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Fast and Robust Generation of City Scale Urban Ground Plan

Jyh-Ming Lien · Fernando Camelli · David Wong

Abstract Since the introduction of the concept of Dig-

ital Earth, almost every major international city has

been re-constructed in the virtual world. A large vol-

ume of geometric models describing urban objects has

become freely available in public domain via software

like Google Earth. Although mostly created for visual-

ization, these urban models can benefit many applica-

tions beyond visualization including video games, city

scale evacuation plan, traffic simulation and earth phe-

nomenon simulations. However, these urban models are

mostly loosely structured and implicitly defined and

require tedious manual preparation that usually take

weeks if not months before they can be used. In this pa-

per, we present a framework that produces well-defined

ground plans from these urban models, an important

step in the preparation process. Designing algorithms

that can robustly and efficiently handle unstructured

urban models at city scale is the main technical chal-

lenge. In this work, we show both theoretically and em-

pirically that our method is resolution complete, effi-

cient and numerically stable. Based on our review of

the related work, we believe this is the first work that

attempts to create urban ground plans automatically

from 3D architectural meshes at city level. With the

goal of providing greater benefit beyond visualization

from this large volume of urban models, our initial re-

sults are encouraging.
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1 Introduction

Because of the recent advances in data acquisition and

computer vision techniques, and collaborative efforts

from hobbyists, almost every building in the major in-

ternational cities has been re-constructed in the virtual

world. Many of the geometric models depicting urban

objects in these virtual cities are becoming broadly ac-

cessible to the general public due to tools and platforms

like Google Earth and NASA World Wind, professional

geographic information systems (GIS), e.g, ESRI Arc-

Globe, and standards, such as CityGML [20].

While these urban geometric models (or simply ur-

ban models) are designed mainly for visualization pur-

poses, many applications beyond visualization should

also benefit from these widely available data. Examples

include video games, especially serious games, training,

decision making, event design/planning, and scientific

computing. For example, the urban models can pro-

vide realistic environments for pursuit and evasion [35]

and target chasing games [22] for either entertaining or

training purposes. These virtual cities also have poten-

tial applications in evacuation planning [32], traffic sim-

ulation or crowd control simulations [38] at city scale.

These models have also been used for simulating Earth

phenomena, such as the transport and dispersion of air

pollutants and mudslides, in urban environments [3].

Despite these potential applications, urban models

are created mainly for visualization and touring pur-

poses. As a result, these “raw” urban models are usually

not suitable for computations beyond visualization. We

believe that one of the main difficulties comes from the

loosely structured and implicitly defined geometric de-
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scription of the urban models. For example, in Google

earth and ESRI shapefiles, each building is typically

composed of a set of overlapping primitives or simple

shapes. Without an explicit description of the buildings,

it is difficult to understand which region of the terrain is

occupied by which building, and this difficulty will later

lead to problems in the aforementioned applications,

such as walkable or traversable surface identification

for video games, traffic, evacuation, crowd-control sim-

ulation, and building-terrain integration for 3D Earth

phenomena simulation. Unfortunately, the preparation

process of converting unstructured data to well-defined

surfaces remains extremely labor intensive and can take

several weeks to months [15].

(a) Downtown Manhattan, New York City

(b) overlapping footprints (c) ground plans

Fig. 1 (a) There are 235 ground plans represented in this
image. A region in (a) is shown in (b) and (c).

1.1 Main Contributions

With the objective to provide greater benefit beyond vi-

sualization from this large volume of urban models, we

present a framework that processes implicitly defined

urban models and produces well-defined ground plans.

Although this is only an initial step toward this goal,

our results are very encouraging. As we will demon-

strate in the end of this paper, the ground plans can

be readily used for the above-mentioned applications.

Based on our review of the related work, we believe this

is the first work that attempts to create urban ground

plans automatically from 3D architectural meshes at

city level.

