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Equidistribution of Heegner Points and Ternary

Quadratic Forms

Dimitar Jetchev and Ben Kane

Abstract

We prove new equidistribution results for Galois orbits of Heegner points with respect
to reduction maps at inert primes. The arguments are based on two different techniques:
primitive representations of integers by quadratic forms and distribution relations for
Heegner points. Our results generalize one of the equidistribution theorems established by
Cornut and Vatsal in the sense that we allow both the fundamental discriminant and the
conductor to grow. Moreover, for fixed fundamental discriminant and variable conductor,
we deduce an effective surjectivity theorem for the reduction map from Heegner points
to supersingular points at a fixed inert prime. Our results are applicable to the setting
considered by Kolyvagin in the construction of the Heegner points Euler system.

1. Introduction

Uniform distribution of Galois orbits of Heegner points with respect to reduction maps was the
key step in the argument of Cornut and Vatsal for the proof of Mazur’s conjecture on the non-
triviality of Heegner points over the p-adic anticyclotomic tower (see [Maz83] for the statement;
[Cor02], [Vat02], [Vat03] and [CV05] for the proofs). Both Cornut and Vatsal used ergodic theory
techniques based on Ratner’s theorem for unipotent flows on p-adic Lie groups (see [Rat95]) in order
to prove the results for simultaneous reduction maps (i.e., maps that reduce simultaneously n-tuples
of Galois conjugates of Heegner points modulo a fixed inert prime ℓ). Due to the p-adic nature of the
ergodic techniques, one needs to fix the fundamental discriminant and vary the conductor p-adically.

This paper proves a more general equidistribution result for single reduction maps, in the sense
that both the fundamental discriminant and the conductor are allowed to vary and the only assump-
tion on the conductor is that it is prime to the level of the modular curve. We avoid the ergodic
theory by using arguments based on equidistribution of primitive representations of integers by
quadratic forms in genera, as well as distribution relations of Heegner points and Hecke eigenvalue
bounds. Along the way, we obtain a generalization of an equidistribution theorem for Gross points
on definite Shimura curves established by Michel. Finally, we prove effective surjectivity results for
sufficiently large Galois orbits with respect to reduction maps in the case when the fundamental
discriminant is fixed and the conductor varies.

1.1 Notation and hypothesis

Let N > 1 be an integer and let X0(N)/Q be the modular curve associated to the congruence
subgroup Γ0(N) of SL2(Z). Let ℓ be a prime such that (ℓ,N) = 1 and let DN be the set of all
fundamental discriminants D < 0 such that every prime factor of N is split in KD := Q(

√
D) and

such that ℓ is inert in KD. Let ΩN be the set of all pairs (D, c), where D ∈ DN and (c,N) = 1.
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Fix an embedding ι : Q →֒ Qℓ (i.e., a prime in Q lying above ℓ). Let (D, c) ∈ ΩN and let OD,c be
the order of conductor c in the quadratic imaginary field KD = Q(

√
D). Fix an ideal nD ⊂ OD,1 for

which OD,1/nD ∼= Z/NZ. For (c,N) = 1, nD,c := nD ∩ OD,c is an invertible ideal of OD,c. Consider
the point xc = [C/OD,c → C/n−1

D,c] ∈ X0(N)(Q). By the theory of complex multiplication, it is
defined over the ring class field KD[c] of conductor c for KD. We refer to that point as the higher
Heegner point of conductor c. Let ΓD,c := {σxc : σ ∈ Gal(KD[c]/KD)} be the corresponding Galois
orbit. The fixed embedding ι gives us a prime in KD[c] above ℓ. The choice of the embedding defines
a reduction map

redℓ : X0(N)(KD[c]) →֒ X0(N)(KD[c]ℓ) = X0(N)(OKD [c]ℓ)
mod ℓ−−−−−→ X0(N)(Fℓ)

where OKD[c]ℓ is the ring of integers of the completion KD[c]ℓ (the equality in the middle follows
from the valuative criterion of properness). Moreover, since ℓ is inert in KD, then CM points for
KD reduce to supersingular points modulo ℓ (see [Deu41]). Let X0(N)SS

/Fℓ
be the set of supersingular

points on X0(N) modulo ℓ. It is well-known that these points are defined over Fℓ2. We will prove an
equidistribution theorem according to which as dc := −Dc2 → ∞, every s ∈ X0(N)SS

/Fℓ2
will have

the same number of preimages in ΓD,c under redℓ. We will state our result in terms of probability
measures on the finite set X0(N)SS

/Fℓ2
.

1.2 A canonical measure on X0(N)SS
/Fℓ

Let s ∈ X0(N)SS
/Fℓ2

be a supersingular point. Then s is represented by a pair (Ẽ, C̃) of a supersingular

elliptic curve Ẽ/Fℓ
and a cyclic subgroup C̃ of Ẽ of orderN . Following [Rib90, §3], we refer to the pair

E = (Ẽ, C̃) as an enhanced elliptic curve over Fℓ2. Homomorphisms of enhanced elliptic curves are
defined in the obvious way. In particular, one could talk about endomorphisms and automorphisms
of enhanced elliptic curves.

Let E = (Ẽ, C̃) be an enhanced elliptic curve representing the point s. The endomorphism
algebra End(Ẽ)⊗Q is isomorphic to the unique quaternion algebra Bℓ,∞ ramified precisely at ℓ and
∞. The endomorphism ring End(Ẽ) is a maximal order in Bℓ,∞ and the ring End(E) is an Eichler
order of level N . Indeed, if λ : Ẽ → Ẽ/C̃ is the quotient map, then End(Ẽ/C̃) can be viewed as a
subring of Bℓ,∞ via the map σ ∈ End(Ẽ/C̃) 7→ λ−1σλ. Then End(E) is the intersection of the two
maximal orders End(Ẽ) and End(Ẽ/C̃). Let Rs denote this Eichler order and let ws := #R×

s . We
can use ws to define a canonical measure µcan on X0(N)SS

/Fℓ2
by

µcan(s) :=
1/ws∑

s′∈X0(N)SS

/F
ℓ2

1/ws′
.

1.3 Main results

1. Equidistribution of Heegner points. We can now state the main result of the paper. For (D, c) ∈
ΩN , define a measure µD,c on the finite set X0(N)SS

/Fℓ2
by

µD,c(s) :=
#{x ∈ ΓD,c : redℓ(x) = s}

#ΓD,c
, s ∈ X0(N)SS

/Fℓ2
.

Theorem 1.1. The weak-* limit lim
−Dc2→∞,
(D,c)∈ΩN

µD,c exists and equals µcan.

Remark 1. To say that the weak-* limit of a sequence of measures {µn} on a finite set X exists and

converges to a measure µ on X means that for each function f : X → R, the limit lim
n→∞

∫

X
fdµn

2
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exists and equals

∫

X
fdµ.

2. Equidistribution of Gross points on the definite quaternion algebra Bℓ,∞. The curve X0(N)/Q can
be viewed as a Shimura curve for the quaternion algebra M2(Q), and thus, Heegner points can be
regarded as CM points on the indefinite quaternion algebra M2(Q). In the case of a totally definite
quaternion algebra (e.g., Bℓ,∞), the analogues of Heegner points (also known as Gross points) were
studied in detail by Gross [Gro87].

Let G′ be the algebraic group associated to B×
ℓ,∞ and let I1, . . . , Ih be left ideals representing

the left ideal classes (corresponding to the double quotient G′(Q)\G′(Af )/R̂
×). Let R1, . . . , Rh

be the associated Eichler orders. Given a conductor c, the points of conductor c are simply pairs
(f : Oc →֒ Ri/R×

i
, Ri) of one of these orders Ri and an R×

i -conjugacy classes of optimal embeddings

f : Oc → Ri. Recall that f : Oc → R is optimal if f(K) ∩ R = Oc (we have extended f to an
embedding f : K → Bℓ,∞). Let µ̃D,c([Ii]) be the number of Gross points (f,Ri) of conductor c
divided by the total number of Gross points of conductor c. Then m̃uD,c is a probability measure

on G′(Q)\G′(Af )/R̂
×. There is a canonical measure on G′(Q)\G′(Af )/R̂

× defined as

µ̃can([Ik]) :=
1/wk∑h
i=1 1/wi

.

