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Equidistribution of Heegner Points and Ternary
Quadratic Forms

Dimitar Jetchev and Ben Kane

ABSTRACT

We prove new equidistribution results for Galois orbits of Heegner points with respect
to reduction maps at inert primes. The arguments are based on two different techniques:
primitive representations of integers by quadratic forms and distribution relations for
Heegner points. Our results generalize one of the equidistribution theorems established by
Cornut and Vatsal in the sense that we allow both the fundamental discriminant and the
conductor to grow. Moreover, for fixed fundamental discriminant and variable conductor,
we deduce an effective surjectivity theorem for the reduction map from Heegner points
to supersingular points at a fixed inert prime. Our results are applicable to the setting
considered by Kolyvagin in the construction of the Heegner points Euler system.

1. Introduction

Uniform distribution of Galois orbits of Heegner points with respect to reduction maps was the
key step in the argument of Cornut and Vatsal for the proof of Mazur’s conjecture on the non-
triviality of Heegner points over the p-adic anticyclotomic tower (see [Maz83| for the statement;
[Cor02], [Vat02], [Vat03] and [CVO05] for the proofs). Both Cornut and Vatsal used ergodic theory
techniques based on Ratner’s theorem for unipotent flows on p-adic Lie groups (see [Rat95]) in order
to prove the results for simultaneous reduction maps (i.e., maps that reduce simultaneously n-tuples
of Galois conjugates of Heegner points modulo a fixed inert prime £). Due to the p-adic nature of the
ergodic techniques, one needs to fix the fundamental discriminant and vary the conductor p-adically.

This paper proves a more general equidistribution result for single reduction maps, in the sense
that both the fundamental discriminant and the conductor are allowed to vary and the only assump-
tion on the conductor is that it is prime to the level of the modular curve. We avoid the ergodic
theory by using arguments based on equidistribution of primitive representations of integers by
quadratic forms in genera, as well as distribution relations of Heegner points and Hecke eigenvalue
bounds. Along the way, we obtain a generalization of an equidistribution theorem for Gross points
on definite Shimura curves established by Michel. Finally, we prove effective surjectivity results for
sufficiently large Galois orbits with respect to reduction maps in the case when the fundamental
discriminant is fixed and the conductor varies.

1.1 Notation and hypothesis

Let N > 1 be an integer and let Xo(N)/g be the modular curve associated to the congruence
subgroup T'g(NN) of SLy(Z). Let £ be a prime such that (¢, N) = 1 and let Dy be the set of all
fundamental discriminants D < 0 such that every prime factor of N is split in Kp := Q(\/l_?) and
such that ¢ is inert in Kp. Let Qx be the set of all pairs (D, c), where D € Dy and (¢, N) = 1.
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Fix an embedding ¢ : Q — Qy (i.e., a prime in Q lying above ¢). Let (D, ¢) € Qn and let Op . be
the order of conductor ¢ in the quadratic imaginary field Kp = Q(\/l_)) Fix an ideal np C Op ; for
which Op 1/np =2 Z/NZ. For (c, N) =1,np.:=npN0Op, is an invertible ideal of Op .. Consider
the point 2. = [C/Op,. — C/n c] € Xo(N)(Q). By the theory of complex multiplication, it is
defined over the ring class field K D[ | of conductor ¢ for Kp. We refer to that point as the higher
Heegner point of conductor c. Let I'p . := {0z, : 0 € Gal(Kplc|/Kp)} be the corresponding Galois
orbit. The fixed embedding ¢ gives us a prime in Kp[c| above £. The choice of the embedding defines
a reduction map

redy : Xo(N)(Kple]) = Xo(N)(Kplde) = Xo(N)(Oxpp,) —=5 Xo(N)(Fe)

where O, is the ring of integers of the completion Kp[cl; (the equality in the middle follows
from the valuative criterion of properness). Moreover, since ¢ is inert in Kp, then CM points for
Kp reduce to supersingular points modulo ¢ (see [Deudl]). Let Xy (N )?%e be the set of supersingular
points on Xo(N) modulo £. It is well-known that these points are defined over Fy2. We will prove an
equidistribution theorem according to which as d. := —Dc? — oo, every s € Xo(N )?Eﬂ will have
the same number of preimages in I'p . under red,. We will state our result in terms of probability

measures on the finite set Xo(/V )%’: )
I3

SS
/Fe
Let s € Xo(N )?S be a supersingular point. Then s is represented by a pair (E, C') of a supersingular

1.2 A canonical measure on Xy(N)

elliptic curve E /5, and a cyclic subgroup C of E of order N. Following [Rib90, §3], we refer to the pair

E= (E , é) as an enhanced elliptic curve over Fp2. Homomorphisms of enhanced elliptic curves are
defined in the obvious way. In particular, one could talk about endomorphisms and automorphisms
of enhanced elliptic curves.

Let E = (E, C’) be an enhanced elliptic curve representing the point s. The endomorphism
algebra End( ~) ®Q is isomorphic to the unique quaternion algebra By  ramified precisely at £ and
co. The endomorphism ring End(E ©) is a maximal order in By~ and the ring End(E) is an Eichler
order of level N. Indeed, if \: E — E /C C is the quotlent map, then End(E/C) can be viewed as a
subring of By, via the map o € End(E/C) +— A~'oA. Then End(E) is the intersection of the two
maximal orders End(E) and End(E/C). Let R, denote this Eichler order and let w, := #R}. We
can use wg to define a canonical measure ficay, on Xo(N )?SzZ by

1/ws

ss 1/wg
sfeXo(N)/[FZ2 / s

Ncan(s) = Z

1.3 Main results

1. Equidistribution of Heegner points. We can now state the main result of the paper. For (D, ¢) €
Qy, define a measure pp . on the finite set Xo (N )?%ﬂ by

#{x €T'p,:redy(z) = s}

= € Xo(N
MD7C(S) #PD,C v 8 ( )/]F 2"
THEOREM 1.1. The weak-* limit 112m ID,c exists and equals fican -
— D2
(D, E)EQO;

Remark 1. To say that the weak-* limit of a sequence of measures {y,,} on a finite set X exists and

converges to a measure u on X means that for each function f : X — R, the limit lim fdun
n—oo
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exists and equals / fdu.
X

2. Equidistribution of Gross points on the definite quaternion algebra By . The curve Xo(N) g can
be viewed as a Shimura curve for the quaternion algebra M>(Q), and thus, Heegner points can be
regarded as CM points on the indefinite quaternion algebra Ms(Q). In the case of a totally definite
quaternion algebra (e.g., By ), the analogues of Heegner points (also known as Gross points) were
studied in detail by Gross [Gro87].

Let G’ be the algebraic group associated to BZOO and let Iy,..., I be left ideals representing

the left ideal classes (corresponding to the double quotient G'(Q)\G'(Ay) JR*). Let Ry,...,Ry
be the associated Eichler orders. Given a conductor ¢, the points of conductor ¢ are simply pairs
(f: 0. — R; SR R;) of one of these orders R; and an R-conjugacy classes of optimal embeddings
f:0.— R, Recall that f:O.— Risoptimal if f(K)N R = O, (we have extended f to an
embedding f : K — Byo). Let fip([;]) be the number of Gross points (f, R;) of conductor ¢
divided by the total number of Gross points of conductor c. Then miup . is a probability measure

on G’(Q)\G/(Af)/ﬁx. There is a canonical measure on G/(Q)\G/(Af)/§>< defined as
1/wy

Y wi

THEOREM 1.2. The weak-* limit lim  fip . exists and equals fican.