Our main technical challenge is to design algorithms

that can robustly and efficiently handle unstructured

urban models at this scale. In this paper, we show both

theoretically and empirically that our method is reso-

lution complete, efficient and numerically stable. Here

resolution complete means that the ground plan is topo-

logically correct for the given resolution.

Moreover, because of the reconstruction and man-

made errors, these urban models may not properly re-

side on the terrain and can contain surface degenera-

cies including holes and non-manifold features. We pro-

pose a footprint identification method based on the idea

of surface decomposition. Details are discussed in Sec-

tion 4. Then these footprints are united to generate

non-overlapping ground plans. The union operation is

known to be numerically unstable and a robust imple-

mentation is usually slow. In particular, due to the scale

of the problem, we have to perform the union opera-

tion on thousands of polygons representing the building

footprints. In this paper, we developed an online bound-

ary evaluation method that is designed to avoid com-

puting the full arrangement induced by these polygons.

To identify potential boundaries, our boundary evalua-

tion method alternates the computation between CPU

and GPU. To provide both robustness and efficiency,

the boundary evaluation method heavily relies on an

adaptive nearest segments intersection method that dy-

namically adjust the numerical precision to guarantee

the correctness. These techniques are discussed in Sec-

tions 5 and 6. An example of the output generated by

our method is shown in Fig. 1.

2 Related Work

Although methods have been developed to recover the

3D shape of roof surfaces, e.g., [13], building ground

plans usually come from aerial data [5], the digitization

and vectorization of cadastral maps or from surveying

measurements. Recently, methods are proposed to ex-

tract ground plan from LiDAR data [27,14]. To the best

of our knowledge, no work has focused on automatically

processing urban models for simulation. Existing re-

search often resorts to laborious manual manipulations
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of the geometry data representing the topography and

buildings to produce a coherent and consistent geomet-

rical representation of the surface including landscape

and buildings [15].

Although there exit many methods to construct,

simplify and aggregate the models depicting the urban

environments, almost all of these methods focus on the

issues from the rendering aspect [23,4,16]. For example,

ideas, such as levels of detail or texture mapping, based

on the location of the viewpoint are useful for rendering

but these view-dependent tricks are no longer applica-

ble to simulation.

An important step in the proposed work is to com-

pute the union of many footprints. The problem of geo-

metric boolean operations has been studied more than

three decades and the main focus of the research is on

the robustness of the computation because many nu-

merical errors and degenerate cases can creep in during

the computation and result in incorrect output. In addi-

tion to the robustness issues, one of the main challenges

that we face in this work is the scalability of the algo-

rithm for computing the union of a very large number

of polygons. In our example, there can have more than

thousands of elements. Näıvely computing the union

between pairs of elements can take very long time. A

brief review of the techniques are discussed below.

2.1 Processing Urban Models

Most geometry processing methods on urban models

focus on visualization. For example, Chang et al. [4]

propose a simplification method using the ideas from

urban legibility in order to enhance and maintain the

distinct features of a city, i.e., path, edges, district,

etc. Since their focus is on visualization, the geomet-

ric errors generated due to simplification can be hidden

from the viewers using various rendering techniques,

e.g., texture mapping. Another example is Cignoni [6]

who presents BlockMaps strategy that stores distant

geometric and textural information in a bitmap for ef-

ficient rendering.

Other works on processing urban models can be

found in GIS community. However, most of these meth-

ods focus on single buildings [25,34,37,19] and rarely

focus on the city-level ground plans. For example, re-

cently, Kada and Luo [19] simplify a building ground

plan using the ideas of reducing the number line in the

arrangement. See a survey in [23] for more related work.

Little work focused on aggregating and simplifying

large scale ground plans. Wang and Doihara [39] clus-

ter the buildings using strategy similar to MST extrac-

tion. The clustering process is performed on a graph

whose nodes are the buildings and whose edge weight

is the distance between the building centers. Clustered

buildings are aggregated and simplified. Rainsford and

Mackaness [29] propose a template-based approach that

matches the rural buildings to a set of 9 templates. The

floor plans are extracted and simplified before matching

the a template. The matched template is then deformed

and transformed to fit the floor plan. This method is

limited to the number of templates.