Theorem 1.2. The weak-* limit lim
−Dc2→∞,
(D,c)∈ΩN

µ̃D,c exists and equals µ̃can.

Remark 2. A similar statement (for trivial conductor c = 1) has already been established by Michel
[Mic04, Thm.3] using subconvexity bounds for L-functions and independently by Elkies, Ono, and
Yang [EOY05, Theorem 1.2].

Remark 3. Both Theorem 1.1 and Theorem 1.2 hold in greater generality for CM points on indefinite
and totally definite quaternion algebras, respectively, with respect to more general reduction maps
at several primes. The more general statements will be the subject of a forthcoming paper.

Remark 4. We will see in Section 2.5 that the canonical measures µcan and µ̃can indeed coincide.

3. Congruences for Hilbert class polynomials under the U -operator. Recall that for a function with

Fourier expansion f(z) =
∑

n>0

a(n)qn the operator U(ℓ) is defined by f(z)|U(ℓ) :=
∑

n>0

a(ℓn)qn.

Elkies, Ono and Yang were interested in the equidistribution of Heegner points with respect to
reduction maps which they used to study a certain congruence for the Hilbert class polynomial
under the U -operator. In particular, combining the case N = 1 of Theorem 1.1 with [EOY05,
Thm 2.3 (1)] gives the following immediate corollary (the case c = 1 is [EOY05, Thm. 1.1]):

Corollary 1.3. Let HD,c ∈ Z[x] be the polynomial whose roots are precisely the j-invariants
of those elliptic curves with CM by OD,c. Let ℓ be a prime which is nonsplit in OD,c. Then for
dc = −Dc2 sufficiently large (depending on ℓ) there exists a polynomial PD,c,ℓ ∈ Z[x] such that

HD,c(j(z))|U(ℓ) ≡ PD,c,ℓ(j(z)) (mod ℓ).

4. Effective surjectivity of redℓ. One consequence of both Theorem 1.1 and Theorem 1.2 is the fact
that for sufficiently large discriminant dc = −Dc2, the reduction map from CM points of conductor c
to supersingular points is surjective. It is natural to ask whether this theorem can be made effective.
The ineffectiveness of one of the ingredients used in our argument, Siegel’s lower bound on the class
number, prevents us from establishing an effective result when both D and c vary. Yet, fixing the
fundamental discriminant D and varying the conductor c, one can establish effective surjectivity
theorems (see Theorem 6.1 and Lemma 6.2).
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2. Heegner points and optimal embeddings

Let s ∈ X0(N)SS
/Fℓ2

be a supersingular point modulo ℓ. In this section we will establish a one-to-one

correspondence between
{

Heegner points x on X0(N) of conductor c
reducing to s ∈ X0(N)SS

/Fℓ

}
⇐⇒

{
R×
s − conjugacy classes of

optimal embeddings OD,c →֒ Rs

}

For c = 1, the above correspondence is known as Deuring lifting theorem (see [Deu41]) and has been
subsequently refined (as a correspondence) by Gross and Zagier [GZ85, Prop.2.7]. We will deduce
the correspondence from a recent result of the first author and Cornut [CJ09].

2.1 Galois orbits of Heegner points

We start by proving that there are exactly 2ν(N) Galois orbits of Heegner points of conductor c,
where ν(N) is the number of distinct prime divisors of N .

Lemma 2.1. Suppose that (c,N) = 1. Then there are exactly 2ν(N) Galois orbits of Heegner points
of conductor c on X0(N) and each of these orbits has size # Pic(OD,c).

Proof. Consider the set of all Heegner points of conductor c on X0(N). They could be described as
pairs ([a], n) of an ideal class [a] and an ideal n ⊂ OK with the property that OK/n ∼= Z/NZ. The
last property is equivalent to the fact that n is primitive of norm N (n being primitive means that
there is no rational prime number dividing n). Equivalently, if N = pe11 . . . pet

t are the distinct prime
divisors of N , we want n = p

e1
1 . . . pet

t , where pi is one of the primes of OK above pi (indeed, if both
pi and pi occur then n would be divisible by pi and hence, would not be primitive).

2.2 Modular curves and Shimura curves

Let Γ be a congruence subgroup of SL2(Z) and let U = U(Γ) be the closure of Γ in SL2(Af ). The
group SL2(Q) admits a left action on h by linear fractional transformations and a left action on
SL2(Af ) by left multiplication. Thus, SL2(Q) acts on the left on h × SL2(Af ). Moreover, U has a
right action on h× SL2(Af ) by acting trivially on h and by right multiplication on SL2(Af ). Strong
approximation (see [Vig80, p.81]) gives a homeomorphism

Y (Γ) := Γ\h → SL2(Q)\h × SL2(Af )/U, z 7→ [z, 1].

Let H be the compact open subgroup of GL2(Af ) that is the closure (in GL2(Af )) of the image
of U under the inclusion SL2(Af ) →֒ GL2(Af ). We define the Shimura curve corresponding to the
compact open subgroup H as

ShH = GL2(Q)\(C\R) × GL2(Af )/H.

We shall see that ShH is a disjoint union of two copies of Y (Γ). Indeed, consider the map

φ : ShH → Q×\{±1} × A×
f /det(H)

given by [z, g] 7→ [sgn(Im(z)),det(g)]. The fiber of this map over the point [+1, 1] is isomorphic
to SL2(Q)\SL2(Af )/U ∼= Y (Γ). Since det(H) is open, it follows that the quotient Q×\A×

f /det(H)

is discrete. Since Q×\A×
f

∼= Ẑ× is compact, the double quotient Q×\A×
f /det(H) is finite. The

quotient Q×\{±1} × A×
f /det(H) describes the connected components of the Shimura curve ShH .

For instance, for classical modular curves,

GL2(Q)\(C\R) × GL2(Af )/H ∼= Y (Γ)+ ⊔ Y (Γ)−.

4
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2.3 Adelic description of CM points

1. CM points on the Shimura curve ShH . Fix an embedding K →֒M2(Q). This gives us an embed-
ding T →֒ GL2, where T := ResK/QK

×. Consider the set CMH of all points of the form [g, h] ∈ ShH
whose stabilizer is a torus isomorphic to K×. It is easy to verify that an element z ∈ C\R is in
K if and only if StabGL2(Q)(z) is isomorphic to ResK/QK

× = T . This allows us to conclude that
CMH admits an adelic description as the double quotient T (Q)\GL2(Af )/H. Indeed, a point in
CMH is represented by a pair [z, g], where z ∈ C\R is in K and g ∈ GL2(Af ). Since all z ∈ K are
GL2(Q)-conjugates and since the stabilizer of each z in GL2(Q) is isomorphic to T (Q), we obtain

CMH
∼= T (Q)\GL2(Af )/H.

3. Conductors of CM points. Here, we assume that R = (R′, R′′) is an oriented Eichler order of
M2(Q) of level N (i.e., R′ and R′′ are maximal orders and R = R′ ∩R′′) and consider the Shimura
curve ShH , where H = R̂×. Consider the two degeneracy maps

δ′ : CMH → T (Q)\GL2(Af )/R̂′
×

and

δ′′ : CMH → T (Q)\GL2(Af )/R̂′′
×
.

Given a CM point x ∈ T (Q)\G(Af )/R̂
× such that x = [g], let x′ and x′′ be the images of x in

T (Q)\G(Af )/R̂′
×

and T (Q)\G(Af )/R̂′′
×
, respectively. The stabilizer

Stab bK×
(x′) = K̂× ∩ gR̂′

×
g−1 = Ô(x′)

×

for some order O(x′) ⊆ OK . Let c(x′) be the conductor of that order. Similarly, we obtain an integer
c(x′′) for R′′. The conductor c(x) is then defined as

c(x) := lcm(c(x′), c(x′′)).

Remark 5. Note that if q is a prime that divides one of c(x′) and c(x′′), but not the other one, then
q necessarily divides N . This shows that if (c,N) = 1, all CM points of conductor c will be in fact
Heegner points (i.e, c(x′) = c(x′′)).

Remark 6. For Γ = Γ0(N), i.e., for the modular curve X0(N), these degeneracy maps correspond
precisely to the two degeneracy maps δ1, δN : X0(N) → X(1) that map [E,C] to [E] and [E/C],
respectively.

