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Abstract 20 

 21 

Secretin (Sct), traditionally a gastrointestinal hormone backed by a century long research, is now 22 

beginning to be recognized also as a neuroactive peptide. Substantiation by recent evidence on 23 

the functional role of Sct in various regions of the brain, especially on its potential 24 

neurosecretion from the posterior pituitary, has revealed Sct’s physiological actions in regulating 25 

water homeostasis. Recent advances in understanding the functional roles of central and 26 

peripheral Sct has been made possible by the development of Sct and Sct receptor (SctR) 27 

knockout animal models which have led to novel approaches in research on the physiology of 28 

this brain-gut peptide. While research on the role of Sct in appetite regulation and fatty acid 29 

metabolism has been initiated recently, its role in glucose homeostasis is unclear. This review 30 

focuses mainly on the metabolic role of Sct by discussing data from the last century and recent 31 

discoveries, with emphasis on the need for revisiting and elucidating the role of Sct in 32 

metabolism and energy homeostasis. 33 
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 37 

1. Introduction 38 

 39 

In a fascinating experiment by Bayliss and Starling in 1902, a loop of jejunum was enervated in 40 

an anaesthetized dog such that it was connected to rest of the body only by blood vessels, and 41 



when acid was infused into the lumen of the isolated jejunum, pancreatic secretion was still 42 

found to occur [7]. This result differed from the existing idea then, that pancreatic secretion was 43 

controlled only by neural vagus stimulation. A chemical substance travelling through blood to 44 

cause this secretion was proposed and the first ever hormone secretin (Sct) was discovered 45 

marking the establishment of the field of Endocrinology. With such great historic importance and 46 

being the longest known hormone, Sct has been researched for a century and a decade now 47 

during which it has been purified, structurally determined, and its receptor identified, cloned and 48 

characterized [19]. Sct is best known for its action in the exocrine pancreas, stimulating secretion 49 

of bicarbonate, water, and electrolytes from pancreatic ductal epithelial cells. It is also associated 50 

with bile release from the liver, and gastric pepsin release and gastric acid inhibition from the 51 

stomach [54]. Recent evidence has established Sct as a neuropeptide while its metabolic role will 52 

be reviewed here in this article. 53 

 54 

2. Secretin and feeding 55 

 56 

2.1 Early studies 57 

 58 

Early evidences that Sct is released after ingestion of a meal had come in the late 1970s and early 59 

1980s. Pelletier et al. found that Sct is released intermittently after a liquid meal in humans and 60 

they proposed that this increase would be sufficient for potentiating bicarbonate release [84]. A 61 

study in 1979 in dogs also reported that plasma immuno reactive Sct levels are significantly 62 

increased after a meat meal [49]. Following this, several other studies have also confirmed the rise 63 

of plasma Sct concentrations after ingestion [26, 43, 56, 70]. At around the same time, studies were 64 

also conducted on effects of Sct in suppressing feeding. Glick et al. in 1971 [40] reported the 65 



effects of CCK and Sct in feeding behavior and concluded that neither of the peptide had any 66 

effect. Two years later, there was another study reporting that, among these two peptides, only 67 

CCK was able to reduce food intake in rats [39]. Since then, there were contradictory reports 68 

regarding the role of Sct in satiety showing that Sct had no effect on feeding behavior in rat [64] 69 

and sheep [25], while Grovum [42] suggested that intravenous infusion of Sct could reduce 70 

appetite in fasted sheep. With these contrasting evidences had come a long halt in studies on role 71 

of Sct in appetite control, while CCK, studied along with Sct in most of these initial reports, is now 72 

one of the most researched peptides for its role in the inhibition of food intake. 73 

 74 

2.2 Secretin a neuropeptide  75 

 76 

In 1981, Charlton et al. [17] and O’Donohue et al. [79] found Sct immuno-reactivities in various 77 

regions of rat and pig brains by radio immuno-assay and high-pressure liquid chromatography. 78 

This was followed by another report in 1984 [92] showing that Sct-like immuno-reactivities are 79 

specifically high in rat hypothalamus and pituitary. Simultaneously, Propst et al. demonstrated 80 

cAMP production by Sct in neuroblastoma–glioma hybrid cells [86] and the same phenomenon 81 

was also shown to occur in cultured mouse brain cells [107], rat brain slices [37], hypothalamic 82 

and hippocampal regions [48], and in rat superior cervical ganglion (SCG) [46]. A study by 83 