2.2 Geometric Union

The problem of geometric union is extensively stud-

ied. Several combinatorial and algorithmic problems in

a wide range of applications, including linear program-

ming, robotics, solid modeling, molecular modeling, and

geographic information systems, can be formulated as

problems of the union of a set of objects. A recent sur-

vey on the geometric union operation can be found in

[1]. Briefly, the study of the union of planar objects

goes back to at least the early 1980s, when researchers

were interested in the union of rectangles or disks, moti-

vated by VLSI design, biochemistry, and other applica-

tions [18,31,21]. Starting in the mid 1990s, research on

the complexity of the union of geometric objects has

shifted to the study of instances in three and higher

dimensions.

There exist several tools to compute the union of

two polyhedra, such as CGAL [10] and Autodesk Maya.

These tools are designed to handle the union operation

of a small number of geometries. However, the scale of

the number of the building models that we will consider
in this project can be in a much larger. It is clear that

the existing tools will suffer from various computational

issues, such as robustness and efficiency. In this paper,

we develop a method to increase the efficiency of the

union operation by avoiding generating a full arrange-

ment. From our experience with the union operation

of the shape files, a large number of intermediate ge-

ometries are generated during the computation but are

later deleted during or after the union process. These

intermediate geometries are removed because they are

inside the boundary of the final united geometry. This

issue has long been ignored in the literature as most im-

plementations consider the union operation as Boolean,

which only takes two objects at a time. In addition,

while the complexity of the union is Θ(n2), the union

of the buildings will be of much lower complexity be-

cause only a small subset of the buildings will intersect

each other. From this simple observation, we can cull a

lot of unnecessary computation by using some bounding

volume hierarchy [17] or spatial hash table [36].
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The robustness issue has been studied in great depth

since it is likely that the output geometry of the union

operation is non-manifold while the input models are

manifold and well behaved [33,30]. In order to provide

both efficiency and robustness, we present a segment

intersection method that can dynamically adjust the

needed numerical precision.

3 Overview of Our Method

In this section, we provide an overview of our method

using Algorithm 3.1. The input of the algorithm is a

set of building model P describing urban objects, such

as buildings, bridges, and landmarks. Output is a set

of non-overlapping polygons G representing the ground

plans of P.

Algorithm 3.1: UrbanGroundPlan(P)

footprints F = Projection(P)

building blocks B = BlockExtraction(F)

for each block b ∈ B

do



Gb = ∅ comment: b’s ground plan

while (Sb 6= ∅)

do


s = Sb.pop()

gs = ExtractBoundary(s)

Gb = Gb ∪ gs
Update(b,Gb, Sb)

G = G ∪Gb

return (G)

In Algorithm 3.1, first, a set of footprints F are

created from the input building polyhedra P. Note that

we abuse the term “footprint” to distinguish the ground

plan of each mesh in P from the ground plan of the

urban models, which is the union of the footprints. In

our implementation, the sub-routine Projection, F
is a set of 2d polygons projected from the lower wall

boundaries of the polyhedra in P. In Section 4, we will

discuss a surface decomposition method to identify F .

Next, a set of blocks B are computed by rasteriz-

ing F . Each building block b ∈ B consists of (1) a set

of potentially overlapping footprints Fb ⊂ F , (2) a set

of connected pixels Rb rasterized by Fb, and (3) a list

of pixels called seed pixels Sb that will be used as the

starting points for boundary extraction. This step is

done on GPU kernel functions and will be discussed in

Section 5.