Remark 7. If X = X0(N), a CM point [τ ] ∈ Γ0(N)\h would correspond to the pair of N -isogenous
CM elliptic curves E′ = C/〈1, τ〉 and E′′ = C/〈1, Nτ〉. Then O′ = End(E′) and O′′ = End(E′′) are
both orders in K = Q(

√
−D). Let c′ and c′′ be their conductors, respectively. The conductor of the

point [E′, E′′] is then c([E′, E′′]) = lcm(c′, c′′).

2.4 Optimal embeddings and Gross points

Let Bℓ,∞ be the unique quaternion algebra ramified precisely at ℓ and ∞ and let G′ := B×
ℓ,∞ be the

corresponding algebraic group. Let R1, . . . , Rh be the Eichler orders of level N defined in Section 1.3.

Lemma 2.2. The set of pairs (f : O →֒ Ri/R×

i
, [Ri]) of an ideal class [Ri] of G′(Q)\G′(Af )/R̂

× and

a R×
i -conjugacy class of optimal embeddings f : O →֒ Ri/R×

i
for some quadratic order O in K is in

one-to-one correspondence with the double adelic quotient

T (Q)\G′(Af )/R̂
×.

5
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Proof. Given an order Ri representing an ideal class [Ri], the set of R×
i -conjugacy classes of optimal

embeddings f : O →֒ Ri is in bijection with T (Q)\G′(Q) (since all the embeddings of K into Bℓ,∞
are conjugate). Therefore, the set of the desired pairs is in bijection with

T (Q)\G′(Q) ×G′(Q)\G′(Af )/R̂
× ∼= T (Q)\G′(Af )/R̂

×.

2.5 Adelic description of supersingular points

The set X0(N)SS
/Fℓ2

is in bijection with the double quotient G′(Q)\G′(Af )/R̂′
×

where R′ is an Eichler

order of level N for Bℓ,∞ that is the ring of endomorphisms of a fixed enhanced supersingular elliptic
curve E0 = (Ẽ0, C̃0). We briefly summarize the bijection and refer the reader to [Rib90, Prop.3.3]
for the details.

Let E be any enhanced elliptic curve and take an endomorphism λ ∈ Hom(E,E0)⊗ Q (here, we
use the fact that there is a single isogeny class of supersingular elliptic curves). One could use λ to
identify the adelic Tate module T̂ (E) with a sublattice of V̂ (E0). This means that there is a unique
element g ∈ G′(Af )/R̂

× that sends this sublattice to T̂ (E0). Since g is dependent on the choice of

λ, it makes sense only in G′(Q)\G′(Af )/R̂
×. This gives us a bijection

ϕ : X0(N)SS
/Fℓ2

→ G′(Q)\G′(Af )/R̂
×.

2.6 Heegner points on definite and indefinite quaternion algebras

The probability measures µc are defined in terms of the cardinalities
∣∣red−1

ℓ (s) ∩ ΓD,c
∣∣. Let s ∈

X0(N)SS
/Fℓ2

be a supersingular point and let h(OD,c, Rs) be the number of R×
s -conjugacy classes of

optimal embeddings OD,c →֒ Rs.

We will apply the theorem of Cornut–Jetchev [CJ09, Thm 1.5] together with the above adelic
interpretations of CM points, optimal embeddings and supersingular points to deduce the following
corollary:

Corollary 2.3. We have

h(OD,c, Rs) = 2ν(N) |{x ∈ ΓD,c : redℓ(x) = s}| .

Proof. By [CJ09, Thm 1.4] and the adelic interpretation of CM points on the definite and the
indefinite algebras as well as the adelic desciption of the supersingular points, the subset of CM
points on X0(N) of conductor c reducing to a fixed supersingular point s is in bijection with the
R×
s -conjugacy classes of optimal embeddings f : Oc →֒ Rs. Since (c,N) = 1, all CM points on

X0(N) are Heegner points and by Lemma 2.1 there are exactly 2ν(N) such orbits.

The corollary shows that

µc(s) =
|{x ∈ ΓD,c : redℓ(x) = s}|

|ΓD,c|
=
h(OD,c, Rs)

|Pic(OD,c)|
.

In section 4, the number h(OD,c, Rs) will be related to primitive representations of dc = −Dc2
by a certain quadratic form associated to Rs.

3. Modular forms of half-integral weight and Shimura correspondence

Let λ be a non-negative integer and consider the space Mλ+ 1

2

(Γ0(4M), χ) of modular forms of weight

λ+
1

2
. Let Sλ+ 1

2

(Γ0(4M), χ) be the space of cusp forms. Let q := e2πiz and ψ be an odd Dirichlet

6
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character of conductor r(ψ). We will refer to the form

hψ,t(z) :=
∑

m>1

ψ(m)me2πitm
2z =

∑

m>1

ψ(m)mqtm
2 ∈ S3/2(4r(ψ)2, ψ · χ−4) (1)

as a one-dimensional theta series. Due to the exceptional behaviour of these forms, we will often
decompose S3/2(4M) into the subspace spanned by one-dimensional theta series and the orthogonal
complement of this space under the Petersson inner product, and then investigate each separately.

3.1 Modular forms of half-integral weight and convolutions with L-series

Suppose that g(z) ∈ Sλ+ 1

2

(Γ0(4M), χ). Let t be a positive square-free integer and let

ψt(n) := χ(n)

(−1

n

)λ( t
n

)
.

Suppose that the complex numbers At(n) are defined by

∞∑

n=1

At(n)

ns
:= L(s − λ+ 1, ψt) ·

∞∑

n=1

b(tn2)

ns
.

Shimura then proved that the t-th Shimura correspondence St,λ(g(z)) :=
∞∑

n=1

At(n)qn is a modular

form in M2λ(Γ0(2N), χ2) of weight 2λ.

Kohnen then defined a subspace S+
λ+ 1

2

(Γ0(4M)), referred to as Kohnen’s plus space, consisting

of forms g(z) of weight λ+
1

2
on Γ0(4M) with Fourier coefficients of the form

g(z) =
∑

(−1)λn≡0,1 mod 4

b(n)qn.

In this space Kohnen extended the definition of the Shimura correspondence St,λ to t′ := (−1)λD
where D is a fundamental discriminant. For D ≡ 1 (mod 4) we take St′,λ := St,λ as previously
defined and for D ≡ 0 (mod 4) we take St′,λ := St,λ|U(4). Kohnen’s plus space decomposes into
new and old subspaces as follows:

S+
λ+ 1

2

(Γ0(4M)) = Snew
λ+ 1

2

(Γ0(4M)) ⊕ Sold
λ+ 1

2

(Γ0(4M)).

Kohnen used this decomposition and the Shimura correspondences

St′,λ : Snew
λ+ 1

2

(Γ0(4M)) → S2λ(Γ0(N))

to prove that there exists a finite linear combination of St′,λ’s which provides an isomorphism

S : Snew
λ+ 1

2

(Γ0(4M)) → S2λ(Γ0(N)) (2)

that is Hecke equivariant. The image of a half-integral weight Kohnen newform in Snew
λ+ 1

2

(Γ0(4M))

is a newform in Snew
2λ (Γ0(M)) whose Hecke eigenvalues are the same.

4. Equidistribution and ternary quadratic forms

In order to prove the main theorem, we establish the correspondence between optimal embeddings
and primitive representations in Section 4.1 by associating a quadratic form Qs to the Eichler order
Rs. We then compute the discriminant of that quadratic form. We introduce the theta series θQs

associated to Qs, as well as the series θgen(Qs) and θspn(Qs) associated to the genus gen(Qs) and the

7
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spinor genus spn(Qs) of Qs, respectively. Finally, using that the form θgen(Qs) − θspn(Qs) is in the
space spanned by one-dimensional theta series, we are able to prove that the coefficients of gen(Qs)
and spn(Qs) coincide away from the primes dividing Nℓ. We use bounds on Fourier coefficients of
modular forms of half-integral weight that lie in the the orthogonal complement (under the Petersson
inner product) of the space spanned by one-dimensional theta series (due to Iwaniec and Duke) to
conclude the proof of Theorem 1.1 and Theorem 1.2.

