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Abstract—Algebraic specifications have been used in the testing of object-oriented programs and received much attention 
since the 1990s. It is generally believed that class-level testing based on algebraic specifications involves two independent 
aspects: the testing of equivalent and nonequivalent ground terms. Researchers have cited intuitive examples to illustrate the 
philosophy that even if an implementation satisfies all the requirements specified by the equivalence of ground terms, it may still 
fail to satisfy some of the requirements specified by the nonequivalence of ground terms. Thus, both the testing of equivalent 
ground terms and the testing of nonequivalent ground terms have been considered as significant and cannot replace each 
other. 

In this paper, we present an innovative finding that, given any canonical specification of a class with proper imports, a 
complete implementation satisfies all the observationally equivalent ground terms if and only if it satisfies all the observationally 
nonequivalent ground terms. As a result, these two aspects of software testing cover each other and can therefore replace each 
other. These findings provide a deeper understanding of software testing based on algebraic specifications, rendering the theory 
more elegant and complete. We also highlight a couple of important practical implications of our theoretical results. 

Index Terms—Software testing, equivalence criterion, nonequivalence criterion, algebraic specification, object-oriented 
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——————————      —————————— 

1 INTRODUCTION 

S a major formal method for defining the functional 
requirements of object-oriented software, algebraic 

specifications are very useful in the testing of their imple-
mentations with many benefits, including improvements 
in the automation and effectiveness of test case genera-
tion. 

In particular, class-level testing of object-oriented soft-
ware based on algebraic specifications has been studied 
extensively. Previous work treats the testing of the 
correctness of implementation in two aspects: whether 
two sequences of operations (known formally as ground 
terms) that are proven to be equivalent according to the 
specification will result in equivalent objects in the imple-

mentation, and whether two sequences of operations that 
are proven to be nonequivalent according to the specifica-
tion will result in nonequivalent objects in the implemen-
tation. 

Previous research argues that, generally speaking, the 
testing of all equivalent ground terms is not sufficient to 
reveal the possible failures due to all the faults in the 
implementation. The testing of all nonequivalent ground 
terms is not sufficient either. Hence, one must conduct 
both kinds of tests. Please refer to Example 2 in Section 4 
for a commonly adopted intuitive illustration.  

In this paper, we present our innovative finding that, 
given a canonical specification of a class with proper 
imports and a complete implementation, the testing of 
observationally equivalent ground terms and the testing 
of observationally nonequivalent ground terms cover 
each other.1 In other words, if a failure due to a certain 
fault in the implementation can be revealed by testing 
observational nonequivalence, another failure due to the 
same fault can also be revealed by testing observational 
equivalence, and vice versa. As a result, contrary to the 
general belief in previous work, we do not need to 
conduct both kinds of tests. This finding deepens the 
understanding of software testing based on algebraic  

                                                             
1 Thus, we attain “equality to equals and unequals,” quoted from Plato, 

The Republic (380 BC). 
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specifications, and renders the theory more elegant and 
complete. Furthermore, the theory has important practical 
implications in real-world software testing. The remain-
ing sections describe our new theoretical and practical 
findings in detail. 

This paper is organized as follows: Section 2 describes 
previous work related to the testing of object-oriented 
software based on algebraic specifications. Section 3 
outlines the basic concepts used in the paper. Section 4 
investigates an innovative relationship between the 
equivalence criterion and the nonequivalence criterion. 
Section 5 applies the results of Section 4 to class-level 
testing of object-oriented software and gives examples for 
illustration. Section 6 discusses the theoretical implica-
tions in relation to previous work on class-level testing 
based on algebraic specifications. Section 7 highlights two 
important practical implications. Section 8 concludes the 
paper. 

2 RELATED PREVIOUS WORK 

The idea of algebraic specifications originated from the 
work of Zilles [33], Goguen et al. [21], and Guttag and 
Horning [22]. There have been numerous proposals. For 
example, Goguen and others introduced OBJ3 [20] and 
extended it to FOOPS [6] for the object-oriented para-
digm, while Bidoit and Mosses [5] designed the Common 
Algebraic Specification Language (CASL), which consoli-
dates various algebraic specification features into a gen-
eral purpose language. 

A general theory for software testing based on alge-
braic specifications was proposed by Bernot et al. [3], [4]. 
It includes a regularity hypothesis, a uniformity hypothe-
sis, and other oracle hypotheses to formalize the oracle 
problem. The main advantage of the framework is to 
express in explicit terms the abilities and limitations of 
testing as well as the gap between the testing and proving 
of programs. Based on the framework, a tool has been 
developed to generate test cases by replacing all the 
variables in the axioms of the specification by ground 
terms according to the uniformity and regularity hypoth-
eses [7], [14]. 

