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Abstract
Data depth provides a natural means to rank multivariate vectors with respect to an underlying multivariate distribu-

tion. The conventional notion of a depth function emphasizes a centre-outward ordering of data points. While useful for
certain statistical applications, such emphasis has rendered most classical data depths insensitive to some distributional
features, such as multimodality, of concern to other statistical applications. To get around the problem we introduce a
new notion of data depth which seeks to rank data points according to their reepresentativeness, rather than centrality,
with respect to an underlying distribution of interest. We propose a general device for defining such depth functions,
based essentially on a choice of goodness-of-fit test statistic. Our device calls for a new interpretation of depth more akin
to the concept of density than location. It copes particularly well with multivariate data exhibiting multimodality. In ad-
dition to providing depth values for individual data points, the new class of depth functions derived from goodness-of-fit
tests also extends naturally to provide depth values for subsets of data points, a concept new to the data-depth literature.
Applications of the new depth functions are demonstrated with both simulated and real data.

Keywords: centre-outward ordering, classification, data depth, goodness-of-fit tests, interpoint dis-
tance, multimodality, representativeness.

1. Introduction
Classical depth functions are formulated primarily to measure the “centrality” of a single point relative to a
specified distribution function F or to a sample of observations X1, . . . , Xn drawn from F. They provide a
natural means to rank multivariate data with the deepest point being regarded as the “centre” of the distribution
F. Insistence on the above centre-outward ordering property has, however, restricted to a certain extent
the scope of depth-based inferences. For instance, when applying data depths to problems such as cluster
analysis or classification, we often assume tacitly that a “deep” point with respect to a distribution must
also be “representative” of that distribution, an assumption open to question if the distribution exhibits some
nonstandard features such as multimodality. It is therefore desirable, at least for certain types of applications,
to consider an alternative notion of depth as a measure of “representativeness”, so that data points can be
endowed with an ordering sufficiently responsive to the shape of the reference distribution. Recent years have
seen significant moves in that direction, leading to new definitions of data depth such as the likelihood depth
(Fraiman and Meloche, 1999), the kernelized spatial depth (Chen, Dang, Peng and Bart, 2009), the weighted
halfspace depth (Hlubinka, Kotı́k and Vencálek, 2010), the local simplicial or halfspace depth (Agostinelli
and Romanazzi, 2011) and a general method due to Paindaveine and van Bever (2012) for localising a global
depth. Capitalising on a natural connection between goodness-of-fit tests and the extent to which a sample
“represents” a null distribution F, we propose in this paper a new class of data depths useful for measuring
representativeness of data points, or subsets of data points, with respect to multivariate distributions.
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2. Depth functions based on interpoint distances
2.1. General idea
Consider a random sample Xn = {X1, . . . , Xn} drawn from a distribution F on the sample space S. Let
T (Xn, F) be a generic goodness-of-fit test statistic, large values of which indicate a lack of fit of the distri-
bution F to the observed data Xn, or in other words, Xn not sufficiently “representative” of the distribution
F. This motivates our new formulation of data depth applicable to a subset of points, under which “depth”
acquires a new meaning: representativeness.

For any collection of points {x1, . . . , xn} ⊂ S and any distribution function F on S, we define the depth
of the pattern {x1, . . . , xn}, with respect to F, to be

D(F, {x1, . . . , xn}) = η(T ({x1, . . . , xn}, F)|F),

for an arbitrary decreasing function η(·|F), possibly depending on F. As a canonical choice, we can set
η(t|F) = PF (T (Xn, F) > t), in which case the depth function can also be interpreted as a p-value for testing
whether the “sample” {x1, . . . , xn} has an underlying distribution F. Under our new formulation, a “deep”
point pattern {x1, . . . , xn} relative to F can be viewed as a “sample” in no essential conflict with F, or one
which is reasonably “representative” of F. The singleton case n = 1 reduces D(F, {x1}) to a depth measure
for a single point, as has traditionally been understood by a depth function. Without confusion we write
D(F, x) = D(F, {x}) for the singleton case.