4.1 Optimal embeddings and primitive representations by ternary quadratic forms

Let s ∈ X0(N)SS
/Fℓ2

and let Rs := End(s) be the ring of endomorphisms of s. Recall the notation

ws := #R×
s and uD,c := #OD,c.

1. A ternary quadratic form associated to an Eichler order. Let V ⊂ Rs be the set of elements of
trace zero. Following [Gro87, pp.171–172] define

Gs := (2Rs + Z) ∩ V.
The Z-module Gs is free of rank 3. Define a quadratic form Qs : Gs → Q by

Qs(b) := nr(b).

2. Correspondence between optimal embeddings and primitive representations.

Let f : OD,c →֒ Rs be an embedding (not necessarily optimal) and let β := f(
√
−dc). Notice

that Tr(β) = 0 and nr(β) = dc. We claim that β ∈ Gs. Indeed, since OD,c = Z +
dc +

√
−dc

2
Z, it

follows that 2f

(
dc +

√
−dc

2

)
= dc + β, i.e.,

β ≡ −dc mod 2Rs.

Therefore, β ∈ (Z + 2Rs) ∩ V = Gs, i.e., Qs(β) = dc is a representation.

Conversely, suppose that β ∈ Gs and Qs(β) = dc. We claim that β ≡ −dc mod 2Rs. Indeed, let
β = γ + 2r for some γ ∈ Z and r ∈ Rs. Then

dc = Qs(β) = nr(β) = ββ = −β2 = −(γ + 2r)2 ≡ −γ2 mod 4Rs. (3)

Thus,

β = γ + 2r ≡ (γ + γ2) − γ2 ≡ dc ≡ −dc mod 2Rs.

Now, we can define an embedding f : OD,c →֒ Rs by

f

(
dc +

√
−dc

2

)
:=

dc + β

2
∈ Rs.

We next show under the established correspondence that optimal embeddings correspond to
primitive representations.

Lemma 4.1. The embedding f is optimal if and only if the representation Qs(β) = dc is primitive.

Proof. Suppose that the representation Qs(β) = dc is non-primitive. We will show that f is not

an optimal embedding. Indeed, let β = kα for some k ∈ Z and α ∈ Gs. Then nr(α) =
dc
k2

. Let

d =
dc
k2

. Consider the element γ =
d+ α

2
. We claim that γ ∈ f(KD) ∩ Rs, but γ /∈ f(OD,c)

which would imply that f is a non-optimal embedding. First, γ =
1

k2
f

(
dc +

√
dc

2

)
∈ f(OD,c)⊗Q.

Let α = a + 2r for a ∈ Z and r ∈ Rs. Then d = nr(α) = −α2 ≡ −a2 mod 2Rs. Thus, α =

8
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a + 2r ≡ −a2 ≡ d ≡ −d mod 2Rs, i.e., γ ∈ Rs. Next, we show that γ /∈ f(OD,c). If k 6= 2 then

γ =
d+ α

2
=
dc + β + dk − dk2

2k
. Since dc + β = 2f(w) /∈ kf(OD,c) then γ /∈ f(OD,c). If k = 2 then

γ =
dc + β − 2d

4
. Since dc + β − 2d = f(2w − 2d) /∈ 4f(OD,c) we obtain the same statement. Thus,

γ ∈ f(KD) ∩Rs, but γ /∈ f(OD,c), i.e., the embedding is not optimal.

Conversely, suppose that f : OD,c →֒ Rs is a non-optimal embedding. Let O = (f(OD,c)⊗Q)∩Rs.
It follows that O ∼= OD,c′ , where c = kc′ for some k > 1. Now, we can choose α ∈ (2O + Z) ∩ V ,
such that Qs(α) = −Dc′2. Since (Z + 2O) ∩ V is a free Z-module of rank 1, we obtain β = kα, i.e.,
the representation Qs(β) = −Dc2 is not primitive. This proves the lemma.

Thus, we have proved the following:

Proposition 4.2. There is a
ws
uD,c

-to-one correspondence between primitive representations of the

integer dc = −Dc2 by Qs and optimal embeddings f : OD,c →֒ Rs.

4.2 The discriminant of Qs

For what follows, we will need the discriminant of the quadratic form Qs.

Lemma 4.3. The discriminant DQs of the quadratic form Qs is equal to 4N2ℓ2.

Proof. Let p 6= ℓ be a prime and let vp(N) =: n. Since Rs is an Eichler order of level N , we know
that Rs ⊗ Zp is an Eichler order of level pn of two-by-two matrices over Zp. In particular (up to
conjugation) we have

Rs ⊗ Zp =

(
Zp Zp
pnZp Zp

)
.

Therefore,

Gs ⊗ Zp =

[
2

(
Zp Zp
pnZp Zp

)
+ Zp

]
∩ V =

{(
a 2b

2pnc −a

)
: a, b, c ∈ Zp

}
.

But then the local quadratic form Qs,p := Qs ⊗ Zp is given by

Qs,p(a, b, c) =

∣∣∣∣
a 2b

2pnc −a

∣∣∣∣ = −a2 − 4pnbc

The corresponding matrix for the quadratic form Qs,p is then



−1 0 0
0 0 −2pn

0 −2pn 0


 . (4)

The determinant of this matrix is −4p2n. Therefore, if p 6= 2 then 4 is a unit and the contribution
to the determinant of Qs is p2n, while if p = 2 the contribution is 4p2n.

Now consider the case p = ℓ 6= 2. In this case we have Rs⊗Zp is the unique maximal order of the
unique division algebra, with Zp-basis (1, α, β, γ) satisfying α2 = −p, β2 = −1 and γ = αβ = −βα.
But then Gs ⊗ Zp has basis (2α, 2β, 2γ). We obtain the quadratic form

Qs,p(2aα + 2bβ + 2cγ) = 4pa2 + 4b2 + 4pc2, (5)

which is diagonal with discriminant 64p2, contributing p2 to the discriminant.

For p = ℓ = 2 we note that since the Eichler order is locally isomorphic to the (unique) maximal
order, Gross [Gro87, p. 177] has shown that for α2 = β2 = γ2 = −1 with γ = αβ = −βα,

Gs ⊗ Zp = {aα+ (a+ 2b)β + (a+ 2c)γ : a, b, c ∈ Zp}.

9
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Thus the p-adic quadratic form is given by

Qs,p(a, b, c) = −(3a2 + 4ab+ 4ac+ 4b2 + 4c2),

with corresponding matrix



3 2 2
2 4 0
2 0 4


 (6)

The determinant of this matrix is 16, and hence contributes 16 = 4ℓ2 to the discriminant.

4.3 The theta series associated to Qs

Consider the theta series

θQs :=
∑

β∈Gs

qQs(β) =
∑

d>1

as(d)q
d.

Since −Qs(β) ≡ 0, 1 mod 4, we obtain that as(d) 6= 0 only if −d is a discriminant, i.e., −d ≡ 0, 1
mod 4. Thus,

θQs =
∑

β∈Gs

qQs(β) =
∑

−d≡0,1 mod 4

as(d)q
d.

Recall the definition of Kohnen’s plus space M+
3/2(Γ0(4M)) from section 3.

Lemma 4.4. We have θQs ∈M+
3/2(Γ0(4Nℓ)).

Proof. Let A be the matrix corresponding to Qs. It is well known that θQs ∈ M+
3/2(Γ0(4M)),

where M is the minimal positive integer, such that 4MA−1 has coefficients that are even integers
(see [Duk05, p. 39]). Since A−1 has rational coefficients, it suffices to check that each coefficient
of 4MA−1 has non-negative p-adic valuation for each p. We then explicitly compute the inverse
of equations (4), (5) and (6) to check that it has even integral coefficients when we multiply by
4pvp(Nℓ).

4.4 The theta series associated to the genus and the spinor genus of Qs

Let Q be a ternary quadratic form. Let gen(Q) be the genus of Q and let spn(Q) be the spinor
genus of Q (see [O’M00, Ch.X] for the definitions). Let loc(Q) be the set of all integers n that
are everywhere locally represented by Q. Let rQ(n) (resp. r∗Q(n)) be the number of representations
(resp. primitive representations) of n by Q. Let wQ be the number of automorphs of Q (see [Jon50]
for the definition).