—Dc?—o00,
(D,C)EQN

Iacan([lk]) =

Remark 2. A similar statement (for trivial conductor ¢ = 1) has already been established by Michel
[Mic04, Thm.3] using subconvexity bounds for L-functions and independently by Elkies, Ono, and
Yang [EOY05, Theorem 1.2].

Remark 3. Both Theorem[L.Iland Theorem [[.21hold in greater generality for CM points on indefinite
and totally definite quaternion algebras, respectively, with respect to more general reduction maps
at several primes. The more general statements will be the subject of a forthcoming paper.

Remark 4. We will see in Section that the canonical measures i, and fica, indeed coincide.

3. Congruences for Hilbert class polynomials under the U -operator. Recall that for a function with

Fourier expansion f(z) = Za(n)q” the operator U(¢) is defined by f(z)|U(¥) := Za(fn)q”.
n=0 n=0

Elkies, Ono and Yang were interested in the equidistribution of Heegner points with respect to

reduction maps which they used to study a certain congruence for the Hilbert class polynomial
under the U-operator. In particular, combining the case N = 1 of Theorem [[I] with [EOYO05,
Thm 2.3 (1)] gives the following immediate corollary (the case ¢ = 1 is [EOY05, Thm. 1.1]):

COROLLARY 1.3. Let Hp . € Z[z]| be the polynomial whose roots are precisely the j-invariants
of those elliptic curves with CM by Op .. Let { be a prime which is nonsplit in Op .. Then for
d. = —Dc? sufficiently large (depending on () there exists a polynomial Pp ., € Z[x] such that

Hpo(j(2))IU(0) = Ppee(j(z)) (mod £).

4. Effective surjectivity of red;. One consequence of both Theorem [[.T] and Theorem is the fact
that for sufficiently large discriminant d. = —D¢?, the reduction map from CM points of conductor ¢
to supersingular points is surjective. It is natural to ask whether this theorem can be made effective.
The ineffectiveness of one of the ingredients used in our argument, Siegel’s lower bound on the class
number, prevents us from establishing an effective result when both D and ¢ vary. Yet, fixing the
fundamental discriminant D and varying the conductor ¢, one can establish effective surjectivity
theorems (see Theorem [6.1] and Lemma [6.2]).
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2. Heegner points and optimal embeddings

Let s € Xo(IV )%Sﬂ be a supersingular point modulo ¢. In this section we will establish a one-to-one
correspondence between

{ Heegner points x on Xy(N) of conductor ¢ } { R — conjugacy classes of }
=

reducing to s € XO(N)?%; optimal embeddings Op . — Rj

For ¢ = 1, the above correspondence is known as Deuring lifting theorem (see [Deu4l1]) and has been

subsequently refined (as a correspondence) by Gross and Zagier |[GZ85, Prop.2.7]. We will deduce
the correspondence from a recent result of the first author and Cornut [CJ09].

2.1 Galois orbits of Heegner points

We start by proving that there are exactly 2(") Galois orbits of Heegner points of conductor c,
where v(N) is the number of distinct prime divisors of N.

LEMMA 2.1. Suppose that (¢, N) = 1. Then there are exactly 2*(N) Galois orbits of Heegner points
of conductor ¢ on Xo(N) and each of these orbits has size # Pic(Op..).

Proof. Consider the set of all Heegner points of conductor ¢ on Xo(N). They could be described as
pairs ([a],n) of an ideal class [a] and an ideal n C Ok with the property that Og /n = Z/NZ. The
last property is equivalent to the fact that n is primitive of norm N (n being primitive means that
there is no rational prime number dividing n). Equivalently, if N = p{' ... p{* are the distinct prime
divisors of N, we want n = p{'...p;", where p; is one of the primes of O above p; (indeed, if both
p; and p,; occur then n would be divisible by p; and hence, would not be primitive). O

2.2 Modular curves and Shimura curves

Let I be a congruence subgroup of SLy(Z) and let U = U(I") be the closure of I" in SLy(Af). The
group SLy(Q) admits a left action on h by linear fractional transformations and a left action on
SLy(Ay) by left multiplication. Thus, SLy(Q) acts on the left on h x SLa(Af). Moreover, U has a
right action on h x SLa(A ) by acting trivially on h and by right multiplication on SLa(Af). Strong
approximation (see [Vig80) p.81]) gives a homeomorphism

Y(I') :=I'\h — SLy(Q)\b x SLa(Af)/U, =z — [z, 1.

Let H be the compact open subgroup of GLy(Af) that is the closure (in GLa(Ay)) of the image
of U under the inclusion SLy(Af) < GL2(Af). We define the Shimura curve corresponding to the
compact open subgroup H as

ShH = GLQ(Q)\(C\R) X GLQ(Af)/H
We shall see that Shy is a disjoint union of two copies of Y (I'). Indeed, consider the map
¢ Shy — Q*\{£1} x AT/ det(H)

given by [z,g] — [sgn(Im(z)),det(g)]. The fiber of this map over the point [+1,1] is isomorphic
to SLa(Q)\ SL2(Ay)/U = Y(I'). Since det(H) is open, it follows that the quotient QX\A;/det(H)
is discrete. Since QX\A; ~ 7% is compact, the double quotient QX\A;/ det(H) is finite. The
quotient Q*\{x1} x A? /det(H) describes the connected components of the Shimura curve Shy.
For instance, for classical modular curves,

GL2(Q)\(C\R) x GLa(Ay)/H 2 Y(I)TLY(I)".
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2.3 Adelic description of CM points

1. CM points on the Shimura curve Shy. Fix an embedding K — M>(Q). This gives us an embed-
ding T' < GLgz, where T := Resg g K. Consider the set CMy of all points of the form [g, h] € Shy
whose stabilizer is a torus isomorphic to K*. It is easy to verify that an element z € C\R is in
K if and only if Stabgr,(q)(2) is isomorphic to Resg /g K* = T. This allows us to conclude that
CMp admits an adelic description as the double quotient T'(Q)\ GL2(Af)/H. Indeed, a point in
CMp is represented by a pair [z, g], where z € C\R is in K and g € GLa(Ay). Since all z € K are
GL2(Q)-conjugates and since the stabilizer of each z in GL2(Q) is isomorphic to T(Q), we obtain

CMpy =T(Q)\ GL2(Af)/H.

3. Conductors of CM points. Here, we assume that R = (R, R"”) is an oriented Eichler order of
M(Q) of level N (i.e., R’ and R"” are maximal orders and R = R’ N R") and consider the Shimura
curve Shy, where H = R*. Consider the two degeneracy maps

§': CMy — T(Q)\ GLa(Af) /R
and
5" CMy — T(Q)\ GLy(As)/R"".
Given a CM point = € T(Q)\G(Af)/ﬁX such that x = [g], let 2’ and 2" be the images of z in
T(@)\G(Af)ﬂ@X and T(Q)\G(Af)/ﬁx, respectively. The stabilizer

Staby, (z') = K*n gf@xg_1 = (9/(x\’)><

for some order O(z') C Ok. Let ¢(z') be the conductor of that order. Similarly, we obtain an integer
¢(z”) for R”. The conductor c(x) is then defined as

c(z) := lem(c(z'), c(2”)).