Yung et al. [114] in 2001 showed that Sct is localized in somatodendritic area of Purkinje cells 84 

of cerebellar cortex and that it functions as a retrograde messenger to facilitate GABA 85 

transmission from basket cells to Purkinje neurons. This sealed any doubts in the neuroactive 86 

role of Sct. Fuelled by its proposed therapeutic advantage in autism, Sct was then further found 87 



to be localized in cerebral cortex, amygdaloidal complex, hippocampus, hypothalamus, brain 88 

stem, and its possible neuroactive roles in these regions were also discussed [53, 57, 99, 110]. It 89 

was also found that peripheral Sct induced an increase in the Fos-positive neurons in many brain 90 

regions like amygdala (CeA), area postrema (AP), nucleus tractus solitarius (NTS), locus 91 

coeruleus (LC), Barrington's nucleus (Bar), parabrachial nucleus (PBel), and arcuate nucleus 92 

(Arc) which is the centre for regulating feeding behavior. This increase in the Fos expression was 93 

completely abolished by subdiaphragmatic vagotomy indicating that peripheral Sct might 94 

communicate to the brain through the vagal pathway [113]. Incidentally, Sct was also shown to 95 

activate the vagal afferent neurons through its receptor [62], proving that a communication 96 

pathway between the gut and the brain by Sct exists. In the brainstem, Sct and SctR mRNA were 97 

shown to be expressed in AP and NTS [99]. Along with increasing c-Fos expression, Sct could 98 

also activate tyrosine hydroxylase in NTS and depolarize NTS neurons [113]. Sct was also 99 

shown to be endogenously released from the hypothalamic explants when depolarized. This K
+
-100 

induced release was suggested to be associated with voltage-gated sodium and calcium channels 101 

[22]. This growing and compelling evidence on the involvement of Sct in key regions of feeding 102 

centers, including Arc, has led to recent research on the central and peripheral actions of Sct in 103 

modulating food intake [18]. 104 

 105 

2.3 Secretin inhibits food intake 106 

 107 

Cheng et al. [18] have shown that peripheral and central administration of Sct reduces food 108 

intake in fasted mice and this effect was specific to its receptor as the SctR knockout mice did 109 

not express the anorectic effect. SctR belonging to the glucagon receptor family or the class II 110 



family of G protein-coupled receptors has a strong affinity for Sct and lower affinity for 111 

vasoactive intestinal peptide (VIP) [34, 47]. Since VIP binds to SctR at pharmacological doses, 112 

the possibility of cross talk of these peptides on the anorectic role of Sct is minimal. Besides, 113 

VIP has no reported effects on food intake in mice [73] while Sct’s anorectic effect has been 114 

shown clearly to be specific to its receptor with the use of SctR-knockout mice [18]. Sct reduced 115 

food intake at 0.15 nmol (150 pmol) and 1 nmol by intracerebroventricular (i.c.v) injections and 116 

at 5 nmol (about 0.5 mg/kg) by intraperitoneal (i.p) injections, while leptin reduced food intake 117 

at 3 pmol and 60 pmol by i.c.v [71] and 0.12 mg/kg by i.p [6]. CCK-8 exhibits its anorectic 118 

properties at 0.03 nmolby  i.c.v and 1 nmol by i.p [45]. Although higher concentrations of Sct 119 

has been used, it has been ensured that the dosage used is not pharmacological by monitoring 120 

plasma Sct levels 2, 4 and 6 hours after injection. 121 

By immuno-histochemical and insitu hybridization staining techniques, it was shown that Sct 122 

and its receptor are expressed in hypothalamic Arc and para ventricular nucleus (PVN). It was 123 

also shown that Fos-positive cells in these brain regions are dramatically increased after i.p or 124 

i.c.v injection of Sct. Furthermore, peripheral and central Sct also caused a significant increase in 125 

proopiomelanocortin (POMC) mRNA and decrease in the agouti-related protein (AgRP) 126 

transcript levels in Arc as assessed by laser captured microdissection (LCM)-coupled to 127 

quantitative real-time PCR. POMC neurons in the Arc were shown to be colocalized with both 128 

the SctR and Fos-positive neurons in response to i.p and i.c.v Sct. Thus, it was proposed that Sct 129 

activates POMC neurons to bring about its anorectic effect. Indication for the involvement of 130 

melanocortin system was demonstrated by the increased transcript levels of melanocortin-4 131 

receptor (Mc4R) in PVN after i.p and i.c.v Sct, and also by the attenuation of both peripheral and 132 

central Sct-induced anorexia after administration of SHU9119, a Mc4r antagonist, in the PVN. 133 