1. Theta series associated to gen(Q). Let

r(gen(Q), n) :=

∑
Q′∈gen(Q) rQ′(n)/wQ′

∑
Q′∈gen(Q) 1/wQ′

. (7)

Similarly, define

r∗(gen(Q), n) :=

∑
Q′∈gen(Q) r

∗
Q′(n)/wQ′

∑
Q′∈gen(Q) 1/wQ′

.

We define the theta series associated to gen(Q) as

θgen(Q) :=
∑

n>1

r(gen(Q), n)qn.

10
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By calculating local densities, Jones [Jon50, Thm.86] has shown that for dc = −Dc2

r∗(gen(Qs), dc) = C
h(−∆dc)

u∆D,c
. (8)

Here, ∆ denotes the discriminant DQs of Qs divided by the square of the greatest common divisor of
the determinants of all two-by-two minors of the matrix corresponding to Qs, and C only depends

on the Legendre symbol

(
dc
DQs

)
. One can calculate ∆ p-adically using equations (4), (5), and (6)

to show that the greatest common divisor of the determinants of all two-by-two minors is precisely√
DQs . Thus, ∆ = 1.

2. Theta series associated to spn(Q). We define the theta series associated to the spinor genus in a
similar way. First, let

r(spn(Q), n) :=

∑
Q′∈spn(Q) rQ′(n)/wQ′

∑
Q′∈spn(Q) 1/wQ′

. (9)

Similarly, let

r∗(spn(Q), n) :=

∑
Q′∈spn(Q) r

∗
Q′(n)/wQ′

∑
Q′∈spn(Q) 1/wQ′

.

We also define

θspn(Q) :=
∑

n>1

r(spn(Q), n)qn.

The theta series θgen(Q) and θspn(Q) are in the same space as θQ (by (7) and (9) and the fact
that θQ′ are in the same space as Q for all Q′ ∈ gen(Q); see also [Han04a, p.366]).

4.5 Equidistribution in terms of quadratic forms

In light of the correspondence obtained in Proposition 4.2, the required equidistribution results
(Theorem 1.1 and Theorem 1.2) are equivalent to showing that

lim
(D,c)∈ΩN
dc→∞

r∗(Qs, dc)uD,c

2ν(N)#ΓD,c
= wsµcan(s). (10)

This result will be equivalent to showing that the limit

f(s) := lim
(D,c)∈ΩN
dc→∞

r∗(Qs, dc)uD,c
#ΓD,c

(11)

exists and is independent of the supersingular point s. Here, recall that dc := −Dc2.
First, note that θQs − θspn(Qs) is a modular form of weight 3/2 that lies in the orthogonal

complement of the space of one-dimensional theta series under the Petersson inner product [SP84].
Duke’s bound for the Fourier coefficients of such forms [Duk98], extending the work of Iwaniec
[Iwa87] to forms of weight 3/2, combined with Möbius inversion, implies that

r∗(spn(Qs), dc) − r∗(Qs, dc) = O(d
13

28
+ǫ

c ).

Siegel’s lower bound for the class number [Sie35] (see also [Cox89, p. 149]) implies that #ΓD,c ≫
d

1

2
−ǫ

c , so

r∗(Qs, dc)uD,c
#ΓD,c

=
r∗(spn(Qs), dc)uD,c

#ΓD,c
+O(d

− 1

28
+ǫ

c ) (12)

Thus, we only need to show independence and convergence of the limit for each spinor genus.

11
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Since r∗(gen(Qs), n) is independent of s by definition, it will be natural to compare r∗(gen(Qs), n)
with r∗(spn(Qs), n) in order to determine the desired independence.

In particular, we have the following.

Lemma 4.5. The limit

lim
k→∞

r∗(gen(Qs),−Dp2k)uD,pk

#ΓD,pk

exists and is independent of p and s.

Proof. The independence on s is clear from the definition of gen(Qs). We will apply (8) to n =
−Dp2k. First, recall (see [Cox89, Cor.7.28, p.148]) that for any discriminant D0 < 0 and any prime
p we have

h(−D0p
2k) = Cpk

(
1 − 1

p

(−D0

p

))
·
uD0,pk

uD0,1
h(−D0) (13)

Equation (13) with D0 = D allows us to express r∗(gen(Qs),−Dp2k) and #ΓD,pk as

r∗(gen(Qs),−Dp2k) =
cDh(−Dp2k)

uD,pk

= cdCp
k

(
1 − 1

p

(−D
p

))
h(−D)

uD,1
, (14)

#ΓD,pk

uD,pk

= pk
(

1 − 1

p

(−D
p

))
#ΓD,1
uD,1

. (15)

Hence, for k > 1 we obtain

r∗(gen(Qs),−Dp2k)uD,pk

#ΓD,pk

= cDC
h(−D)

#ΓD,1
. (16)

The result follows since the right-hand side of (16) is independent of k and p.

We now define the restricted limit

fD,p(s) := lim
k→∞

r∗(Qs,−Dp2k)uD,pk

#ΓD,pk

= lim
k→∞

r∗(spn(Qs),−Dp2k)uD,pk

#ΓD,pk

. (17)

The equidistribution result of Vatsal [Vat02, Thm.1.5] combined with Proposition 4.2 states the
following:

Lemma 4.6. [Vatsal] For every s ∈ X0(N)SS
/Fℓ2

, fundamental discriminant D < 0 and p ∤ Nℓ we have

fD,p(s) = wsµcan(s). (18)

We will now use equation (18) to rewrite r∗(spn(Qs), n) in terms of r∗(gen(Qs), n) and then use
equation (12) to show that f(s) exists and is independent of s.

Proposition 4.7. Let s ∈ X0(N)SS
/Fℓ2

and n = −Dc2, where D < 0 is a fundamental discriminant.

Assume that (c,Nℓ) = 1. Then

r∗(gen(Qs), n) = r∗(spn(Qs), n).

Let am := r(gen(Qs),m)−r(spn(Qs),m). According to a result of Schulze-Pillot [SP84] as well as
Flicker [Fli80], Niwa [Niw74], Cipra and others [Cip83]), θgen(Qs) − θspn(Qs) belongs to the subspace
of cuspidal forms of weight 3/2 spanned by the one-dimensional theta series (see also [Han04b]).
Note that the Fourier coefficients of the one-dimensional theta series hψ,t(z) defined in equation (1)
vanish outside the square class tZ2. Let

θgen(Qs) − θspn(Qs) =
∑

ψ,t

cψ,thψ,t. (19)

12
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Let hψ,t be one of the one-dimensional theta series in (19) and let 4M = 4Nℓ be the level of
θgen(Qs)−θspn(Qs). The transformation law for modular forms of level 4M with Nebentypus χ implies

that ψ(mn) = ψ(n)χt(m) for every (m,M) = 1, where χt(m) = χ(m)

(−t
m

)
(see [SP84, p.285]). In

addition, if hψ,t 6= 0 then 4t |M (see, e.g., [SP84, Kor.2]).

Lemma 4.8. Let −d > 0 be the smallest positive integer satisfying the following two conditions:

i) If d = Dc2, where D < 0 is a fundamental discriminant then c is prime to Nℓ;

ii) a−d 6= 0.

Then c = 1 and d = D is a fundamental discriminant.

Proof. It follows from (19) and Lemma 4.4 (since (m,M) = 1) that ψ(m) = χt(m). Hence,

a−d =
∑

−d=tm2,ψ

cψ,tψ(m)m =
∑

−d=tm2

χt(m)m
∑

ψ

cψ,t 6= 0.

Hence there exists t satisfying
∑

ψ

cψ,t 6= 0. Choose the minimal t with this property and observe

that at =
∑

t′,t=t′m2

∑

ψ

cψ,t′ψ(m)m =
∑

ψ

cψ,t 6= 0. Hence, t = −d and

a−d =
∑

−d=tm2,ψ

cψ,thψ,t =
∑

ψ

cψ,−dhψ,−d 6= 0.

Now, if the conductor c of d were not equal to 1, it would have divided M and hence would not
have been prime to Nℓ. Thus, the only possibility is that c = 1 and d = D is a fundamental
discriminant.

Lemma 4.9. Let D < 0 be the fundamental discriminant from Lemma 4.8 and (c,Nℓ) = 1. If DQs

is the discriminant of the quadratic form Qs then

a−Dc2 = c

(
DDQs

c

)
a−D.