Remark 5. Note that if ¢ is a prime that divides one of ¢(z’) and ¢(x”), but not the other one, then
q necessarily divides N. This shows that if (¢, N) = 1, all CM points of conductor ¢ will be in fact
Heegner points (i.e, ¢(z') = ¢(2”)).

Remark 6. For T' = T'g(N), i.e., for the modular curve Xy(N), these degeneracy maps correspond
precisely to the two degeneracy maps d1,dn @ Xo(IN) — X(1) that map [E,C] to [E] and [E/C],
respectively.

Remark 7. If X = Xo(N), a CM point [7] € I'o(N)\h would correspond to the pair of N-isogenous
CM elliptic curves E' = C/(1,7) and E” = C/(1, N7). Then O’ = End(E’) and O” = End(E") are
both orders in K = Q(v/—D). Let ¢ and ¢’ be their conductors, respectively. The conductor of the
point [E’, E"] is then ¢([E’, E"]) = lem(c/, ¢").

2.4 Optimal embeddings and Gross points

Let By o be the unique quaternion algebra ramified precisely at £ and co and let G' := B, be the
corresponding algebraic group. Let Ry, ..., Ry be the Eichler orders of level N defined in Section [[.3]

LEMMA 2.2. The set of pairs (f : O = R px, [R;]) of an ideal class [R;] of G/(Q)\G/(Af)/§>< and

a R -conjugacy class of optimal embeddings f : O — Ri/R_x for some quadratic order O in K is in
one-to-one correspondence with the double adelic quotient

T(Q\G'(Ay)/R*.
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Proof. Given an order R; representing an ideal class [R;], the set of R -conjugacy classes of optimal
embeddings f : O < R; is in bijection with T(Q)\G'(Q) (since all the embeddings of K into By s
are conjugate). Therefore, the set of the desired pairs is in bijection with

T(Q\G'(Q) x G'(Q\G'(Ay)/R* = T(Q\G'(Ag)/R*.

2.5 Adelic description of supersingular points

The set Xo(N)33 JF,, 1810 bijection with the double quotient G'(Q)\G'(Ay)/ R’ where R’ is an Eichler
order of level N for By « that is the ring of endomorphisms of a fixed enhanced supersingular elliptic
curve By = (Ep, Cp). We briefly summarize the bijection and refer the reader to [Rib90, Prop.3.3]
for the details.

Let E be any enhanced elliptic curve and take an endomorphism A € Hom(E,Ey) ® Q (here, we
use the fact that there is a single isogeny class of supersingular elliptic curves). One could use A to
identify the adelic Tate module T (E) with a sublattice of V(Eo) This means that there is a unique
element g € G'(Ay)/ R* that sends this sublattice to T(Eo). Since g is dependent on the choice of

A, it makes sense only in G'(Q )\G’(Af)/RX. This gives us a bijection
o Xo(W)E, — G(Q\C (Ap)/R*.

2.6 Heegner points on definite and indefinite quaternion algebras
The probability measures pu. are defined in terms of the cardinalities ‘redé_l(s) Nnr D,c‘. Let s €
XO(N)%Sﬂ22 be a supersingular point and let h(Op ., Rs) be the number of R} -conjugacy classes of
optimal embeddings Op . — R;.

We will apply the theorem of Cornut—Jetchev [CJ09, Thm 1.5] together with the above adelic
interpretations of CM points, optimal embeddings and supersingular points to deduce the following
corollary:

COROLLARY 2.3. We have
h(Op.c,Rs) = ov(N) H{z € I'pc: rede(x) = s}.

Proof. By [CJ09, Thm 1.4] and the adelic interpretation of CM points on the definite and the
indefinite algebras as well as the adelic desciption of the supersingular points, the subset of CM
points on Xy(N) of conductor ¢ reducing to a fixed supersingular point s is in bijection with the
R}-conjugacy classes of optimal embeddings f : O, — Rs. Since (¢, N) = 1, all CM points on
Xo(N) are Heegner points and by Lemma 2] there are exactly 2" (N) such orbits. O

The corollary shows that

{z € Tpe: redy(x) = s}|  h(Op., Rs)
IT'p,c| [Pic(Op.e)|

pe(s) =

In section @], the number hA(Op ., Rs) will be related to primitive representations of d. = —Dc¢?

by a certain quadratic form associated to Rj.

3. Modular forms of half-integral weight and Shimura correspondence
Let /\ be a non-negative integer and consider the space M, 1 (T'o(4M), x) of modular forms of weight
A —|— . Let S, +1 1 (To(4M), x) be the space of cusp forms. Let q := €2™* and v be an odd Dirichlet
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character of conductor r(¢)). We will refer to the form
hy(2) = D dm)me?™ ™= = 37 p(m)mg™ € Syp(4r(w), 0 - x-a) (1)
m2>1 m2>1

as a one-dimensional theta series. Due to the exceptional behaviour of these forms, we will often
decompose S3/5(4M ) into the subspace spanned by one-dimensional theta series and the orthogonal
complement of this space under the Petersson inner product, and then investigate each separately.

3.1 Modular forms of half-integral weight and convolutions with L-series

Suppose that g(z) € S)\+%(F0(4M), X)- Let t be a positive square-free integer and let

P(n) = x(n) (%)A ()

Suppose that the complex numbers A;(n) are defined by

o > 2
Z% = Lls— A+ 1)) b(f; )
— n=1

Shimura then proved that the t-th Shimura correspondence Sy \(g9(2)) = Z A¢(n)q™ is a modular
n=1

form in My (To(2N), x?) of weight 2.
Kohnen then defined a subspace S;r 1 (I'g(4M)), referred to as Kohnen’s plus space, consisting
2

1
of forms g(z) of weight A\ + 5 on I'p(4M) with Fourier coefficients of the form

o= Y b

(-=1)*n=0,1 mod 4

In this space Kohnen extended the definition of the Shimura correspondence S; ) to t' := (—1)*D
where D is a fundamental discriminant. For D = 1 (mod 4) we take Sy \ := S; ) as previously
defined and for D = 0 (mod 4) we take Sy ) := S;|U(4). Kohnen’s plus space decomposes into
new and old subspaces as follows:

Sy, 1 (To(4M)) = 31 (To(4M)) @ P4 (To(4M)).

Kohnen used this decomposition and the Shimura correspondences
Sy S;liwé (To(4M)) — Sox(T'o(N))
to prove that there exists a finite linear combination of Sy )’s which provides an isomorphism

5+ 5571 (To(4M)) — Sax(To(NV)) (2)

that is Hecke equivariant. The image of a half-integral weight Kohnen newform in L (To(4M))
2
is a newform in SV (I'g(M)) whose Hecke eigenvalues are the same.