Peripheral Sct was shown to inhibit food intake without causing conditioned taste aversion 134 

indicating a direct effect of Sct on satiety control [18]. However, whether central Sct also 135 

possesses the same characteristics must be studied, since the conditioned taste aversion caused 136 

by hormones like glucagon like peptide-1 (GLP-1) is different with respect to the site of injection 137 

in brain, indicating distinct receptor population could mediate different functions [111]. In 138 

teleosts, Sct gene has not been found, while other members of same peptide family including 139 

glucagon like peptide (GLP) and glucagon, as well as other peptides such as alpha-MSH and 140 

CCK have also been found to exhibit anorectic actions [109]. The mechanism for Sct-induced 141 

anorexia needs to be investigated further, while it is quite clear that both central and peripheral 142 

Sct utilizes a common melanocortin pathway to exert their effects. It is well known that Sct is 143 

stimulated from the duodenal S cells after a meal and it is highly plausible that this increase in 144 

plasma Sct at the periphery communicates with the brain to inhibit food intake. But the recent 145 

evidence on endogenous release of Sct in hypothalamus [22] implies that a role for central Sct 146 

cannot be ruled out. Mode of communication to the brain by peripheral Sct is likely to be vagal-147 

dependant as Sct and its receptor are localized in the vagal afferent neurons, and central Fos 148 

expression by peripheral Sct is attenuated after vagotomy. A similar reduced anorectic action of 149 

peripheral Sct was also observed after vagotomy indicating the involvement of vagal route [116]. 150 

Although Sct has been shown to cross the blood-brain barrier [5], the possibility of this route for 151 

peripheral Sct to exert its anorectic effect is unlikely since attenuated effects were observed after 152 

vagotomy as mentioned. On the other hand, we found that i.c.v-Sct was able to inhibit food 153 

intake even after vagotomy [116], clearly suggesting a central action of Sct in controlling food 154 

intake. These data pave the way for Sct to be included in the research on an integrated pathway 155 

of nutrient and fluid balance. Circumventricularorgans (CVO) in the brain, especially the 156 



subfornical organ (SFO), are being proposed for integration of ingestion behavior [38, 108]. SFO 157 

in the past is known to be the key centre for modulating drinking behavior, but it is now 158 

beginning to be proposed as a feeding centre as well [95]. Studies of ghrelin and amylin 159 

(orexigenic and anorectic peptide, respectively) have shown that they stimulate different 160 

subpopulation of neurons in the SFO, suggesting that SFO might be the center to influence 161 

hypothalamic regulation of feeding [87]. Sct and its receptor are shown to be expressed in SFO 162 

and Sct also stimulates cFos expression in SFO neurons [21]. Central Sct is recently known to 163 

play an indispensible role in mediating ANGII-stimulated water homeostatic responses in the 164 

brain [58] and now with this new evidence on its anorectic effect, Sct could as well be involved 165 

in an integrated pathway modulating ingestion behavior. 166 

 167 

3. Secretin and Fatty acid metabolism 168 

 169 

Evidences for stimulation of lipolysis by Sct could be dated back to 1969 [91] when Daniel 170 

Rudman and Alejandro E. Del Rio reported that synthetic porcine Sct peptide fragment could 171 

stimulate lipolysis in isolated fat cells from rats. In 1970, two separate reports by Rodbell et al. 172 

and Butcher et al. confirmed that Sct stimulates lipolysis and that Sct increases the adenylcyclase 173 

and cAMP levels in rat fat cells [13, 90]. Since then, there were inconsistent evidences. Sct was 174 

shown to be unable to activate lipolysis in chicken and mouse fat cells [24, 36]. Another report 175 

by Ng TB in 1990 [75] showed that Sct could lead to lipolysis in adipose cells of several 176 

mammalian species including rat, mouse, hamster, guinea pig and rabbit, and that Sct was able to 177 

suppress basal- and insulin-stimulated lipogenesis. Other reports suggested that Sct could not 178 

http://endo.endojournals.org/search?author1=DANIEL+RUDMAN&sortspec=date&submit=Submit
http://endo.endojournals.org/search?author1=DANIEL+RUDMAN&sortspec=date&submit=Submit
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stimulate in-vitro glycerol release in isolated human adipose cells [10] . It was also reported that 179 