Finally, an iterative process is applied to each build-

ing block b ∈ B to extract the united ground plans Gb

from the footprints Fb and the seed pixels Sb. The out-

put ground plan Gb is a set of polygons that may have

holes. A boundary gb of Gb is extracted using a seed and

the function ExtractBoundary that implements the

online boundary evaluation method discussed in Sec-

tion 6. The iteration process terminates when there all

seeds are processed. Note that the for-loop can be triv-

ially parallelized since each b ∈ B is independent.

Seed pixels and Update function. The seed pixel

is a pixel that must overlap with an external or hole

boundary of the ground plan Gb and is the key for

boundary extraction. Initially, Sb contains only a single

seed pixel, i.e., the rightmost pixel in Rb. The new seed

pixels are identified in each iteration through the Up-

date function. In addition to hole boundaries, due to

discretization resolution in Rb, Fb may also have more

than one external boundaries (e.g., when two or more

buildings are very close but do not overlap). The Up-

date function essentially determines the pixel-wise dif-

ference between the rasterization of the ground plan

Gb discovered so far and the block pixels Rb. When

there are non-empty pixels outside Gb, we know that

there must be more external boundary. When there are

empty pixels inside Gb, we know that there must be

hole boundary inside Gb. The Update function identi-

fies these unbounded components and then determines

their extreme pixels (e.g., the rightmost) as the new

seed pixels. Update is also implemented as a GPU ker-

nel function.

4 Footprint Identification

Urban objects come in many different formats. For ex-

ample, architectural structures in ArcGIS are collec-

tively represented by extruding the footprints defined

in a given ESRI shapefile [9]. However, in most 3D city

models, meshes are defined without footprints. These

include both manually created models (e.g., in Google

Earth, the are defined by 3D COLLADA meshes.) or

automatically generated architectural structures [13].

In addition, several open source GIS tools have also

adopted CityGML standard[20], a markup language for

describing urban objects, where buildings can be explic-

itly defined as 3D meshes (i.e., CompositeSurface).

When the inputs are a set of 3d polyhedra P, we

need to identify their footprints in order to generate

the ground plans. One approach is to compute the in-

tersection between the terrain and a polyhedra P us-

ing a collision detection library. However, these urban

objects are created with various modeling, measuring

and reconstruction errors. The geospatial information

of these urban objects (e.g., location and orientation

from the KML files in Google Earth) may also be inac-

curate. Because of these errors, a building component

P ∈ P may reside partially on the terrain, and the in-

tersection between P and the terrain can be non-simple
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or even empty. Therefore, it is unreliable to extract the

footprint based on the intersection.

(a) (b) (c)

Fig. 2 A footprint (c) extracted from a building model (a)
based on surface decomposition (b), in which green facets are
the walls and red facets are the ceilings.

We propose to identify the footprint by decompos-

ing the surface of polyhedra in P into wall, floor and

ceiling patches. A surface patch is a set of connected

facets. Floors and ceilings are surface patches that com-

prises nearly horizontal facets with the normal direction

pointing toward the negative and positive vertical di-

rections, respectively. Note that P may have multiple

floors and ceilings. Walls are surface patches that are

neither floors nor ceilings. The floor and celling patches

are determined using an iterative bottom-up clustering

approach adopted from the idea of variational shape

approximation [7]. As in the idea of proxy [7] a crit-

ical property that we attempt to maintain during the

patch construction process is the difference between the

normal directions of the facets in the patch and repre-

sentative plane (i.e., the proxy) of the in smaller than

a user defined value. In our cases the proxy is always

a horizontal plane. An example of the decomposition is

shown in Fig. 2.

Once the mesh is decomposed in to wall, floor and

ceiling patches, the footprints are identified from the

lower boundaries of the wall patches. It is important

to realize that many of these urban objects are created

with openings (holes) at the bottom, therefore, it is

possible that there are no floors identified or the floor

patches may contain holes. For each boundary ∂ from

the wall patches except the ceiling boundaries, we de-

termine if ∂ is a footprint by check if ∂ forms a local

minimum (i.e., the vertices adjacent to ∂ are higher that

those in ∂). The footprint identified using the proposed

method is shown in Figs. 2 and 3. Fig. 3(a) shows a

group of buildings in Oklahoma City. The floor pathces

of the group of buildings is shown in Fig. 3(b). The

footprint of the whole group is shown in Fig. 3(c). The

footprint of a single building represented by a complex

polygon is shown in a zoom-in area in Fig. 3(d).