4. Equidistribution and ternary quadratic forms

In order to prove the main theorem, we establish the correspondence between optimal embeddings
and primitive representations in Section [4.1] by associating a quadratic form @, to the Eichler order
Rs. We then compute the discriminant of that quadratic form. We introduce the theta series ¢,
associated to (s, as well as the series Oyen(,) and Oy,n(@,) associated to the genus gen(Q) and the

7
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spinor genus spn(Qs) of Qs, respectively. Finally, using that the form 0y q,) — Ospn(q,) is in the
space spanned by one-dimensional theta series, we are able to prove that the coefficients of gen(Q)
and spn(Qs) coincide away from the primes dividing N¢. We use bounds on Fourier coefficients of
modular forms of half-integral weight that lie in the the orthogonal complement (under the Petersson
inner product) of the space spanned by one-dimensional theta series (due to Iwaniec and Duke) to
conclude the proof of Theorem [I.1] and Theorem

4.1 Optimal embeddings and primitive representations by ternary quadratic forms
Let s € Xo(N )%’:ﬂ and let R := End(s) be the ring of endomorphisms of s. Recall the notation
wg = #R} and up . = #Op.c.

1. A ternary quadratic form associated to an Eichler order. Let V' C Ry be the set of elements of
trace zero. Following [Gro87, pp.171-172] define

Gs = (2R, +Z)NV.
The Z-module Gy is free of rank 3. Define a quadratic form @, : Gy — Q by
Qs(b) :=nr(b).

2. Correspondence between optimal embeddings and primitive representations.
Let f : Op. — Rs be an embedding (not necessarily optimal) and let § := f(y/—d.). Notice
de + V=de,,

that Tr(3) = 0 and nr(3) = d.. We claim that 8 € G,. Indeed, since Op . = Z + 5

follows that 2f <w> =d.+ 3, ie.,

08 =—d. mod 2R;.

Therefore, 5 € (Z+2Rs) NV = G, i.e., Qs(f) = d. is a representation.
Conversely, suppose that § € Gs and Qs(8) = d.. We claim that § = —d. mod 2R;. Indeed, let
8 =~ + 2r for some v € Z and r € R;. Then
de = Qy(8) = mr(B) = Bf = -2 = —(y +2r)* = —* mod 4R;. (3)
Thus,
B=~v+2r=(v++?) -~+*=d.=—d. mod 2R,.
Now, we can define an embedding f : Op . — Ry by

; <d6+2\/——d6> 4B

R;.

2

We next show under the established correspondence that optimal embeddings correspond to
primitive representations.

LEMMA 4.1. The embedding f is optimal if and only if the representation Qs(3) = d. is primitive.

Proof. Suppose that the representation Qs(3) = d. is non-primitive. We will show that f is not
d

an optimal embedding. Indeed, let 3 = ka for some k € Z and o € G,. Then nr(a) = —. Let

= 5
de d
d = —. Consider the element v = %. We claim that v € f(Kp) N Rs, but v ¢ f(Op,)

12
1 C C
which would imply that f is a non-optimal embedding. First, v = ﬁf %) € f(Op,) ®Q.

Let « = a+2r for a € Z and r € Rs. Then d = nr(a) = —a® = —a? mod 2R,. Thus, a =

8
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a+2r =—a®>=d=—d mod 2Ry, i.e., v € Rs. Next, we show that v ¢ f(Op.). If k # 2 then
_d+a  de+ B+ dk — dk?

= ok . Since d. + = 2f(w) ¢ kf(Op,) then v ¢ f(Op.). If k =2 then

. Since de + 3 — 2d = f(2w — 2d) ¢ 4f(Op,) we obtain the same statement. Thus,
v € f(Kp)NRs, but v ¢ f(Op,), i.e., the embedding is not optimal.

Conversely, suppose that f : Op . — R, is a non-optimal embedding. Let O = (f(Op )@Q)NR;.
It follows that O = Op », where ¢ = k¢’ for some k > 1. Now, we can choose a € (20 +Z) NV,
such that Qs(a) = —Dc. Since (Z +20) NV is a free Z-module of rank 1, we obtain 3 = ka, i.e.,
the representation Q4(3) = —D¢? is not primitive. This proves the lemma. [l

2
_de+p—2d

Thus, we have proved the following;:
wS

Up,c
integer d. = —Dc? by Qs and optimal embeddings f : Op,c — Rs.

PROPOSITION 4.2. There is a -to-one correspondence between primitive representations of the

4.2 The discriminant of Qg
For what follows, we will need the discriminant of the quadratic form Q.

LEMMA 4.3. The discriminant Dq, of the quadratic form Qs is equal to AN?202,

Proof. Let p # ¢ be a prime and let v,(N) =: n. Since R; is an Eichler order of level N, we know
that Rg ® Z, is an Eichler order of level p™ of two-by-two matrices over Z,. In particular (up to

conjugation) we have
_ Ly Ly
R5®Zp—<pnzp Zp>'

Zy, 7 2b
Gs®Zp:[2<pn£p ZZ)—I—ZP]OV:{(%?”C _a>:a,b,CGZp}.

But then the local quadratic form Q) := Qs ® Z, is given by

a 2b
2p"c —a

Therefore,

Qs,p(av b7 C) = = —(12 — 4p"bc

The corresponding matrix for the quadratic form @ is then

-1 0 0
0o 0 -2 |. (4)
0 —2p" 0

The determinant of this matrix is —4p®". Therefore, if p # 2 then 4 is a unit and the contribution
to the determinant of Q is p*®, while if p = 2 the contribution is 4p>".

Now consider the case p = ¢ # 2. In this case we have Ry ®Z, is the unique maximal order of the
unique division algebra, with Z,-basis (1, «, 3,7) satisfying a® = —p, 3% = —1 and v = a8 = —fa.
But then Gg ® Z,, has basis (2, 2(3,27v). We obtain the quadratic form

Qs p(2aa + 263 + 2¢) = 4pa’® + 4b* + 4pc?, (5)

which is diagonal with discriminant 64p?, contributing p? to the discriminant.

For p = ¢ = 2 we note that since the Eichler order is locally isomorphic to the (unique) maximal
order, Gross [Gro87, p. 177] has shown that for o? = 32 = v2 = —1 with v = a3 = —fa,

Gs ® Zp = {aa+ (a+2b)5 + (a +2¢)y : a,b,c € Zp}.
9
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Thus the p-adic quadratic form is given by
Qs pla,b,c) = —(3a® + dab + dac + 4b* + 4c?),

with corresponding matrix

3 2 2
2 40 (6)
2 0 4

The determinant of this matrix is 16, and hence contributes 16 = 4¢2 to the discriminant. 0

4.3 The theta series associated to @,

Og, =Y ¢* = "a,(d)q"

BeGs d>1
Since —Q4(8) = 0,1 mod 4, we obtain that as(d) # 0 only if —d is a discriminant, i.e., —d = 0,1

mod 4. Thus,
o, = > ¢+ =" > ald)q”
BeGs —d=0,1 mod 4

(To(4M)) from section B

Consider the theta series

Recall the definition of Kohnen’s plus space M;;z

LEMMA 4.4. We have 0, € M,

+2(Do(AN)).