In particular, for c = pk we have

a−Dp2k = pk
(−DDQs

p

)k
a−D.

Proof. Note that a−Dc2 =
∑

−Dc2=tm2,ψ

cψ,tψ(m)m. We know that if t = −D(c′)2 for some c′ > 1 then

ht,ψ = 0 (since (c′,M) = 1). Hence,

a−Dc2 =
∑

ψ

cψ,Dψ(c)c = cχD(c)
∑

ψ

cψ,D = c

(
DDQs

c

)
a−D.

Proof of Proposition 4.7. We will prove the statement by contradiction. Assume the contrary and
let n be the smallest integer whose square part is prime to Nℓ and such that r(gen(Qs), n) 6=
r(spn(Qs), n). Lemma 4.8 implies that if −n = Dc2 for a fundamental discriminant D and a con-

ductor c then c = 1 and n = −D. Let p ∤ Nℓ be a prime for which
(
DDQs
p

)
= −1. We will show that

under these assumptions the limit f−D,p(s) does not exist, contradicting Lemma 4.6. Using Lemma

13
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4.9 and equation (15), we have

f−D,p(s) = lim
k→∞

((
r∗(spn(Qs),−Dp2k) − r∗(gen(Qs),−Dp2k)

)
uD,pk

#ΓD,pk

+
r∗(gen(Qs),−Dp2k)uD,pk

#ΓD,pk

)

= lim
k→∞

(
−

a−Dp2k

#ΓD,pk/uD,pk

+
r∗(gen(Qs),−Dp2k)uD,pk

#ΓD,pk

)

= lim
k→∞


−

a−Dp
k
(
DDQs
p

)k

pk
(
1 − 1

p

(
D
p

))
#ΓD,1/uD,1

+
r∗(gen(Qs),−Dp2k)uD,pk

#ΓD,pk




= lim
k→∞


− a−D(−1)k(

1 − 1
p

(
D
p

))
#ΓD,1/uD,1

+
r∗(gen(Qs),−Dp2k)uD,pk

#ΓD,pk


 .

However, the limit

lim
k→∞

r∗(gen(Qs),−Dp2k)uD,pk

#ΓD,pk

exists by Lemma 4.5. Therefore, if the limit f−D,p(s) exists, then the limit

lim
k→∞

− a−D(−1)k(
1 − 1

p

(
D
p

))
#ΓD,1/uD,1

must also exist. But a−D 6= 0 and the only dependence on k is the term (−1)k, leading to a
contradiction.

4.6 Proof of the main theorem

We are now ready to prove Theorem 1.1 and Theorem 1.2. Let D < 0 be a fundamental discriminant
and let c be an integer with (c,Nℓ) = 1. Define

gD,c(s) :=
r∗(Qs,−Dc2)uD,c

#ΓD,c

and

hD,c :=
r∗(gen(Qs),−Dc2)uD,c

#ΓD,c
.

Note that hD,c is independent of s. Proposition 4.7 combined with equation (12) gives

gD,c(s) = hD,c +Os

(
(−Dc2)− 1

28
+ǫ
)
.

We now divide by ws and sum over all s′ ∈ X0(N)SS
/Fℓ2

. Recall from Proposition 4.2 that

gD,c(s
′)#ΓD,c
ws′

= r∗(Qs′,−Dc2)
uD,c
ws′

is the number of optimal embeddings of OD,c into Rs′ . Summing over all s′ ∈ X0(N)SS
/Fℓ2

thus gives

#ΓD,c. Hence, we have

1 =
∑

s′∈X0(N)SS

/F
ℓ2

gD,c(s
′)

ws′
= hD,c

∑

s′∈X0(N)SS

/F
ℓ2

1

ws′
+O

(
(−Dc2)− 1

28
+ǫ
)
. (20)
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Therefore

hD,c =
1∑

s′∈X0(N)SS

/F
ℓ2

1/ws′
+O

(
(−Dc2)− 1

28
+ǫ
)
.

Thus the limit lim
−Dc2→∞

hD,c exists, and we obtain

f(s) = lim
−Dc2→∞

gD,c(s) = lim
−Dc2→∞

[
hD,c(s) +O

(
(Dc2)−

1

28
+ǫ
)]

=
1∑

s′∈X0(N)SS

/F
ℓ2

= wsµcan(s).

But this is precisely equation (10), and hence we obtain Theorem 1.1.

Remark 8. Due to dependence on Siegel’s lower bound for the class number, Theorem 1.1 is ineffec-
tive. However, if we fix a fundamental discriminant D < 0 and only vary the conductor c, then this
result becomes effective due to known growth of the class number in a fixed square class. Moreover,
in a fixed square class the −D-th Shimura correspondence implies that the difference

ac(s) := gD,c(s) − hD,c

are coefficients of a weight 2 cusp form. Using Deligne’s optimal bound, the error term can be
improved to O(c−1/2+ǫ). Therefore, the error can be written as

O((−D)−
1

28
+ǫc−

1

2
+ǫ).

5. Distribution relations method

In this section, we establish equidistribution when the fundamental discriminant D < 0 is fixed and
the conductor varies using an alternative argument based on the distribution relations for Heegner
points and Hecke eigenvalue bounds.

5.1 An easier equidistribution theorem

Here, we only consider a special infinite set of conductors c and a fixed fundamental discriminant
D < 0. Let P be the set of all primes r ∤ N , such that r is inert in K. Let I be the set of all
integers that are square-free products of primes in P. Note that Λ ⊂ I. Under the same hypothesis
as before, we will prove the following statement:

Theorem 5.1. Given a Galois orbit ΓD,c let µD,c be the measure on X0(N)SS
/Fℓ2

defined as in

Theorem 1.1. Then lim
c→∞,
c∈I

µD,c = µcan.

Remark 9. The assumption that c ∈ I is not necessary and the argument in the more general
case is exactly the same, except for the more technical form of the distribution relations. Here, we
prove only the less technical statement where the distribution relations are easier to work with (see
Section 5.2).

5.2 Distribution relations

Let Xc ∈ Div(X0(N)) be defined as Xc :=
∑

σ∈Gal(K[c]/K)

(xσc ). We will prove the following distribution

relation:

Lemma 5.2. For any prime number ℓ which is inert in K and any positive integer c coprime to ℓ,
the following distribution relation holds:

Xcℓ = TℓXc.
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Proof. Let S be a set of coset representatives for Gal(K[cℓ]/K[c])/Gal(K[c]/K). The distribution
relation for Heegner points [Gro84, §6] is the following equality of divisors of degree ℓ+1 on X0(N):

TrK[ℓc]/K[c](x
σ
cℓ) = Tℓ(x

σ
c ), σ ∈ Gal(K[cℓ]/K),

i.e.,
∑

τ∈Gal(K[cℓ]/K[c])

(xστcℓ ) = Tℓ(x
σ
c ), σ ∈ Gal(K[cℓ]/K).

Hence,
∑

σ∈S

∑

τ∈Gal(K[cℓ]/K[c])

(xστcℓ ) =
∑

σ∈S

Tℓ(x
σ
c ), σ ∈ Gal(K[cℓ]/K),

which implies

Xcℓ = TℓXc.

5.3 Proof of the main theorem

Proof of Theorem 5.1. First, we note that the reduction map redℓ : X0(N)/Q → X0(N)/Fℓ
defined

in Section 1 is Hecke equivariant. Thus,

redℓ(Xcr) = Tr redℓ(Xc).

Next, redℓ(Xcr) and redℓ(Xc) belong to the subgroup DivSS(X0(N)/Fℓ
) of divisors supported on the

supersingular points of X0(N)/Fℓ
. The Hecke algebra TNℓ acts on the vector space

VSS = DivSS(X0(N)/Fℓ
) ⊗ Q via its ℓ-new quotient Tℓ−new

Nℓ (see [Ser96] or [Par03]). Let

VSS = VEis ⊕



⊕

f

Vf




be the eigenspace decomposition of V , where f ranges over all normalized eigenforms f ∈ Sℓ−new
2 (Γ0(Nℓ)),

Vf = {v ∈ VSS : Trv = ar(f)v for all primes r},
and

VEis = {v ∈ VSS : Trv = (r + 1)v for all primes r}.
Here, ar(f) denotes the r-th Fourier coefficient of the eigenform f .