In addition to produce the city ground plan, these

footprint can also be used to modify the urban objects.

For example, one can project these footprints to the

(a) (b)

(c) (d)

Fig. 3 Extracting the footprints of the buildings. (a) Group
of buildings in down town Oklahoma. (b) Footprints and the
buildings. (c) Only the footprints. (d) Detail of the footprint.
The ground plan is composed for an outer boundary and four
hole boundaries.

terrain surface and translate the wall boundaries with

the footprints to tightly integrate the urban objects and

terrain.

5 Building Block Identification

Given a set of footprints F , we would like to identify the

overlapping footprints. This is commonly known as the

broad phase collision detection and can be optimized

using ideas such as spatial hashing [24] or plane sweep

algorithms [2]. However, our goal is not to identify the

intersections but to compute their union.

Our approach is a simple GPU-based computation.

First, we rasterize each footprint with a unique color.

Then the kernel function executed on each GPU core

will connect each colored pixel to all the colored neigh-

bors. Finally, all connected components are extracted

from these connection to form blocks B. For each b ∈ B,

a set of overlapping footprints Fb are identified based

on the colors in the connected component. The right

most pixel is identified as the first seed of the block.

Note that this method may ignore some footprints

that are entirely covered by other footprints during the

rasterization process. This is in fact a benefit since this

footprint will not contribute to the boundary of the final

ground plan. Another benefit of using GPU-based ap-

proach is that some small boundaries can be automat-

ically eliminated from the ground plans due to rasteri-

zation resolution. For example, these small boundaries

usually have small effect on the simulation results but

consumes a significant amount of computation time.

Therefore, the resolution of the rasterization can be a
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user defined value to control the desired level of detail.

In our implementation, we simply set resolution by en-

suring that the bounding box of the smallest footprint

is covered by at least 4 pixels.

6 Online Boundary Evaluation

Given a set of overlapping footprints and a seed pixel,

our goal here is to extract a well-defined boundary of a

ground plan. More specifically, we need to compute the

boundary of the union of a set of polygons represent-

ing the footprints. The main idea of our approach is to

incrementally extract the boundary of the arrangement

induced from the input polygons. During the extraction

process, we repetitively extend the extracted boundary

by maintaining its desired topological properties.

Let Fb = {Pi} be a set of polygons. Our goal is

to compute the boundary of ∂(
⋃

i Pi) from a seed. To

simplify our notation, we let Q = ∂(
⋃

i Pi). For each

polygon P , we denote the vertices of P as {pi} and the

edge that starts at vertex pi as ei = pipi+1. The edge ei
has two associated vectors, the vector from pi to pi+1,

i.e., vi = −−−−→pi pi+1 , and the outward normal ni.

6.1 Determine the Seed from a Seed Pixel

A seed is a pair of a vertex r and an incident edge er of

r from {Pi} that are guaranteed to be on the boundary

of Q. Given a seed pixel s, we can determine the seed

by processing the vertices and edges overlapping with

s. First, fining r is easy. From all vertices of {Pi}, we let

r be the extreme point in the direction to an empty cell

neighboring to s. Without loss of generality, we assume

r is the rightmost vertex in b. Next, we let er be an

edge incidents to r such that er’s outward normal has

the largest x coordinate among all the edges incidents

to r. It is simple to show that r must be a vertex of Q

and er must contribute to one or multiple edges of Q.

See Fig. 4(a).