Proof. Let A be the matrix corresponding to Q. It is well known that fg, € Mgb(l“ 0(4M)),
where M is the minimal positive integer, such that 4M A~! has coefficients that are even integers
(see [Duk05, p. 39]). Since A~! has rational coefficients, it suffices to check that each coefficient
of 4M A~ has non-negative p-adic valuation for each p. We then explicitly compute the inverse

of equations (), (B]) and (6] to check that it has even integral coefficients when we multiply by
4pr(NO). O

4.4 The theta series associated to the genus and the spinor genus of (),

Let @ be a ternary quadratic form. Let gen(Q) be the genus of @ and let spn(@) be the spinor
genus of @ (see [O’MO00, Ch.X] for the definitions). Let loc(Q) be the set of all integers n that
are everywhere locally represented by Q. Let rg(n) (resp. ra(n)) be the number of representations
(resp. primitive representations) of n by Q. Let w¢g be the number of automorphs of @ (see [Jon50]
for the definition).

1. Theta series associated to gen(Q). Let

ZQ’G en(Q) TQ'(”)/wQ'
r(gen(Q),n) = .
Lqregen(@ H/0e

Similarly, define

2 Qregen(@) " (1)/wey
r*(gen(Q),n) :=
ZQ’Egen(Q) 1/U)Q/

We define the theta series associated to gen(Q) as
egen(Q) = Z r(gen(Q), n)qn‘
n>1

10
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By calculating local densities, Jones [Jon50, Thm.86] has shown that for d. = —Dc?
. h(—Ad,
r(gen(Qu). o) = 8%, ®)
UAD,c

Here, A denotes the discriminant Dg, of @, divided by the square of the greatest common divisor of

the determinants of all two-by-two minors of the matrix corresponding to QQs, and C only depends
d

on the Legendre symbol <D—C> One can calculate A p-adically using equations (), (&), and (6

Qs
to show that the greatest common divisor of the determinants of all two-by-two minors is precisely

/Dg,. Thus, A = 1.

2. Theta series associated to spn(Q). We define the theta series associated to the spinor genus in a
similar way. First, let
> 'e rq(n)/wg
r(spn(Q),n) == o=
ZQ’Espn(Q) /wQ'

9)

Similarly, let

% Z 'espn r*,(n)/wQ/

r*(spn(Q), n) = Qze pr(Q) Ql/
Q'espn(Q) +/ WQ’

We also define
espn(Q) = Z T(SPH(Q)v n)qn‘
n>1

The theta series Oge,(g) and Oy (@) are in the same space as 0 (by (@) and (@) and the fact
that ¢ are in the same space as @ for all Q" € gen(Q); see also [Han04al, p.366]).

4.5 Equidistribution in terms of quadratic forms

In light of the correspondence obtained in Proposition 42, the required equidistribution results
(Theorem [[.T] and Theorem [[.2]) are equivalent to showing that

i T*(Q& dc)uD,c
1m v T —
(D,c)eQn QV(N)#FD,C

de—00

= Wglcan(8)- (10)

This result will be equivalent to showing that the limit
T*(Q& dc)uD,c

s):= lim ————=— 11
11s) (De)en  #l'De ()
de—00
exists and is independent of the supersingular point s. Here, recall that d, := —Dc?.

First, note that 0g, — Osn(g,) is @ modular form of weight 3/2 that lies in the orthogonal
complement of the space of one-dimensional theta series under the Petersson inner product [SP84].
Duke’s bound for the Fourier coefficients of such forms [Duk98|, extending the work of Iwaniec
[Iwa87] to forms of weight 3/2, combined with Mobius inversion, implies that

1B
r(spn(Qs), de) = r°(Qs, de) = O(dZ ™),
Siegel’s lower bound for the class number [Sie35] (see also [Cox89) p. 149]) implies that #I'p . >

1_e
dé¢ ,so
T*(Q&dc)uD,c _ T*(Spn(Qs)ydC)UD,c + O(dc_
#FD,C #FD,C

Thus, we only need to show independence and convergence of the limit for each spinor genus.

&l

) (12)

11
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Since r*(gen(Qs), n) is independent of s by definition, it will be natural to compare r*(gen(Qs),n)
with 7*(spn(Qs),n) in order to determine the desired independence.

In particular, we have the following.

LEMMA 4.5. The limit
L (een(Qu), ~ D up,
k—o0 #FD’pk

exists and is independent of p and s.

Proof. The independence on s is clear from the definition of gen(Qs). We will apply () to n =
—Dp?*. First, recall (see [Cox89, Cor.7.28, p.148]) that for any discriminant Dy < 0 and any prime
p we have

D u -
h(~Dop™) = Cp* <1 - <—°>> 2222 (D) (13)
p p UDy,1
Equation (I3)) with Dy = D allows us to express r*(gen(Qs), —Dp?*) and #T Dpk a8
h(—Dp?* 1(-D h(—D
r*(gen(Qs), —Dp**) = coh(=Dp~) = ¢qCpF <1 - = <—>> ga (14)
Up pk P\ D up,1
r 1(-D r
# Dok _ ok <1__<_>># D1 (15)
UD pk p\p Uup,1
Hence, for £ > 1 we obtain
r*(gen 8,—D2ku h(—=D
(5e0(Qu), ~Dr™Jupy _  h(-D) »
#L'p pr #I'p1
The result follows since the right-hand side of (I6]) is independent of k and p. O
We now define the restricted limit
r* 8,—D2ku r*(spn S,—Dzku
fpp(s) = lim @ P7)UD = lim (spn(@s) r7) Dt (17)

k—o0 #FD,pk k—o0 #FD,pk

The equidistribution result of Vatsal [Vat02, Thm.1.5] combined with Proposition states the
following:

LEMMA 4.6. [Vatsal] For every s € XO(N)%?ZZ, fundamental discriminant D < 0 and p 1 N¢ we have

fD,p(S) = wsﬂcan(s)- (18)

We will now use equation (I8]) to rewrite r*(spn(Qs),n) in terms of r*(gen(Qs),n) and then use
equation (I2) to show that f(s) exists and is independent of s.
PROPOSITION 4.7. Let s € Xo(N )/IF and n = —Dc?, where D < 0 is a fundamental discriminant.
Assume that (¢, N¢) = 1. Then

" (gen(Qs), ) = r*(spn(Qs), n).

Let apn, 1= r(gen(Qs), m)—r(spn(Qs), m). According to a result of Schulze-Pillot [SP84] as well as
Flicker [F1i80], Niwa [Niw74|, Cipra and others [Cip83]), Oyen(q,) — Ospn(@,) belongs to the subspace
of cuspidal forms of weight 3/2 spanned by the one-dimensional theta series (see also [Han04b]).
Note that the Fourier coefficients of the one-dimensional theta series hy +(2) defined in equation (II)
vanish outside the square class tZ2. Let

Ogen(Qs) — spn(qQs) Z Cpthap e (19)

12
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Let hyt be one of the one-dimensional theta series in (I9) and let 4M = 4N/ be the level of
Ogen(Qs) —Ospn(Q,)- The transformation law for modular forms of level 4M with Nebentypus x implies

—t
that ¥ (mn) = ¢ (n)x¢(m) for every (m, M) = 1, where x;(m) = x(m) (E) (see [SP84] p.285]). In
addition, if hy; # 0 then 4t | M (see, e.g., [SP84, Kor.2]).
LEMMA 4.8. Let —d > 0 be the smallest positive integer satisfying the following two conditions:

i) Ifd = Dc?, where D < 0 is a fundamental discriminant then c is prime to N;
i) a_q #0.