Sct could not stimulate  free fatty acid release from healthy humans  in vivo [89].  With these 180 

contradictory reports, the role of Sct in adipocyte metabolism had not been addressed until a very 181 

recent research by Miegueu et al. [68]. In their studies, Miegueu et al. had not only evaluated the 182 

potential of Sct in stimulating lipolysis, but also found that it could stimulate fatty acid and 183 

glucose uptake in both 3T3 L1 adipocytes and isolated rat adipocytes in vitro. Lipolysis, which 184 

was measured by the amount of glycerol released, had increased in the presence of Sct, while 185 

non-esterified fatty acid (NEFA) accumulation declined in the media with Sct-treated 3T3 L1 186 

cells. When tested for uptake of fatty acid, Sct was shown to significantly stimulate fatty acid 187 

uptake and also expression of genes related to lipid uptake and storage, including fatty acid 188 

binding protein 4 (FABP4), diglyceride acyltransferase-1(DGAT-1), cluster of differentiation 36 189 

(CD36) and caveolin 3 (Cav3). Long-term incubation with Sct resulted in augmentation of the 190 

triglyceride storage mass indicating increased lipid storage. Glucose uptake was also increased 191 

significantly in the presence of Sct along with the gene expression of glucose transporter type 4 192 

(GLUT4). Sct caused an increase in mitochondrial activity, thymidine incorporation and 193 

CCAAT/enhancer-binding protein-beta(C/EBP-) expression. SctR’s expression was also higher 194 

during differentiation, indicating that Sct could function to stimulate proliferation and 195 

differentiation of the cultured adipose cells. But the key finding by Miegueu et al. is that Sct, 196 

while stimulates lipolysis, simultaneously increases lipid uptake thereby enhancing substrate 197 

cycling [68]. VIP , the peptide that interacts with SctR with low affinity, has also been shown to 198 

stimulate lipolysis but its lipolytic effects are mediated specifically by the VPAC2-R subtype [2]. 199 

VIP have been shown to stimulate lipolysis at concentrations from 0.1 nM to 100 nM in isolated 200 

rat adipocyte while Sct could also stimulate spontaneous lipolysis at 0.1 nM in isolated rat 201 



adipocyte in vitro [68]. This indicates that Sct is closely related to the regulation of highly 202 

controlled adipose metabolism which remains to be tested in vivo. 203 

 204 

Metabolic role of Sct in starvation has long been suggested since 1975. Many studies in human 205 

subjects have been conducted and it has been found that circulating plasma Sct levels rose 206 

significantly in fasted subjects [44, 67, 81, 96]. While data from humans were consistent, in dogs 207 

they were contradictory [66, 93]. This rise in plasma Sct was postulated to be related to its 208 

lipolytic property which remains to be proven as the role of Sct in lipolysis in vivo has to be 209 

clarified. The idea that gastric acid, which stimulates Sct for bicarbonate secretion, could 210 

stimulate this increase in Sct levels during starvation was negated by the findings that cimetidine, 211 

a gastric acid inhibitor, could not suppress the increase in plasma Sct level and it was concluded 212 

that factors other than HCl are involved [9, 102]. It was also postulated that increase in plasma 213 

Sct levels after exercise could be due to its lipolytic properties as well [8]. But the lack of strong 214 

in-vivo evidence in the role of Sct in lipolysis has prevented any definitive conclusions in its 215 

metabolic role in fasting.  216 

 217 

Several studies have reported that Sct is released in response to duodenal fatty acid infusion [69, 218 

88] and the length of the fatty acid chain could modulate this response [112]. It was also shown 219 

that sodium oleate could directly stimulate Sct-producing S cells in vitro [16]. Although this 220 

release of Sct is postulated to be associated with pancreatic secretion [94], bicarbonate release 221 

[26] and more recently anorectic signals [18], further research should be done to clarify the 222 

relationship of fat and Sct release. Furthermore, SctR expression was shown to be upregulated in 223 

the human omental adipose tissue of obese individuals [41]. Miegueu et al. reported that there is 224 



a strong positive correlation between SctR expression in human omental adipose tissue and body 225 

mass index, insulin and Apolipoprotein B [68], suggesting a potential role for Sct and its receptor 226 

in the development of obesity which is worth studying. 227 

 228 

Lipolysis and lipogenesis are related to lipid-associated and metabolic disorders including 229 

obesity, diabetes, hyperlipidemia [55]. Recent studies suggest the involvement of lipases 230 

belonging to the lipolytic pathway in tumor proliferation or cancer-associated cachexia [115]  231 