6.2 Extracting Boundary from a Seed

Traditionally, {Pi} contains only two elements, and the

boundary of Q is determined by computing the arrange-

ment of the edges of {Pi}, which is a subdivision of the

space into vertices, edges and faces (cells) from a set of

line segments. One way to extract the boundaries from

such an arrangement is by finding all the faces that

have positive winding numbers [11,40]. However, com-

puting the arrangement can be time consuming, i.e.,

(a) (b)

Fig. 4 (a) The union of two polygons P1 and P2. The vertex
r is the rightmost vertex of P1 and P2, and er is the edge inci-
dent to r whose outward normal has the largest x coordinate
among all the edges incidents to r. The pair r and (a subset
of) er must be on ∂(

⋃
i Pi). (b) Given the last vertex r and

a potential edge er discovered in the extraction process, the
segment rx0 must be an edge of Q and the next r is x0 and
the next re is the edge containing x0c.

O(n2) for n line segments. Our method skips arrange-

ment computation and find the boundary by computing

the intersections on the fly. To bootstrap the extraction

process, we start from the seed (r, er). Our method then

proceeds by incrementally discovering the vertices and

edges of Q from r and er. To abuse the notation a little

bit, we let r be the latest vertex of Q discovered, and

let er be an edge of {Pi} that contains an edge of Q.

Therefore, in every incremental step, our method will

need to (1) identify which portion of er belongs to Q,

and (2) identify the next r and er until all edges of Q

are discovered.

To identify the portion of er that contributes to Q,

let xj be a sorted list of intersections between er and

other line segments ej 6= er in {Pi}. The intersections

xj are sorted in non-decreasing order using the distance

to r. Therefore x0 is the intersection closest to r. Now

we claim that x0 must be a vertex of Q and the seg-

ment rx0 between r and x0 must be an edge of Q. This

observation is proved in Lemma 1

Lemma 1 Let x0 the the closest intersection to r. We

say that x0 must be a vertex of Q and the segment rx0
between r and x0 must be an edge of Q.

Proof Assuming that x0 is not on ∂Q. Then x0 must

be interior to Q. Since we know that r is a vertex of

Q, when we move from r to x0, there must be a point

x′ ∈ ∂Q before we reach the interior of Q. If we wish

to remain on the boundary of Q, we must move the

another edge of Q at x′. Therefore, x′ must be an inter-

section of er and another segment from {Pi}. However,

we know that x0 is the intersection closest r. This means

x0 cannot be interior to Q, and in fact x0 and x′ must

be the same point and the segment rx0 must be on ∂Q.

Therefore, rx0 is an edge of Q and x0 becomes the

next r, i.e., the last vertex discovered. In the second
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step, we need to find out which edge of {Pi} (that is

not er) incident to x0 will contain an edge of Q. Let

S = {sj} \ er be a set of line segments incident to x0
excluding er. Then to compute the next er, we solve

the following:

arg min
sj∈S

Θ(er, sj) ,

where Θ is a function measuring the clockwise angle

between er and sj . Intuitively, the next er will be a

line segment that makes the largest right turn from the

current er at x0. Now, with r and er updated, we repeat

the process until a closed loop is found. See Fig. 4(b).

There are many advantages over the existing ap-

proach. First, in contrast to the traditional boolean op-

eration approach, the proposed method can handle ar-

bitrary number of elements in {Pi} at once. Second, we

do not have to compute the arrangement of the input

segments, i.e., we avoid computing all the intersections

for all the line segments in {Pi}. Instead, we compute

only the intersections of all er discovered during the

construction of Q. This is extremely helpful when the

size of {Pi} is large and the boundary of Q has only

a few features (edges and vertices). This observation is

usually true when the size of {Pi} is large and for the ar-

chitectural models in which many parts only contribute

a small portion to the external boundary. Because of

this feature, our method is more sensitive to the output

complexity than the existing methods. Thrid, the pro-

posed method can handle degenerated cases easily, i.e.,

two polygons touch at a single vertex or a line. The pro-

posed approach can even handle non-simply polygon,

whose edges may self intersect, and polychain, which

does not form a loop or enclose an area.