Then ¢ =1 and d = D is a fundamental discriminant.

Proof. Tt follows from (I9) and Lemma 4] (since (m, M) = 1) that ¢)(m) = x:(m). Hence,
a—g = Z ey p(m)ym = Z Xt(m)mz eyt # 0.
(4

—d:tm27'¢) —d=tm?

Hence there exists t satisfying Z ¢yt # 0. Choose the minimal ¢ with this property and observe

()
that a; = Z Zc¢7t/¢(m)m = ZC,N # 0. Hence, t = —d and
¢ t=t'm2 ¥ "
aca= Y, epihpe =) Ccyahy-a #0.
—d=tm? ) P

Now, if the conductor ¢ of d were not equal to 1, it would have divided M and hence would not
have been prime to N/{. Thus, the only possibility is that ¢ = 1 and d = D is a fundamental
discriminant. O

LEMMA 4.9. Let D < 0 be the fundamental discriminant from Lemmal4.8 and (¢, N¢) = 1. If D,
is the discriminant of the quadratic form () then

DD
aA_pe2 = C <TQS> a_p.

In particular, for ¢ = p* we have

~DDg,\*
(l_Dp2k :pk <TQs> a_p.

Proof. Note that a_pe = Z cy 1t(m)m. We know that if t = —D(c/)? for some ¢/ > 1 then
—Dc2=tm?2 )
hi = 0 (since (¢/, M) = 1). Hence,

a_pe2 = ZC¢7D1/J(C)C = cxplc) Z Cyp =C <DDQS> a_p.

" " ¢

0

Proof of Proposition [{.7, We will prove the statement by contradiction. Assume the contrary and
let n be the smallest integer whose square part is prime to N¢ and such that r(gen(Qs),n) #
r(spn(Qs),n). Lemma A8 implies that if —n = Dc? for a fundamental discriminant D and a con-

ductor ¢ then ¢ = 1 and n = —D. Let p{ N/ be a prime for which <%> = —1. We will show that

under these assumptions the limit f_p ,(s) does not exist, contradicting Lemma 6l Using Lemma

13
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and equation (I5]), we have

Fopo(s) = li (r*(spn(Qs), —Dp*) — r*(gen(Qs), — Dp?*)) upp N r*(gen(Qs), — Dp** Y,
__l)’ _=
D [e’) #FDmk #FD,pk
= lim _ a_DPQk T*(gen(Qs)a —Dp%)uapk
ko0 #I'p pr /uD,pk #L'p
k (DDg. | .
g ot (25%) r(gen(Qu), ~Dp*Yup
= lim | — - + T
k—oo pk < — % <?>> #FD,I/uD,l D,pk
= lim — a_D(_l)k -+ T*(gen(Qs)a _Dp2k)UD,pk
k—o0 (1 — % (%)) #I'p1/upa #L'p e

However, the limit
r*(gen(Qs), —Dpzk)uapk

lim
k—oo #FD,pk
exists by Lemma [£.5]l Therefore, if the limit f_p ,(s) exists, then the limit
_p(—1)
lim — a-p(=1)

T (o (3) ot

must also exist. But a_p # 0 and the only dependence on k is the term (—1)¥, leading to a
contradiction. O

4.6 Proof of the main theorem

We are now ready to prove Theorem [[.T]and Theorem[I.2l Let D < 0 be a fundamental discriminant
and let ¢ be an integer with (¢, N¢) = 1. Define

r* ,—Dc*)u
9pe(s) = (QS#FD Jup.c
,C

and
r (gen(Qs)v _DC2)UD,C
hp.c:= .
#PD,C

Note that hp . is independent of s. Proposition .7 combined with equation (I2]) gives

9D.(8) = hpc+ Os ((—DcQ)—%Jrf) .

We now divide by w, and sum over all s’ € Xo(NV )?SZZ' Recall from Proposition 2] that

s")#I v
I0)H# D _ oy, oy U0
Wy e

is the number of optimal embeddings of Op . into Ry. Summing over all s’ € Xo(V )%@Zz thus gives

#I'p .. Hence, we have

1— Z 9p.c(s") = hpe Z 1 +0 ((—Dc2)_%+5> . (20)

w W e
s'€Xo(N)SS s sSEX(N)SS °
/Fl2

14
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Therefore
1 1
hp.e = +0 ((-D2)57).
ZS’GXO(N)%@ L/wg
02
Thus the limit Dlign hp,. exists, and we obtain
= 1 == 1 2 _L—i—e } pumy 1 =
[ = lim gpe(s)= lim |hpe(s)+0((D) %) Weftcan(s).

ZS/EXO(N)?%Q
But this is precisely equation (I0)), and hence we obtain Theorem [L1]

Remark 8. Due to dependence on Siegel’s lower bound for the class number, Theorem [I.1]is ineffec-
tive. However, if we fix a fundamental discriminant D < 0 and only vary the conductor ¢, then this
result becomes effective due to known growth of the class number in a fixed square class. Moreover,
in a fixed square class the —D-th Shimura correspondence implies that the difference

CLC(S) = gD,c(S) - hD,c

are coeflicients of a weight 2 cusp form. Using Deligne’s optimal bound, the error term can be
improved to O(c~1/2%€). Therefore, the error can be written as

O((—=D)~ w3+,

5. Distribution relations method

In this section, we establish equidistribution when the fundamental discriminant D < 0 is fixed and
the conductor varies using an alternative argument based on the distribution relations for Heegner
points and Hecke eigenvalue bounds.

5.1 An easier equidistribution theorem

Here, we only consider a special infinite set of conductors ¢ and a fixed fundamental discriminant
D < 0. Let P be the set of all primes r f N, such that r is inert in K. Let Z be the set of all
integers that are square-free products of primes in P. Note that A C Z. Under the same hypothesis
as before, we will prove the following statement:

THEOREM b5.1. Given a Galois orbit I'p . let pup. be the measure on XO(N)%?ﬂ defined as in

Theorem [I.1l Then Cl_lglo UD.c = fcan-
CEI’

Remark 9. The assumption that ¢ € Z is not necessary and the argument in the more general
case is exactly the same, except for the more technical form of the distribution relations. Here, we
prove only the less technical statement where the distribution relations are easier to work with (see

Section [5.2)).

5.2 Distribution relations

Let X, € Div(X((N)) be defined as X, := Z (7). We will prove the following distribution
oeGal(K|[c]/K)
relation:

LEMMA 5.2. For any prime number £ which is inert in K and any positive integer ¢ coprime to £,
the following distribution relation holds:

Xeo =Ty Xe.

15
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Proof. Let S be a set of coset representatives for Gal(K|[cf]/K|c])/ Gal(K[c]/K). The distribution
relation for Heegner points [Gro84, §6] is the following equality of divisors of degree £+ 1 on Xy (N):

Triced/ i (xoe) = Te(a?), o € Gal(K[cl]/K),
i.e.,
> (z9]) = Ty(z2), o € Gal(K[cl]/K).
reGal(K|cl]/K[c])

Hence,

S Y @)=Y D), o€ Gal(K[el]/K),

0€S reGal(K|cl]/K[c]) oes
which implies

Xeo =Ty Xe.