reinforcing the potential therapeutic importance of lipolysis. Although the above listed scarce 232 

findings suggest a connection between Sct with fatty acid metabolism, in fact, the role of Sct in it 233 

is still unclear. The pathway responsible for the lipolytic actions of Sct remains unidentified and 234 

there is no in vivo evidence for Sct’s role in lipolysis yet. As Sct is shown to stimulate both 235 

lipolysis and fatty acid uptake in vitro, it would be interesting to study the modulation of lipid 236 

homeostasis by Sct in vivo. Recent advances indicate the involvement of a central regulation in 237 

mediating peripheral lipid metabolism, associating leptin, ghrelin, GLP-1, neuropeptide Y (NPY) 238 

and melanocortin system [76, 77].Thus with evolving research in lipid metabolism and escalating 239 

evidences on its potential importance in human disorders, there is a need for a detailed research 240 

on the effects of Sct in fatty acid metabolism, especially in in-vivo studies.  241 

 242 

4. Secretin and Insulin/Glucose homeostasis 243 

 244 

Just four years from its discovery, Sct was studied on its therapeutic effect on diabetic patients in 245 

1906. The study was initiated by Moore [72] based on the prior knowledge that pancreas 246 

malfunction was related to diabetes and on the proposal that Sct could stimulate pancreatic 247 



secretion. He found that Sct reduced hyperglycemia in diabetic humans, and his work was 248 

followed by various other studies which failed to reproduce a similar effect [4, 23, 35, 63].They 249 

discredited the proposal stating that the strict carbohydrate-free diet followed in Moore’s study, 250 

rather than Sct treatment, could have brought about the reduction of glucose levels. 251 

 252 

Drupe in 1964 showed that intravenous injections of glucose given along with Sct resulted in a 253 

significant reduction in the half-time of glucose disappearance [28], and this study triggered 254 

more research on the insulinotropic effects of Sct. It was shown again by the same research 255 

group [30] that Sct administration caused an increase in insulin concentration in the portal and 256 

peripheral blood in humans. Subsequent studies were done in dogs and humans to confirm the 257 

release of insulin after Sct administration [11, 105]. The next research question was naturally 258 

whether Sct that is endogenously released at physiological range would have this insulinotropic 259 

effect. Studies conducted in patients with histamine-fast [65] and with intra-duodenal acid 260 

infusion in humans and dogs [78] showed a negative response, while those with either a 261 

duodenal infusion of HCl or betazole-induced release of gastric acid did increase the insulin 262 

levels [20, 29]. Evidences then started coming up showing that the effect of Sct on insulin release 263 

was glucose-dependant [61, 106]. This insulin release by Sct was shown to be from a single pool 264 

of the peptide due to the fact that insulin responses progressively decreased when Sct was 265 

administered in identical pulses [60, 61].  266 

 267 

Plasma Sct levels were found to be raised in fasting type II diabetes subjects [103] and 268 

intravenous injections of crude Sct reduced the glucose levels in these patients [85]. Sct 269 



stimulated exocrine secretion of the pancreas have been shown to be reduced in 270 

streptozotocin(STZ)-induced diabetic rats [80] while Sct-induced amylase secretion was 271 

impaired in men with type I diabetes [97]. Studies were being conducted on Sct-induced insulin 272 

responses in normal, obese and diabetic subjects, in which obese subjects showed higher 273 

response and diabetic subjects had no difference with normal subjects [31, 32]. In 1978, a 274 

contradictory report which concluded that intravenous injection of Sct, in doses that mimicked 275 

the level of endogenous Sct in response to intra-duodenal acid, did not have any effect on 276 

glucose-stimulated insulin release [33]. Since then, there were several inconsistent reports. Sct 277 

was shown to specifically augment glucose-stimulated insulin release as it did not change the 278 

insulin responses to arginine, isoproterenol, tolbutamide and glucagon [59]. In mouse pancreatic 279 

islets cells, Sct potentiated in-vitro glucose-stimulated insulin release [51] and the N-terminal 280 

region of the peptide was shown to be important for this effect [50]. In rats, Sct stimulates insulin 281 

secretion without increasing the blood flow to the islets [14], but simultaneously, several reports 282 

negate such insulinotropic effects. In isolated perfused rat pancreas, irrespective of the glucose 283 

concentrations in the perfusate, Sct failed to stimulate insulin release [83]. Many studies in 284 

humans and dogs suggested that Sct either had no effect or the effect was pharmacological and 285 

not physiological [12, 33, 52, 98]. One of the reasons for the discrepancy in these findings might 286 

be  the accuracy in monitoring Sct levels, which in turn might have affected the conclusions of 287 

the studies. However, the apparent absence or extreme low density of SctRs on islets suggests 288 

that the physiological and pharmacological effects of Sct, if present, may either be through an 289 

indirect pathway or may be mediated by another receptor of secretin family that has a lower 290 

affinity for the peptide [104]. Peptides like GIP and GLP-1 have a potent direct action exhibiting 291 

their incretin effect through specific receptors on islet beta cells [3]. Secretin receptor knockout 292 



model animals could be employed for better understanding of Sct’s effect on islet beta cells. 293 

