, the wind would dramatically reduce the indoor temperature of buildings which 
have no insulation. Thus, the vegetation layers play a crucial role in reducing the wind speed 
and increasing the insulation effect. Perini et al. (2011) evaluated the effect of two green 
walls on wind velocity and found that plants create an external insulation layer and contribute 
to energy savings and loss of heat in colder time. In addition, the thermal resistance of the 
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medium such as the substrate, supporting construction and the leaves would resist and delay 
the heat flux into the room. 
 
4 HEAT TRANSFER PROCESSES 
 
It is generally known that solar radiation is one of the principal inputs to the building 
envelope, and the heat transfer processes are complicated (Tang, 2002). When the system 
involves vertical plants, the biological characteristics of plant species increase the difficulty 
to establish the heat and mass transfer parameters when compared with metal or masonry (Ip 
et al., 2010). 
 
4.1 Heat Flux 
 
The heat flux transmission of LWS depends on the weather and its interaction with the 
vegetation (Jim and He, 2011). The main components of the heat flux include: 
 
(a) Solar Radiation. It accounts for a significant part in the energy input of the system, which 

includes the incident solar radiation and the reflected short-wave radiation reaching the 
vegetation and the substrate surface. The intensity of direct solar radiation is influenced 
by many complex climatic factors, such as the cloudiness of the sky, the position of the 
sun in the sky and the atmosphere characteristics. 
 

(b) Long-wave Radiation. Everything emits thermal radiation at its surface when its 
temperature is above absolute zero and long-wave radiation contains a smaller amount of 
energy compared with shortwave radiation. The rate of thermal radiant energy emitted by 
a surface depends on its absolute temperature and its surface characteristics. The main 
long-wave radiation processes involved are: the long-wave radiation between the leaves 
and the sky, the leaves and the substrate. 

 
(c) Sensible or Convective Heat Exchange. The sensible heat exchange by convection occurs 

between the foliage and the air within it, and the soil surface and the air. Sensible heat is 
the energy required to change the temperature of a substance without phase change. In 
addition, the magnitude of sensible heat is the product of the body’s mass, its specific 
heat capacity and its temperature above a reference temperature. 
 

(d) Latent Heat Exchange. Latent heat indicates the changes of state at a constant temperature. 
In foliage layer, the latent heat flux derived from evapotranspiration and this process 
includes water evaporation inside the leaves, and vapor diffusion to the leaves surface. 
Furthermore, the latent heat flux comes from the evaporation of water in the soil surface. 

 
4.2 Factors Influencing the Thermal Transfer Process 
 
Key factors influencing the heat transfer process in LWS are summarized as follows: 
 
(a) Weather Conditions. The thermal performance of the green wall is directly influenced by 

the weather conditions. Alexandri and Jones (2008) evaluated the thermal behavior of 
vegetation covered building envelope in various climates in nine cities. The results show 
that the vegetation has an obvious effect in lowering the urban temperature, especially in 
the hot and dry climate. The research conducted by Getter et al. (2011) indicated the 
variation of thermal performance of the green wall in different seasons in Michigan.  
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൝
௦ܶ௨ሺݖ ൌ 0, ሻݐ ൌ ௦ܶ௨,௦ሺݐሻ

െߣ௦௨
డ ೞ்ೠሺ௭,௧ሻ

డ௭
ቚ
௭ୀ

ൌ ݄௦௨൫ ௦ܶ௨,௦ െ ܶ൯
						 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ሺ7ሻ	

																																																																																										
Where z = 0 indicates the support layer surface which is connected to the substrate, ݖ ൌ  ܮ
represents the interior surface of the wall. 	ܮ is the thickness of the overall support layer. ܶ 
is the indoor air temperature, ௦ܶ௨,௦  is the exterior surface temperature of the support 
structure, and ௦ܶ௨,ୱ୧ is the interior surface temperature of the support structure. 
 
Table 5.1 summarizes the recommended equations for LWS.  
 

Table 5.1 Summary of the recommended equations for LWS 
Heat Flux  Equation 
Energy Balance  ൫ܿߩ൯௦௨

డ்ೞೠ್
డ௧

ൌ ܳ௦,௦,௦௨  ்ܳூோ,௦௨,௦௬ ୍ܳୖ,ୱ୳ୠ,୮୪ୟ୬୲ୱ  ܳୡ୭୬୴ୣୡ୲୧୭୬,ୱ୳ୠ	 
ܳா  ܳௗ௨௧,௦௨      

ሺܿߩሻ ∙ ܫܣܮ ∙ L௧௦
ௗ்ೌೞ

ௗ௧
ൌ ܳ௦,௦,௧௦ 

	்ܳூோ,௧௦,௦௬ ୍ܳୖ,୮ୟ୪୬୲ୱ,ୱ୳ୠ  ܳୡ୭୬୴ୣୡ୲୧୭୬,୮୪ୟ୬୲ୱ  ்ܳ  
Radiation ܳ௦,௦,௧௦ ൌ ൫1 െ ߬௧௦,௦ െ ρ௧௦൯൫1  ߬௧௦,௦ ρ௧௦൯ܧ௧,௩         