6.3 Robust and Efficient Nearest Intersection

As we have seen earlier, the main step that we used

to determine the external boundary of the union is to

find the closest intersection to the boundary (e.g., an

end point or an edge) of a segment. A straightforward

approach is to compute all the intersections for a given

segment, and then the intersection that are closest to

the given boundary can be determined. However, com-

puting the intersections is known to be prone to numer-

ical errors [28] and can be inefficient if exact arithmetic

is used to overcome the numerical problems.

In this section, we will discuss our approaches to

handle this problem. We will show that the our ap-

proach can easily identify precision inefficiency and dy-

namically increase the numerical precision when needed.

The proposed method is similar to algorithms designed

for the k-th order statistic [8]. The main idea of our ap-

proach is to determine the segments that will create the

closest intersection without computing the intersection.

Given a 2-d segment s, one of the end point p of

s and a set of 2-d segments S intersecting with s, our

goal here is to determine a segment t in S such that the

intersection of t is closest to p than other segments in S.

That is, given s, p and S, we try to solve the following:

arg min
t∈S

d(p, int(s, t)) ,

where d(x, y) is the distance between two points x and

y, and int(s, t) is the intersection between two segments

s and t. Note that since S are polygon edges, each seg-

ment is directional and has a normal direction.

Instead solving Eq. 6.3 numerically, we approach the

problem algorithmically. We use the visibility between

a point q ∈ s and t ∈ S to recursively determine the

closest intersection. More specifically, we classify the

visibility between q and s as the value v of −→q r ·tn, where

r ∈ t is a point on t and tn is the normal direction of

t. If v is greater than zero, we say q is visible by t. If v

is zero, the q is on t. Otherwise, we say q is on t.

Now, our goal is to find a point q ∈ s that is invisible

by a segment but is visible by all the rest of the seg-

ments in S. As described above, given any q ∈ s we can

classify the segments in S into three sets of segments:

V, I, O, which are visible, invisible, and on segments. If

the set I contains exactly one segment, then we found

our solution. If I has more than one segment, then we

let s = pq and S = I and perform the classification re-

cursively. If I is empty, then we analyze O and then V
in a similar way in this order. The only difference is that

if O has more than one segments then that means that

all segments in O intersects s at q and are equidistance

to p. In this case, we will be looking for the segment

that makes the smallest angle to s. Again we can use

the idea of visibility to find this segment.

The point q ∈ s is determine in the way similar to

binary search. First the mid point of s is used as q. If

the next searching range is in I, then q is the mid point

of p and q. If the next searching range is in V, then q

is the mid point of q and p′ (the other end point of s).

Now, for fixed-precision floating-point computation, it

is possible that there is not enough precision to distin-

guish between the segment in S. This happens when

the size of S is greater than one while the length of the

search range collapse to zero. When this happens, we

dynamically increase the precision.

Analysis. The main step in our approach is the

visibility test, which involves a dot product (two mul-

tiplications and a summation). The asymptotic time

complexity of the proposed approach is O(n) for n seg-

ment in S which the same as that of k-th order selec-

tion of n values. On the contrary, the traditional ap-
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proach that computes the (parameterized) intersection

between two line segments will require two divisions,

14 multiplications and 10 summations to compute the

parameterizations of the intersection. As a result much

higher precision is needed for the traditional approach.

More importantly, the traditional approach has no way

to tell if the fixed-precision is enough to handle the

given input. Therefore, in order to provide error-free

computation, high-precision floating points are used re-

gardless the input configuration. Consequently, the tra-

ditional approach can be very slow. On the other hand,

the proposed method provides the same accuracy and

robustness but is more efficient.