Central control of insulin secretion could be viewed as an indirect pathway, e.g., leptin and NPY 294 

modulates insulin secretion mainly through receptors in the hypothalamus [74] and NTS [27], 295 

respectively.  Sensing of glucose by brain regions [101] including the hypothalamus, has recently 296 

been shown to trigger insulin release [15, 82] establishing a brain-endocrine pancreatic axis. 297 

There is strong evidence for vagal stimulation of beta cell secretion [100].  Such effects are 298 

brought about at least in part by acetylcholine on beta cells, although a role for VIP, PACAP and 299 

GHRH is also likely [100]. With increasing awareness in the direct and indirect mechanisms of 300 

insulin secretion and with improved techniques such as glucose clamps, a role of Sct in insulin 301 

and glucose homeostasis warrants a revisit and further research. 302 

 303 

6. Conclusion 304 

 305 

Recent evidences on pleiotropic actions of Sct, especially on its role as a neuropeptide, have led 306 

to a revision of the plausible physiological functions of this important peptide. A lot of data on 307 

the metabolic role of Sct from the 60s, 70s and 80s, although contradictory, have been 308 

overlooked and followup studies have not been performed thoroughly. In light of this, it is 309 

noteworthy that Sct’s level in circulation have been shown to increase in both energy rich 310 

(postprandial) and energy deficient (starvation) states and hence Sct should be investigated to 311 

clearly elucidate its role in metabolism and energy homeostasis. With recent studies marking a 312 

rebirth of this research, and with markedly improved techniques and current understanding on 313 

the actions of Sct in brain, along with development of unique resources such as Sct and SctR 314 



knockout animal models, future works in this area will hopefully shed mechanistic insights into 315 

understanding how this unique hormone exerts its metabolic actions via central and/or peripheral 316 

pathways. Metabolic disorders including obesity and diabetes are growing in epidemic 317 

proportions, hence, demand for therapeutics and research on understanding the molecular 318 

mechanisms underlying these disorders are on the rise. Further research pertinent to the 319 

metabolic role of Sct could unveil possible relationships of Sct with some metabolic disorders for 320 

future discovery of therapeutic options for these diseases. 321 

 322 
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 610 

 611 

Figure caption: 612 

Fig. 1.Working model summarizing the anorectic effect of secretin (Sct) 613 

Sct is released from the S cells of the duodenum in response to gastric acid and digested products 614 

of fat or protein entering the duodenum. Gut derived Sct could exert its anorectic effect by the 615 

central melanocortin system through either one or combination of the three different routes. 1 (616 

) Sct released from the gut interacts with the SctR in the vagal afferents and 617 

transmits signals through the vagus to reach the NTS in the brainstem which in turn signals to the 618 

hypothalamus.   2 ( ) Sct released endogenously from the hypothalamus could directly 619 



act on its receptors in the Arc. 3 ( ) Sct released from the gut into the circulation could 620 

pass through the blood brain barrier and activate the Arc neurons. On reaching the Arc, Sct 621 

activates the POMC neurons and inhibits the AgRP neurons. POMC is then cleaved into α-MSH 622 

and it activates the MC4R in the PVN which signals downstream to reduce intake of food. 623 

 624 

Fig. 2.Schematic representation of role of secretin (Sct) in lipid metabolism known  625 

Sct stimulates lipolysis in isolated rat adipocytes, releasing glycerol from the adipose cell 626 

through the activation of adeneyl cyclase and cAMP. Sct stimulates esterification of free fatty 627 

acid (FFA) resulting in their uptake and also stimulates glucose uptake thus bringing about 628 

triglyceride accumulation in isolated cells. ‘?’ in the picture represents the information that are 629 

currently unknown and that have not been researched yet. Clearly very little is known on the 630 

regulation of lipid metabolism by Sct indicating the necessity for more research on the topic.    631 