Let Yc =
1

# Pic(Oc)
redℓ(Xc) ∈ VSS. It is easy to see that Yc =

∑

s∈X0(N)SS

/F
ℓ2

µc(s) · (s). We can

write the decomposition of Yc as

Yc = Yc,Eis +
∑

f

Yc,f , Yc,f ∈ Vf , Yc,Eis ∈ VEis.

The distribution relation from Lemma 5.2 implies that # Pic(Ocr)Ycr = # Pic(Oc)TrYc. Since
# Pic(Ocr) = (r + 1)# Pic(Oc) then

Ycr =
1

r + 1
TrYc.

We use this equality to obtain Ycr,Eis = Yc,Eis and Ycr,f =
ar(f)

r + 1
Yc,f for any normalized eigenform

f ∈ Sℓ−new
2 (Γ0(Nℓ)).
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The Ramanujan-Petersson conjecture then implies that

ar(f)

r + 1
6

2r1/2

r + 1
6

2

r1/2
.

Thus, we obtain by induction on the number of prime divisors of c that

Yc = Y1,Eis +O(c−1/2).

This means that lim
c→∞,
c∈I

Yc = Y1,Eis.

Finally, one uses the result from Section 5.4 to conclude that Y1,Eis is equal to the divisor
associated to the canonical measure µcan.

5.4 The divisor Y1,Eis

Let

Dµcan
:=

∑

s∈X0(N)SS

/F
ℓ2

µcan(s) · (s) ∈ VSS.

It is well-known (see, e.g., [Vat02, Lem.2.5]) that the divisor Dµcan
is Eisenstein. In other words,

TrDµcan
= (r + 1)Dµcan

for every prime (r,N) = 1. Next, we verify that Dµcan
is the same as the Eisenstein part Y1,Eis of

Y1:

Lemma 5.3. We have

Dµcan
= Y1,Eis.

Proof. First, note that deg(Dµcan
) = 1 = deg(Y1). Furthermore, a divisor D ∈ Div(X0(N)SS

/Fℓ2
)⊗ Q

is cuspidal if and only if it has degree zero (see e.g., [Ser96]). Thus, deg(Y1,cusp) = 0 and hence,
deg(Y1,Eis) = 1.

Next, consider the exact sequence

0 → Div0(X0(N)SS) → Div(X0(N)SS
/Fℓ2

)
deg−−→ Z → 0,

and look at the divisor D = Dµcan
− Y1,Eis. We know that deg(D) = 0 and hence, D is cuspidal. At

the same time, D is Eisenstein. If D 6= 0 then one would obtain a contradiction by using the Hecke
eigenvalue bounds for cusp forms. Thus, D = 0 and hence, Y1,Eis = Dµcan

.

6. Effective surjectivity results

We have seen in Theorem 1.1 that µD,c → µcan as dc := −Dc2 → ∞. In particular, for sufficiently
large dc we have µD,c(s) > 0 for every s ∈ X0(N)SS

/Fℓ2
, giving surjectivity of the reduction redℓ from

ΓD,c to X0(N)SS
/Fℓ2

. Here, we discuss effective versions of this surjectivity result.

Recall that the proof of Theorem 1.1 uses Siegel’s lower bound on the class number (see (12)).

Since Siegel’s bound #ΓD,c ≫c,ε D
1

2
−ε is ineffective due to the fact that Siegel proved this result

by first assuming the truth of GRH for Dirichlet L-functions and then proved the bound again with
a different implied constant depending on the location of a possible Siegel zero [Sie35]. The best
known effective results are due to Oesterlé [Oes85], but the growth obtained is only logarithmic in
D. Hence, the surjectivity will be ineffective whenever we allow the fundamental discriminant to
vary.

17
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Thus, we fix a fundamental discriminant D < 0. Given a supersingular point s ∈ X0(N)SS
/Fℓ2

,

decompose θQs as

θQs − θspn(Qs) =

r∑

i=1

bigi, (21)

where bi ∈ C and {g1, . . . , gr} is a fixed set of cuspidal Hecke eigenforms in the orthogonal comple-
ment (under the Petersson inner product) of the space spanned by one-dimensional theta series of
weight 3/2. We will denote the d-th coefficient of gi by agi(d) and the −D-th Shimura correspon-
dence (recall the extended definition in Section 3 given by Kohnen for fundamental discriminants)
by Gi := S−D,1(gi). Denote the number of distinct prime divisors of c by v(c).

The following theorem establishes an effective bound for c (depending on the decomposition (21)
and the fundamental discriminant −D) beyond which the preimage red−1

ℓ (s) is non-empty. Taking
the maximum occurring bound over all s′ ∈ X0(N)SS

/Fℓ2
gives a bound depending only on N , ℓ and

D beyond which surjectivity must hold.

Theorem 6.1. Let c > 2 be an integer prime to Nℓ that satisfies the following inequality

c1/2

22v(c)+1σ0(c) log c
>

1

log 2

uD,1
#ΓD,1

(
r∑

i=1

|biagi(−D)|
)


∑

s′∈X0(N)SS

/F
ℓ2

1/ws′




Then the reduction map redℓ : ΓD,c → X0(N)SS
/Fℓ2

satisfies red−1
ℓ (s) 6= ∅.

Proof. For the θ-series θQs we have the decomposition

θQs(z) = E(z) +H(z) + f(z),

where E(z) is an Eisenstein series, H(z) is in the space spanned by one-dimensional theta series of
weight 3/2, and f(z) is a cusp form in the orthogonal complement of the space spanned by one-
dimensional theta series (see [Han04b, p.156]). Moreover, from the work of Schulze-Pillot [SP84],
we know that E(z) = θgen(Qs)(z) and H(z) = θspn(Qs)(z) − θgen(Qs)(z).

Let a(n) := r(Qs, n) − r(spn(Qs), n) be the nth Fourier coefficient of the form f(z) and let
a∗(n) := r∗(Qs, n) − r∗(spn(Qs), n). Let n > 0 be an integer satisfying (n,Nℓ) = 1. We know by
Proposition 4.7 that r(gen(Qs), n) = r(spn(Qs), n). Therefore,

r(Qs, n) = r(gen(Qs), n) + (r(Qs, n) − r(gen(Qs), n)) = r(gen(Qs), n) + a(n).

Next, if n = tc2 where t is square-free, Möbius inversion gives us

r∗(Qs, n) =
∑

c′|c

µ(c′)r(Qs, n/c
′2) = r∗(gen(Qs), n) +

∑

c′|c

µ(c′)a(n/c′2). (22)

By Proposition 4.2, we know that s ∈ X0(N)SS
/Fℓ2

is in the image of redℓ : ΓD,c → X0(N)SS
/Fℓ2

if and

only if Qs primitively represents dc = −Dc2. Thus, s is not in the image of the reduction map if
and only if r∗(Qs, dc) = 0, i.e., if and only if

r∗(gen(Qs), dc) = −
∑

c′|c

µ(c′)a(dc/c
′2). (23)

The left-hand side can be computed using Jones’ formula and [Cox89, Cor.7.28,p.148] as it was
applied previously for (14). We obtain

r∗(gen(Qs), dc)
∑

s′∈X0(N)SS

/F
ℓ2

1/ws′ =
#ΓD,c
uD,c

=



∑

c′|c

µ(c′)

(
D

c′

)
c

c′


 #ΓD,1

uD,1
. (24)
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For the right-hand side of (23), we would like to express the Fourier coefficient a(dc) in terms
of a(−D). This cannot be done directly for an arbitrary cusp form f in the orthogonal complement
of the space of one-dimensional theta series, but could be achieved if f were an eigenform (due to
the recurrence relations of the Hecke operators). In order to get such a relation, we write

f(z) =
r∑

i=1

bigi(z),

where gi’s are Hecke eigenforms of weight 3/2 whose images Gi under the −D-th Shimura corre-
spondence S−D,1 are normalized Hecke eigenforms.