In what follows we apply the above construction to three types of goodness-of-fit tests derived from
interpoint distances, calculated in terms of an arbitrary distance measure δ(·, ·) defined on S × S.

2.2. Nearest neighbours
Nearest neighbour tests (Schilling, 1986; Henze, 1988) are designed to handle general multivariate two-
sample problems. Consider first testing whether the two samples Xn = {X1, . . . , Xn} and Ym = {Y1, . . . , Ym}
come from the same distribution. Let Nr(Z) be the rth nearest δ-neighbour in the combined sample Xn ∪Ym
of the sample point Z ∈ Xn ∪ Ym. Then an unweighted version of the two-sample k-nearest neighbour test
statistic can be written as

k−1(m + n)−1




n∑

i=1

k∑

r=1
1 {Nr(Xi) ∈ Xn} +

m∑

j=1

k∑

r=1
1
{
Nr(Yj) ∈ Ym

}

 . (1)

Define, for any fixed x ∈ S and any distribution F on S, Λ(t|x, F) = PF(δ(x, X) ≤ t | X ∼ F), t ∈ R. By
considering the limiting case where m → ∞ and k/m → γ ∈ (0, 1), with Y1, Y2, . . . independently distributed
under F, we derive from (1) a one-sample test statistic

T (Xn, F) =
n∑

i=1

n∑

j=1
1
{
δ(Xi, Xj) ≤ Λ−1(γ|Xi, F)

}
. (2)

Furthermore, by applying (2) to a point pair {x1, x2} and letting x1, x2 → x, we are led to a depth function of
a single point x, given by D(F, x) = η

(
Λ−1(γ|x, F)

∣∣∣F
)
.

2.3. Energy tests
Aslan and Zech (2005) propose a two-sample energy test statistic which, on specialization to a one-sample
problem, takes on the form

T (Xn, F) =
1

n(n − 1)

n−1∑

i=1

n∑

j=i+1
R(δ(Xi, Xj)) −

1
n

n∑

i=1

∫

S
R(δ(Xi, y)) dF(y)

+
1
2

∫

S2
R(δ(y1, y2)) d(F ⊗ F)(y1, y2), (3)

24



Stephen M. S. Lee
PROCEEDINGS OF IASC SATELLLITE CONFERENCE FOR THE 59TH ISI WSC

& THE 8TH CONFERENCE OF IASC-ARS

for some decreasing energy function R defined on [0,∞). Thus, for a single x ∈ S, (3) leads to the depth
function

D(F, x) = η
(

1
2

∫

S2
R(δ(y, z)) d(F ⊗ F)(y, z) −

∫

S
R(δ(x, y)) dF(y)

∣∣∣∣∣F
)
. (4)

In the case S = Rd, Fraiman and Meloche (1999) propose an affine invariant version of likelihood depth,
which can be regarded as a special case of (4) if we set η(t|F) = 1

2

∫
S2 R(δ(y, z)) d(F ⊗ F)(y, z) − t, R(t) =

K(t/h)/hd for some kernel function K and bandwidth h, and, with slight abuse of notation, δ(y, z) = (y −
z)TΣ−1

F (y − z), where ΣF denotes the dispersion matrix of F.

2.4. Within-triplet distances
Based on within-triplet distances, Bartoszyński, Pearl and Lawrence (1997) propose a goodness-of-fit test
statistic

T (Xn, F) =
[
U∗

1, −U
∗
1 − U∗

3, U
∗
3

]
A

[
U∗

1, −U
∗
1 − U∗

3, U
∗
3

]T
,

where, for Y1, Y2 iid from F, independent of Xn,

U∗
1 =

1
n

n∑

i=1
PF (δ(Y1, Y2) < min{δ(Xi, Y1), δ(Xi, Y2)} | Xi) − 1/3,

U∗
3 =

1
n

n∑

i=1
PF (δ(Y1, Y2) > max{δ(Xi, Y1), δ(Xi, Y2)} | Xi) − 1/3,

and A is a positive semidefinite matrix chosen to render the test powerful against specific alternatives. Taking
for simplicity a diagonal A and setting n = 1 in the above formulation, we obtain a depth function for a single
point given by D(F, x) = η

(∑3
j=1 wjν j(F, x)2

∣∣∣ F
)
, where

ν1(F, x) = PF (δ(Y1, Y2) < min{δ(x, Y1), δ(x, Y2)}) − 1/3,

ν3(F, x) = PF (δ(Y1, Y2) > max{δ(x, Y1), δ(x, Y2)}) − 1/3,

and ν2(F, x) = −ν1(F, x) − ν3(F, x), for some weights w1,w2,w3 ≥ 0.