ܳ௦,௦,௦௨ ൌ ሺ1 െ     ௧,௩ܧ௦௨௦௧௧ሻ߬௧௦,௦ߩ
்ܳூோ,௧௦,௦௬ ൌ ൫1 െ ߬௧௦,்ூோ൯ߝ௧௦ߪ൫ ܶ௧௦

ସ െ ௦ܶ௬
ସ ൯             

்ܳூோ,௦௨,௦௬ ൌ ߬௧௦,்ூோߝ௦௨ߪ൫ ௦ܶ௨,௧
ସ െ ௦ܶ௬

ସ ൯   
்ܳூோ,௧௦,௦௨ ൌ ൫ߪ௦ߝ ௦ܶ௨,௧

ସ െ ܶ௧௦
ସ ൯ 

Convection  
ܳ௩௧,௧௦ ൌ െ2ܫܣܮ

൫ఘ൯ೌೝ
ೌ

൫ ܶ௧௦ െ ܶ൯      

ܳ௩௧,௦௨ ൌ െ
൫ܿߩ൯
ሺݎ  ሻݎ

ሺ ௦ܶ௨,௧ െ ܶሻ 

ݎ ൌ 	
ହ

ଵା.ହସ௨
   

ݎ ൌ 	
ଵ

ᇲାᇲ௨
            

ݑ ൌ ݂ ∙ ݁ݑ
ିቀଵି

బ.బఱ


ቁ
     

a ൌ ඥ0.28	ܫܣܮ ∙ ݄݀ 
Evapotranspiration 

்ܳ ൌ ܫܣܮ2
൫ఘ൯ೌ
ఊሺೞାೌ ሻ

൫௧௦ െ    ൯

ܳா ൌ
൫ఘ൯ೌ

ሺೞೠ್ାೌ ሻ
ሺ௦௨ െ     ሻ

௦ݎ ൌ


ூ ଵ݂൫ܧ௧,௩൯ ଶ݂൫ ܶ௧௦൯ ଷ݂ሺܵܥܯሻ ସ݂ሺܸܲܦሻ   

ଵ݂൫ܧ௧,௩൯ ൌ 1  ݁ି.ଷସ൫ா,ೡିଷ.ହ൯        

ଶ݂൫ ܶ௧௦൯ ൌ 		
బ.యቀೌೞషమళయቁାଶହ଼

బ.యቀೌೞషమళయቁାଶ
          

ଷ݂ሺ	ܵܥܯ	ሻ ൌ 	
ఠೞೠ್
ೞೌ

ఠೞೠ್
                   

ସ݂ሺ	ܸܲܦሻ ൌ 	
1

1 െ ௧௦ሺ	݊ܫ	0.41 െ ሻ	
 

௦௨ݎ ൌ ܿ  ܿଵ ൈ ൬ఠೞೠ್
ఠೞೠ್
ೞೌ ൰

ିమ
          

Conduction ܳௗ௨௧,௦௨ ൌ ݇௦௨
்ೞೠ್,ି்ೞೠ,್

ೞೠ್
       

݇௦௨ ൌ 	ܽଵ  ܽଶ ൈ ߱௦௨         
 
5.3 The Steady-state Heat Transfer Process 
 
According to the Fourier’s first law, heat flux density for a steady state flow is defined as: 
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ݍ߲ ൌ െܣߣ డ்

డ
																																																																																																																																			 	 	 	 	 	 	 	 	 ሺ8ሻ	

 
After integrating and assembling the heat flux ܳ across the LWS: 
 
ܳ ൌ ܷሺܣ	 ܶ െ ܶ௨௧ሻ																																																																																																																			 	 	 	 	 	 	 	 ሺ9ሻ	

 
U-value is defined as the rate of heat flow over unit area of any building component through 
unit overall temperature difference between both sides of the component.  
 
ܷ ൌ ଵ

ఀோ
																																																																																																																																																 	 	 	 	 	 	 	 	 ሺ10ሻ	

 
6 CONCLUSIONS 

 
The heat fluxes on the vegetated and on the non-vegetated surfaces are quite different. From 
the analysis of heat transfer processes, the heat flux transmitted into the wall through LWS 
decreases significantly when compared with the heat flux transmitted through a bare wall, the 
reduction could reach up to nearly 50% at maximum in daytime, especially during the hot 
time in the summer.  
 
6.1 Major Factors 
 
Solar radiation is the significant heat gain in all directions, and the contributions of heat gain 
from longwave radiation between air, vegetation and substrate are much less than solar 
radiation. The convective heat exchanges between the vegetation and air are milder than 
those between the solid concrete wall and air. In contrast, evapotranspiration of the 
vegetation and substrate acts constantly as a heat sink and thus reduces the air temperature 
immediately adjacent to the building compared to the concrete surfaces. In general, the larger 
amounts of solar radiation a surface receives, the larger its temperature decreases are when it 
is covered with vegetation. 
 
The moisture content in substrate shows a strong association with the cooling effect mediated 
by evapotranspiration. More moisture contained with the substrate, more significant the 
evaporation effect is. Thus, maintain proper substrate moisture content is conducive to both 
heat flux reduction and energy saving that irrigation needed. Preliminary analyses show that 
orientation has the largest impact on heat flux since the solar radiation varies in different 
directions. For vegetation itself, LAI has a direct effect on transpiration and convection of 
vegetation and then influence the heat flux into the room. 
 
6.2 Other Considerations 

 
As an abstraction of reality, modeling cannot be perfect all times. In this model, only some 
main heat transfer processes through the LWS are considered, thus the photosynthesis effect 
of the vegetation that also makes contributions to heat dissipation is ignored. Thus, further 
model could study more details about that. 
 
Green facade enjoys the benefit of enhancing the city landscape, mitigating the urban heat 
island effect and adjusting the microclimate. If only applied to one unit block, green facade 
can create a small area of mitigated temperatures to the urban heat island effect. However, 
when the area is extended to the whole city scale, the mitigation of urban temperature is 
distinct, especially for hot climates, bring temperatures down to more ‘human-friendly’ levels. 
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