7 Results

Our framework is implemented in C++ and NVIDIA

CUDA C. The exact number type uses MPFR [12]. We

use three examples shown in Figs. 1, 5, and 6. These

are areas from Downtown Oklahoma City and New

York City. Several interesting regions in these maps are

highlighted to show complicated overlapping footprints

(e.g., Fig. 1(b) and 5(d)), non-manifold ground plans

(e.g., Fig .5(c) and 6(c)), and narrow error-prone fea-

tures (see Fig. 6(e)). As shown in these examples, our

new approach takes only seconds on the same dataset,

and successfully handles degenerated cases.

The total running time for generating the ground

plans in Fig. 1 is 54 milliseconds. For generating the

ground plans in Fig. 5, our framework takes 124 mil-

liseconds. Finally, Fig. 6 takes 339 milliseconds. All

these experiments are performed on a dual core 2.54
GHz Intel CPU and NVIDIA GeForce 9400M (with 16

cores). To show the significance of our results, we have

attempt to compute the union of all the buildings in

our Oklahoma city dataset using the union functional-

ity provided by ArcGIS. We found that ArcGIS takes

hours to complete the computation and requires spe-

cific types of overlaps between the components in order

to generate successful unions. Therefore, our proposed

approach is designed to tackle these serious defects to

provide both robustness and efficiency.

Application: Dispersion Simulation. We used

the identified ground plans to merge the seamless sur-

face of the buildings and the surface terrain from DEM

and obtain a computational domain suitable as input

for CFD models. We simulate a hypothetical transport

and dispersion event using FEFLO-Urban [26]. A sim-

ulation of the flow, and the transport and dispersion

of a gas was performed using the volume mesh pro-

duced with the proposed data processing methodology.

Fig. 7 shows snapshots of air pollutant dispersion sim-

(a) Downtown Oklahoma City

(b) (c)

(d) (e)

Fig. 5 In total 358 ground plans are represented in this im-
age. There ground plans are created from 1454 footprints.
Two interesting regions are highlighted.

ulation in the integrated Oklahoma City model using

the ground plans in Fig. 5.

8 Conclusion

As 3D geometric models describing urban objects, such

as buildings and bridges, are becoming widely available

via virtual global platforms, using these urban mod-

els to perform large scale simulations can provide sig-

nificant benefit to many communities. In this paper,
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(a) A larger NYC example

(b) (c)

(d) (e)

Fig. 6 A residential area in NYC. There are 409 ground
plans represented in this image. These ground plans are gen-
erated from 5996 footprints. Two interesting regions are high-
lighted.

we described the first known framework for extracting

ground plans from urban models. Our method first ex-

tracts footprints from individual meshes and then iter-

atively determines the ground plans by alternating the

computation between CPUs and GPUs. In the core of

our framework is an online boundary evaluation method

that is theoretically guaranteed to produced correct

boundary. The numerical robustness and efficiency is

Fig. 7 A cloud is depicted at 3 different time instances in the
integrated Oklahoma City model. The cloud is transported
and diffused by the effects of the wind and turbulence. Clouds
at 100 (top), 250 (mid) and 500 seconds (bottom) from the
beginning of the release.

provided by an segment intersection algorithm based on

the idea of dynamic precision. Finally, we have empiri-

cally shown that the results of our method can be read-

ily used for integrating the building meshes to DEM

terrain models, which is a process that usually requires

weeks if not months of laborious manual process.

Limitations. Our method is designed to handle

meshes of different qualities. However, our current im-

plementation does not work well if the mesh is made

of triangle soup, which is sometimes found in Google

Earth. It will require an addition mesh processing step

to discover the mesh connectivity in order to distin-

guish wall, ceiling and floor surface patches. Moreover,

although our method provides some degree of simplifi-

cation based on the rasterization resolution, there still

exist small features, such as narrow gaps and deep but

narrow cavities (see Fig. 6(e)), in the final ground plans.

As we have mentioned, existing works on urban model

simplification either focus on application in visualiza-

tion or on the simplification of a single building. Further

research is needed to produce simplified ground plans

for city scale simulations.
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