2.5. Consistency of sample depth function
In applications where F is unavailable, we may consider using a sample depth function, that is a depth func-
tion calculated with respect to the empirical distribution FYm of a random sample Ym = (Y1, . . . , Ym) drawn
from F. We comment briefly on the conditions sufficient for consistency of sample depth functions of the
interpoint-distance type, in the sense that D(FYm , {x1, . . . , xn}) converges in probability to D(F, {x1, . . . , xn})
as m → ∞. In each case we assume η to be a continuous function.

Consistency of sample depth functions based on nearest neighbours follows from strong consistency of
the sample γth quantile of them distances δ(x, Y1), . . . , δ(x, Ym), which converges in probability toΛ−1(γ|x, F)
for any x ∈ S.

For consistency of sample depth functions based on energy tests, we may invoke the weak law of large
numbers for U-statistics to show that, for any x ∈ S,

m−1
m∑

j=1
R(δ(x, Yj)) →

∫

S
R(δ(x, y)) dF(y) in probability

and

m−2
m∑

i=1

m∑

j=1
R(δ(Yi, Yj)) →

∫

S2
R(δ(y, z)) d(F ⊗ F)(y, z) in probability,
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provided that the limits exist. Similarly we can show that

m−2
m∑

i=1

m∑

j=1
1
{
δ(Yi, Yj) < min{δ(x, Yi), δ(x, Yj)}

}
− 1/3 → ν1(F, x) in probability

and so doesm−2 ∑m
i=1

∑m
j=1 1

{
δ(Yi, Yj) > max{δ(x, Yi), δ(x, Yj)}

}
−1/3 to ν3(F, x), leading to consistency of the

sample depth function based on within-triplet distances.

2.6. Choice of control parameters
A practical issue arising from depth-based applications concerns the setting of control parameters, that is γ
for the nearest neighbour depth, h for the likelihood depth, and the weights (w1,w2,w3) for the depth based
on within-triplet distances. As a general approach we propose to set the control parameters for the sample
depth D(FYm , ·) by maximising a “correlation” measure

m−1 ∑m
i=1 D(FYm , Yi)((Yi) − m−1 ∑m

i=1((Yi)
∫
S D(FYm , x)((x) dx

√∫
S D(FYm , x)2((x) dx −

(∫
S D(FYm , x)((x) dx

)2
, (5)

where ( denotes an arbitrary density function supported on S. Note that if F is differentiable, then (5) may
be viewed as an estimate of

√
Var(F′(W)) Corr(D(F,W), F′(W)), for W ∼ (.

3. Application to economic data
To illustrate the practical relevance of a shift in emphasis from “centrality” to “representativeness”, we com-
pare the depth function based on within-triplet distances with the classical simplicial depth, calculated with
respect to a set of bivariate observations on the life expectancy at birth and the gross national income (GNI)
per capita of 162 countries for the year 2008. For the case of within-triplet distances, we set (w1,w2,w3) =
(0.09, 0.66, 0.25), which maximises (5) over the simplex {(w1,w2, 1 − w1 − w2) : w1,w2 ≥ 0,w1 + w2 ≤ 1},
with ( taken to be the uniform density function over the rectangle [0, 65] × [40, 90]. Figure 1 displays the
two depth functions calculated with respect to the data. The data points observed for the 162 countries, shown
also in Figure 1, cluster in a crescent and do not exhibit clear unimodality. The simplicial depth identifies a
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Figure 1: World Bank data — contour plots of simplicial depth (left) and within-triplet-distance depth (right),
with respect to life expectancy and GNI indicators of 162 countries in 2008.

unique deep centre, near which can be located the three most “central” countries, namely Thailand, Ukraine
and Belarus. However, their somewhat peripheral positions relative to the main data crescent casts doubt on
their representativeness. On the other hand, the above three countries are ranked rather low (Thailand 131;
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Ukraine 124; Belarus 111) based on within-triplet distances, and are surrounded by deep areas more repre-
sentative of the entire dataset. According to within-triplet distances, the three deepest countries are Estonia,
Croatia and Hungary, all of which lie on one side of the central dip.