Decomposing θQs − θgen(Qs) gives

a∗(dc) =

r∑

i=1

bi
∑

c′|c

µ(c′)agi

(
dc/c′

)
. (25)

If g := gi is a Hecke eigenform, the −D-th Shimura correspondence G := S−D,1(g) ∈ S2(Γ0(Nℓ)) is
also a Hecke eigenform. Assume further that G is normalized so that aG(1) = 1. By the multiplicity
one theorem for forms of weight 2, there exists a newform G̃ ∈ S2(Γ0(M)) for some M | Nℓ such

that G =
∑

d|Nℓ
M

CdG̃|V (d) for some constants Cd (with C1 = 1). Here, the operator V (d) corresponds

to one of the degeneracy maps (see e.g., [Ono04, p.28] for the definition). Notice that for (c,Nℓ) = 1,
the cth coefficient of G corresponds to the cth coefficient of the newform G̃. Since c is relatively prime
to the level, the c-th coefficient of G̃ is determined by the eigenvalues under the Hecke operators.

Using this connection and the definition of the −D-th Shimura correspondence to evaluate the
coefficients of G̃ (using the fact that G̃ is normalized), the second author [Kan09, equation (4.2)]
has shown for c = pm relatively prime to FNℓ,

ag(dcF ) = ag(dF )

(
aG(pm) −

(−D
p

)
aG(pm−1)

)
= ag(dF )

∑

c′|c

µ(c′)

(−D
c′

)
aG

( c
c′

)
.

Here we have rewritten the right hand side so that extending by multiplicativity, it follows that

ag(dc) = ag(d1)
∑

c′|c

µ(c′)

(
D

c′

)
aG

( c
c′

)
.

Substituting this in equation (25) gives the identity

a∗(dc) =
r∑

i=1

biagi(d1)
∑

c′|c

∑

c′′| c
c′

µ(c′)µ(c′′)

(
D

c′′

)
aGi

( c

c′c′′

)
. (26)

Thus we have established that the supersingular point s ∈ X0(N)SS
/Fℓ2

is not in the image of redℓ
from ΓD,c if and only if

1∑
s′∈X0(N)SS

/F
ℓ2

1/ws′



∑

c′|c

µ(c′)

(
D

c′

)
c

c′


 #ΓD,1

uD,1
= −

r∑

i=1

biagi(d1)
∑

c′|c

∑

c′′| c
c′

µ(c′)µ(c′′)

(
D

c′′

)
aGi

( c

c′c′′

)
.

(27)
Now consider the Euler ϕ-function ϕ(c) := #{m < c : (m, c) = 1}. Then

∑

c′|c

µ(c′)

(
D

c′

)
c

c′
> ϕ(c),
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since the inequality holds for c being a prime power and both functions are multiplicative. We can

then use the explicit elementary bound ϕ(c) >
log 2

2

c

log c
for c > 2 (cf. [JMC06, p.9]).

We next pull the absolute value inside the sum on the right hand side of (27) and use Deligne’s
optimal bound [Del74] for integer weight cusp forms from the proof of the Weil conjectures, namely

|aGi(n)| 6 σ0(n)n
1

2 . Since #{c′ | c : µ(c′) 6= 0} = 2v(c) and σ0(c
′) 6 σ0(c) for c′ | c, we have

|a∗(dc)| 6 22v(c)σ0(c)c
1

2

r∑

i=1

|biagi(D)|, (28)

giving the assertion.

2. The case #X0(N)SS
/Fℓ2

. In the case when #X0(N)SS
/Fℓ2

= 2 we obtain an explicit bound independent

of D beyond which surjectivity holds. Let ms = max

(
1,
ws′

ws

)
.

Lemma 6.2. If #X0(N)SS
/Fℓ2

= 2 then the inequality

ϕ(c) > ms2
2v(c)σ0(c)c

1

2 (29)

implies that the reduction redℓ on ΓD,c is surjective for any fundamental discriminant D < 0.

Proof. Let X0(N)SS
/Fℓ2

= {s, s′}. Recall that

θgen(Qs) =

1
ws
θQs + 1

ws′
θQs′

1/ws + 1/ws′
.

By Siegel’s theorem (see [DSP90, Thm.2(ii)]) there is a Hecke eigenform g such that θQs = θgen(Qs)+

g and θQs′
= θgen(Qs) −

ws′

ws
g. Since r(Qs, |D|) > 0 and r(Qs′ , |D|) > 0, we have |ag(|D|)| 6

max(1,
ws′

ws
)r(gen(Qs), |D|). The lemma then follows immediately by combining equations (24) and

(28) with b1g1 = g after canceling r(gen(Qs), |D|) on both sides.

Let G = S−D,1(g) be the −Dth Shimura correspondence of g as defined in Section 3. Define

rc :=

∑
c′|c µ(c′)

(
−D
c′

)
c
c′∣∣∣

∑
c′|c µ(c′)

∑
c′′| c

c′
µ(c′′)

(
−D
c′′

)
aG
(

c
c′c′′

)∣∣∣
,

where we take rc = ∞ by convention if the denominator is zero, and

r̃c :=
ϕ(c)

22v(c)σ0(c)c
1

2

.

By equations (27) and (28) if rc > ms or r̃c > ms then s is in the image of redℓ. Note that both rc
and r̃c are multiplicative and rc > r̃c. For c = pm we have

r̃c =
p

m
2
−1(p− 1)

4(m+ 1)
.

For p > 5, r̃c is increasing as a function of m, whereas for p < 5 it is increasing for m > 2. For a
constant a and m = 1 the inequality r̃c > a is satisfied for

p > Pa :=

(
4a+

√
16a2 + 4

2

)2

.
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For p 6 Pa we use the fact that r̃c is increasing exponentially as a function of m to obtain a bound
Mp,a such that m > Mp,a implies that r̃c > a. Therefore, there are only finitely many choices for
the pair (p,m) with m > 1 for which rpm 6 a. Let

Ca = {(p,m) : rpm 6 a}.
Computing rpm explicitly for m 6 Mp,a allows us to explicitly calculate Ca.

We first follow the above argument with a = 1 to show that

rmin :=
∏

p

min
m>0

rpm

is well defined and satisfies rc > rmin for every c. We will now use the above bounds with a :=
ms

rmin
.

Let c be an arbitrary integer such that rc 6 ms. Write c = pmc′ with (p, c′) = 1. By multiplicativity
we have

ms > rc = rc′rpm > rminrpm.

Therefore rpm 6 a, so (p,m) ∈ Ca, and it follows that

c |
∏

(p,m)∈Ca

pm.

We can refine this argument by recursively computing

Sv := {c : v(c) = v, rc 6 ms}.
For c′ ∈ Sv, consider

a′ := a

∏
(p,c′)=1 minm>0 rpm

rc′

Then for c = pmc′ with (p, c) = 1, rc ∈ Sv+1 if and only if (p,m) ∈ Ca′ . Constructing the resulting
tree in this manner allows us to terminate the depth-first search when Ca′ is empty.

Proceeding in this manner, we obtain for ℓ = 11 and N = 1 exactly 116 possible values of c in
the union of all Sv, the largest of which is 5124. For ℓ = 17 and N = 1 there are 93 possible values
of c, the largest of which is 3990, and for ℓ = 19 and N = 1 there are 165 possible values of c, the
largest of which is 8502.
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Oes85 J. Oesterlé, Nombres de classes des corps quadratiques imaginaires, Astériques 121-122 (1985),
309–323.

O’M00 O. T. O’Meara, Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin,
2000, Reprint of the 1973 edition.

Ono04 K. Ono, The web of modularity: Arithmetic of the coefficients of modular forms and q-series, CBMS
Regional Conference Series in Mathematics, vol. 102, American Mathematical Society, Providence,
RI, 2004.

Par03 P. Parent, Triviality of Xsplit(N)(Q) for certain congruence classes of N , C. R. Math. Acad. Sci.
Paris 336 (2003), no. 5, 377–380.

Rat95 M. Ratner, Raghunatan’s conjectures for cartesian products of real and p-adic Lie groups, Duke
Math. J. 77 (1995), no. 2, 275–382.

Rib90 K. A. Ribet, On modular representations of Gal(Q/Q) arising from modular forms, Invent. Math.
100 (1990), no. 2, 431–476.

22



Equidistribution of Heegner Points

Ser96 J.-P. Serre, Two letters on quaternions and modular forms (mod p), Israel J. Math. 95 (1996),
281–299, With introduction, appendix and references by R. Livné.
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