5.3 Proof of the main theorem
Proof of Theorem [5.1l. First, we note that the reduction map red, : Xo(N),g — Xo(IV)/k, defined
in Section [I] is Hecke equivariant. Thus,

redy(Xer) = Ty redy(Xe).
Next, redy(X,,) and red;(X,) belong to the subgroup DivS® (X, (V) /F,) of divisors supported on the
supersingular points of Xo(N) JF, The Hecke algebra Tpp acts on the vector space
Vss = DivSS (X (V) /E) ® Q via its f-new quotient ']I'?V_gnew (see [Ser96] or [Par03]). Let

Vs = Viis ® EB Vi
f

be the eigenspace decomposition of V', where f ranges over all normalized eigenforms f € Sg_neW(Fo (NY)),
Vi={veVss : Trv=a,(f)v for all primes r},
and
Viis = {v € Vag : T,v = (r + 1)v for all primes r}.

Here, a,(f) denotes the r-th Fourier coefficient of the eigenform f.

1
Let Y, = ZPic(0,) redy(X.) € Vgs. It is easy to see that Y, = Z te(s) - (s). We can
ic
c sEXo(N)%?ﬂ
write the decomposition of Y, as

Y. =Y. gis + ZYc,f, Yo r€Vy, Yegis € VEis.
f

The distribution relation from Lemma implies that # Pic(O.)Yer = # Pic(O.)T,Y,. Since
# Pic(Oyyr) = (r+ 1)# Pic(O,.) then
1

}/cr = . 1TT‘YVC

a
We use this equality to obtain Y. gis = Y gis and Yo, p = T_f_fl)
r

f € S5V (To(NY)).

Y. ; for any normalized eigenform

16
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The Ramanujan-Petersson conjecture then implies that
1/2
ar(f) < 2r < 2 .
r+1 T r+1 " pl/2
Thus, we obtain by induction on the number of prime divisors of ¢ that

Yo=Y gis + O(c™/?).

This means that Clllglo Y. = Y1 Eis-

ceL
Finally, one uses the result from Section [5.4] to conclude that Y) mis is equal to the divisor
associated to the canonical measure picap. O

5.4 The divisor Y7 gjs
Let
Dﬂcan = Z Ncan(s) : (8) € VSS'
SEXO(N)%S‘
02

It is well-known (see, e.g., [Vat02, Lem.2.5]) that the divisor D,,,, is Eisenstein. In other words,
T.D,... = (r+1)D

Mcan Mcan

for every prime (r, N) = 1. Next, we verify that D
Yi:

is the same as the Eisenstein part Y7 gis of

Hcan

LEMMA 5.3. We have

D,... = YiEis-

Hcan

Proof. First, note that deg(D,,.,) =1 = deg(Y1). Furthermore, a divisor D € DiV(XO(N)%%ﬂ) ®Q
is cuspidal if and only if it has degree zero (see e.g., [Ser96]). Thus, deg(Y7 cusp) = 0 and hence,
deg(Yl,Eis) =1.

Next, consider the exact sequence

Hcan

. . deg

0 — Div’(Xo(N)*®) — Div(Xo(N)j5 ,) = Z — 0,
and look at the divisor D = D, .. — Y1 gis. We know that deg(D) = 0 and hence, D is cuspidal. At
the same time, D is Eisenstein. If D # 0 then one would obtain a contradiction by using the Hecke
eigenvalue bounds for cusp forms. Thus, D = 0 and hence, Y1 gis = D, - O

6. Effective surjectivity results

We have seen in Theorem [[.T] that pup c — fican as de = —Dc¢? — 0. In particular, for sufficiently
large d. we have pup .(s) > 0 for every s € Xo(N )?I?ZZ’ giving surjectivity of the reduction redy from

I'p.c to Xo(N )?Sﬂ. Here, we discuss effective versions of this surjectivity result.

Recall that the proof of Theorem [L1] uses Siegel’s lower bound on the class number (see (12)).
Since Siegel’s bound #I'p . >, D27 is ineffective due to the fact that Siegel proved this result
by first assuming the truth of GRH for Dirichlet L-functions and then proved the bound again with
a different implied constant depending on the location of a possible Siegel zero [Sie35]. The best
known effective results are due to Oesterlé [Oes85], but the growth obtained is only logarithmic in
D. Hence, the surjectivity will be ineffective whenever we allow the fundamental discriminant to
vary.

17
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SS

Thus, we fix a fundamental discriminant D < 0. Given a supersingular point s € Xy(V) P20

decompose g, as

Oq, — spn(Q Z bigi, (21)

where b; € C and {g1,...,9,} is a fixed set of cuspldal Hecke eigenforms in the orthogonal comple-
ment (under the Petersson inner product) of the space spanned by one-dimensional theta series of
weight 3/2. We will denote the d-th coefficient of g; by ag,(d) and the —D-th Shimura correspon-
dence (recall the extended definition in Section B given by Kohnen for fundamental discriminants)
by G; := S_p 1(gi). Denote the number of distinct prime divisors of ¢ by v(c).

The following theorem establishes an effective bound for ¢ (depending on the decomposition (21))
and the fundamental discriminant —D) beyond Which the preimage red_ (s) is non-empty. Taking
the maximum occurring bound over all s’ € Xo(N)53 JF 2 gives a bound dependlng only on N, ¢ and
D beyond which surjectivity must hold.

THEOREM 6.1. Let ¢ > 2 be an integer prime to N{ that satisfies the following inequality

61/2 1 uD 1 !
biag, (—D 1/wg
220(c)+1g0(c) log c log 2#I'p Z [biag, (= D) Z Jw

=1 ’ SS
s E)(()(]\f)/[%2

Then the reduction map redy : I'p . — Xo(N )/F satisfies rede_l(s) #+ .

Proof. For the 0-series g, we have the decomposition

0q.(2) = E(2) + H(z) + f(2),
where E(z) is an Eisenstein series, H(z) is in the space spanned by one-dimensional theta series of
weight 3/2, and f(z) is a cusp form in the orthogonal complement of the space spanned by one-
dimensional theta series (see [Han04bl p.156]). Moreover, from the work of Schulze-Pillot [SP84],
we know that E(z) = Ogen(q,)(2) and H(2) = Oy,n(0,)(2) — Ogen(@,)(2)-

Let a(n) := r(Qs,n) — r(spn(Qs),n) be the nth Fourier coefficient of the form f(z) and let
a*(n) == r*(Qs,n) — r*(spn(Qs),n). Let n > 0 be an integer satisfying (n, N¢) = 1. We know by
Proposition [4.7] that r(gen(Qs),n) = r(spn(Qs),n). Therefore,

r(Qs,mn) = r(gen(Qs),n) + (r(Qs,n) — r(gen(Qs),n)) = r(gen(Qs),n) + a(n).
Next, if n = tc? where t is square-free, Mobius inversion gives us
Qo) = 3 H(@)r (@ n/e) = (gen(Q) m) + 3 u(@)aln/?) (22)
e e