We highlight on Figure 1 Thailand and Liberia, the two countries which register the most positive and
negative differences between their two ranks obtained from the two depth functions. Thailand is ranked the
deepest by simplicial depth but only 131st by within-triplet distances. Liberia, on the contrary, is ranked 29th
by within-triplet distances but 159th by simplicial depth.

4. Application to supervised classification
Suppose that we have available two labelled training samples,Y[1] = (Y [1]

1 , . . . , Y
[1]
n1 ) andY[2] = (Y [2]

1 , . . . , Y
[2]
n2 ),

drawn respectively from two distinct distributions F1 and F2. We are interested in classifying a new set of
data points {x1, . . . , xn}, which are known to come from the same distribution, to one of the two distributions.
Our extended notion of depth function D(F, {x1, . . . , xn}) provides a natural procedure for classification. De-
note by FY[ j] the empirical distribution of Y[ j], j = 1, 2. For each j = 1, 2 and i = (i1, . . . , in) ∈ {1, . . . , n j}n,
calculate the depth values d[ j]

i = D(FY[ j] , {Y [ j]
i1 , . . . , Y

[ j]
in }). Then we classify {x1, . . . , xn} as coming from F1 if

n−n
1 card

({
i : d[1]

i ≤ D(FY[1] , {x1, . . . , xn})
})
> n−n

2 card
({
i : d[2]

i ≤ D(FY[2] , {x1, . . . , xn})
})
, (6)

and from F2 if the above inequality is reversed. The classification is inconclusive if the two sides of (6)
are equal. Instead of maximising (5), we consider it more natural in the present context to set the control
parameters for the depth functions by leave-n-out cross validation.

In the following numerical example we set n1 = n2 = 50 and consider the case of classifying a point
pair, that is n = 2. We take F1 to be the univariate normal mixture 0.2N(−2.5, 4)+ 0.8N(2.5, 1) and F2 to be
N(0, 3.24). The Bayes misclassification rate based on the uniform prior is found to be 0.1814, which can be
obtained by evaluating the integral 2−1

∫ ∞
−∞

∫ ∞
−∞ min { f1(x) f1(y), f2(x) f2(y)} dx dy, where f j denotes the density

of F j, j = 1, 2. The energy test and the within-triplet distance test provide useful expressions for calculating
the depth D(FY[ j] , {x1, x2}) of a point-pair (x1, x2). A simulation study is carried out on the misclassification
rates of these two depths. We consider for each depth function seven control parameter settings, under each
of which the misclassification rate is estimated by leave-two-out cross validation and marked by the letter
“V” in Figure 2. Minimising over the seven parameter settings for each depth function, the cross-validated
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Figure 2: Misclassification rates: (i) Bayes rate (dotted vertical line); (ii) leave-two-out cross-validated esti-
mates based on training data (“V”); (iii) F1 misclassified as F2 (“◦”) based on test sample of 50 point-pairs
from F1; (iv) F2 misclassified as F1 (“×”) based on test sample of 50 point-pairs from F2; (v) average of (iii)
and (iv) (“•”).

choices of the parameters are found to be h = 0.5 for the likelihood depth and (w1,w2,w3) = (0.5, 0.5, 0) for
the depth based on within-triplet distances. Next we generate a test sample of 50 random point-pairs from
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each of the two distributions and estimate the misclassification rates of the two depth functions, shown also
in Figure 2. For both depth functions, at least one of the control parameter settings yields misclassification
rates close to, or even lower than, the Bayes rate 0.1814. Cross validation is very effective in identifying the
optimal, or nearly optimal, choice of the control parameter for each depth function.
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