By Proposition .21 we know that s € Xo(N )/IF is in the image of red; : I'p . — Xo(N )?E if and

only if Qs primitively represents d. = —Dc?. Thus, s is not in the image of the reduction map if
and only if 7*(Qs,d.) = 0, i.e., if and only if
r*(gen(Qs), de) = — Y _ p(c)a(de/c?). (23)

dle
The left-hand side can be computed using Jones’ formula and [Cox89, Cor.7.28,p.148] as it was
applied previously for (14]). We obtain

Plen@hd) 3 vue=E2 (S () S B e

up C up.1
s EXO(N)/]F ) © e ’
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For the right-hand side of (23]), we would like to express the Fourier coefficient a(d.) in terms
of a(—D). This cannot be done directly for an arbitrary cusp form f in the orthogonal complement
of the space of one-dimensional theta series, but could be achieved if f were an eigenform (due to
the recurrence relations of the Hecke operators). In order to get such a relation, we write

= Z bigi(2)
i—1

where g¢;’s are Hecke eigenforms of weight 3/2 whose images G; under the —D-th Shimura corre-
spondence S_p 1 are normalized Hecke eigenforms.

Decomposing 0, — Ogen(q,) gives

Z bi Z N agz c/c’) : (25)

,|C
If g := g; is a Hecke eigenform, the —D-th Shimura correspondence G := S_p 1(g) € So(I'o(N?)) is
also a Hecke eigenform. Assume further that G is normalized so that ag(1) = 1. By the multiplicity
one theorem for forms of weight 2, there exists a newform G € Sy(I'g(M)) for some M | N/ such
that G = Z C4G|V (d) for some constants Cy (with C; = 1). Here, the operator V (d) corresponds

N¢
dl 51

to one of the degeneracy maps (see e.g., [Ono04, p.28] for the definition). Notice that for (¢, N/) =1
the cth coefficient of G corresponds to the cth coefficient of the newform G. Since c is relatively prime
to the level, the c-th coefficient of G is determined by the eigenvalues under the Hecke operators.

Using this connection and the definition of the —D-th Shimura correspondence to evaluate the
coefficients of G' (using the fact that G is normalized), the second author [Kan09l equation (4.2)]
has shown for ¢ = p™ relatively prime to FN/,

aolder) = afae) (aco™) ~ (=2 aco™™) = aylae) DG () e (5):

Here we have rewritten the right hand side so that extending by multiplicativity, it follows that
D c
g(d1) ZM(C/) (g) ac (E) :
e
Substituting this in equation (28] gives the identity

Zb ag, (d1) 3" 57 (?,) ac, (=) (26)

/|C CII‘

Thus we have established that the supersingular point s € Xo(N)3 /F 2 is not in the image of red,
from I'p . if and only if

! ZN(C,) <§>§ @:_Zbagz d1) ZZ (?) aGi<c/(;//

ZS/EXO(N)%%Q 1/ws/ e up,1 e C”‘

Now consider the Euler ¢-function ¢(c) := #{m < c¢: (m,c) = 1}. Then

S e ( )—,w()

/IC
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since the inequality holds for ¢ being a prime power and both functions are multiplicative. We can
log 2
then use the explicit elementary bound ¢(c) > og IL for ¢ > 2 (cf. [JMCOG, p.9]).
ogc
We next pull the absolute value inside the sum on the right hand side of (27)) and use Deligne’s
optimal bound [Del74] for integer weight cusp forms from the proof of the Weil conjectures, namely

lag;(n)| < Jo(n)n%. Since #{c | ¢ : p(¢) # 0} = 2¥(9) and o4(c’) < op(c) for ¢ | ¢, we have

" (de)] < 2 @ag(e)et Y [biag, (D), (28)
i=1

giving the assertion. O

2. The case #Xo(N )?%ﬂ . In the case when # Xo(N )?Eﬂ = 2 we obtain an explicit bound independent

of D beyond which surjectivity holds. Let m; = max <1, ws' >

s

LEMMA 6.2. If #XO(N)%S , =2 then the inequality
2

o(c) > ms22”(c)00(c)c% (29)
implies that the reduction red, on I'p . is surjective for any fundamental discriminant D < 0.
Proof. Let XO(N)%?@? = {s, s'}. Recall that
0 o wiser + wLS,HQS/
gen(Qs) = 1/ws + 1/105/
By Siegel’s theorem (see [DSP90, Thm.2(ii)]) there is a Hecke eigenform g such that g, = Ogen(q,)+
g and 0g, = Ogen(Q,) — %g. Since 7(Qs,|D|) = 0 and 7(Qy,|D|) > 0, we have |a,(|D])| <

max(1, E)7’(gen(QS), |D]). The lemma then follows immediately by combining equations (24]) and
Ws
([28)) with b1g1 = g after canceling r(gen(Qs), |D|) on both sides. O

Let G =5_ D,1(9) be the —Dth Shimura correspondence of g as defined in Section Bl Define
Zc’|c IU,(C/) (_C’D) 5

St te) S s 1(e") () ag ()|

where we take r. = oo by convention if the denominator is zero, and

.- el
22v(0) o (c)c%

By equations (27)) and ([28)) if r. > mg or 7. > mg then s is in the image of red,. Note that both .
and 7. are multiplicative and r. > 7.. For ¢ = p" we have

- _pilp—1)
‘ 4(m+1)

For p > 5, 7. is increasing as a function of m, whereas for p < 5 it is increasing for m > 2. For a
constant a and m = 1 the inequality 7. > a is satisfied for

2
<4a+\/16a2 +4>
p> P, = .

Te 1=

2
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For p < P, we use the fact that 7. is increasing exponentially as a function of m to obtain a bound
M, o such that m > M, , implies that r. > a. Therefore, there are only finitely many choices for
the pair (p, m) with m > 1 for which rpm < a. Let

Co ={(p,m) : 7pm < a}.

Computing r,m explicitly for m < M, , allows us to explicitly calculate Ci,.

We first follow the above argument with a = 1 to show that
Tmin = H %;% Tpm

Ms

is well defined and satisfies r. > ryi, for every ¢. We will now use the above bounds with a :=

T'min
Let ¢ be an arbitrary integer such that 7. < mgs. Write ¢ = p™¢ with (p,¢’) = 1. By multiplicativity
we have

Mg 2 Te = T/ Tpm Z TminTpm .
Therefore rpm < a, so (p,m) € Cg, and it follows that
o T
(p;m)eCa

We can refine this argument by recursively computing
Sy :={c:v(c) = v, < mg}.
For ¢ € S, consider

o e gHwer=minmzo

T
Then for ¢ = p™¢ with (p,¢) =1, r. € Sy41 if and only if (p,m) € Cy. Constructing the resulting
tree in this manner allows us to terminate the depth-first search when C,/ is empty.

Proceeding in this manner, we obtain for £ = 11 and N = 1 exactly 116 possible values of ¢ in
the union of all 5, the largest of which is 5124. For £ = 17 and N = 1 there are 93 possible values
of ¢, the largest of which is 3990, and for £ = 19 and N = 1 there are 165 possible values of ¢, the
largest of which is 8502.
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