The DAISTS approach by Gannon et al. [17] suggests 
selecting a tuple of argument values as inputs to the left- 
and right-hand sides of an axiom, and then invokes a 
user-supplied equality function to examine the outputs. A 
failure is revealed if the outputs from both sides are not 
equal. The testing approach proposed by Antoy and 
Hamlet [2] uses proof techniques. Unlike DAISTS, they 
test the equality of values of abstract date types in the 
abstract domain rather than in the concrete domain. 

Machado [27] proposed oracles derived from flat 
algebraic specifications expressed in first-order logic. 
Machado [28] presented an extension of the framework in 
Bernot et al. [3], [4] to first-order logic with restrictions on 
quantifiers. Machado and Sannella [29] further extended 
the framework for CASL architectural specifications. 

Jalote [24] considered the axioms as rewrite rules, 
suggested choosing test cases from all legal combinations 
of operations (that is, all terms), and derived correspond-
ing equivalent terms by means of the rewrite rules. They 
checked whether the execution results corresponding to 
every selected pair of equivalent terms are equivalent. If 
not, a failure is revealed. 

To facilitate testing object-oriented software at the class 
level, Doong and Frankl [15], [16] proposed LOBAS, an 
algebraic specification language whose syntax is similar 
to object-oriented programming languages and whose 
semantics is similar to that of OBJ3 and FOOPS. 
The LOBAS language for algebraic specifications pro-
posed by Doong and Frankl [15], [16] is more suitable for 
the class-level testing of object-oriented software. Based 
on LOBAS, they extended the work of Jalote [24] and 
developed a tool known as ASTOOT to generate test cases 
from pairs of equivalent terms through rewriting, and 
from pairs of nonequivalent terms by “exchanging path 
conditions.” 

In algebraic specifications, a ground term is said to be 
a normal form if and only if it cannot be further rewritten 
to another term using any axiom in the given specifica-
tion. In our earlier work [9], [10], two ground terms are 
said to be equivalent if and only if both of them can be 
written to the same normal form according to the given 
canonical specification. If a pair of ground terms is 
formed by replacing all the variables on both sides of an 
axiom by normal forms of the given specification, we 
refer to them as a fundamental pair of equivalent terms or 
simply a fundamental pair (denoted by “u1 ~fun u2”). We 
proved in [9] that, given any canonical specification of a 
class with proper imports, a complete implementation 
satisfies all the fundamental pairs if and only it satisfies 
all pairs of observationally equivalent ground terms. 

Further descriptions of the TACCLE methodology and 
the results of [9], [10] are given in Sections 3 and 6. 

According to previous work such as [10], [16], class-
level testing based on algebraic specifications involves 
two aspects, namely, the testing of observationally equiv-
alent ground terms and the testing of observationally 
nonequivalent ground terms. Intuitive examples 2  have 
been used to illustrate the philosophy that even if the 
testing of observationally equivalent ground terms is 
exhaustive, it cannot reveal failures in which two differ-
ent states are being confused as a single state, that is, in 
which two observationally nonequivalent ground terms 
erroneously generate two equivalent objects [10], [16]. It 
has been pointed out therefore that the testing of obser-
vationally nonequivalent ground terms is necessary and 
cannot be ignored even after exhaustive testing of obser-
vationally equivalent ground terms. 

Hierons et al. [23] and Zhu [32] have surveyed these 
aspects. Kong et al. [25] and Yu et al. [31] extended the 
algebraic testing approach to cover software components, 
and presented an automated testing tool called CASCAT 
for Java components. 

                                                             
2 Such as Example 2 in Section 4, which is refuted by Examples 3 and 4 

in Section 4. 
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3 BASIC CONCEPTS OF CLASS-LEVEL TESTING 

OF OBJECT-ORIENTED SOFTWARE BASED ON 

ALGEBRAIC SPECIFICATIONS 

This paper considers the class-level testing of object-
oriented software based on algebraic specifications. In 
order that this paper may be self-contained, we first 
summarize the basic concepts of algebraic specifications. 
Readers may refer to existing work [9], [10], [16] for more 
details of algebraic specifications for object-oriented soft-
ware. For fairness of comparison with previous work, we 
will use the same level of constraint on algebraic 
specifications as that in Aiguier et al. [1], Doong and 
Frankl [15], [16], and Chen et al. [9], [10]. Readers may 
also refer to Section 4.6 of [10] for an explanation of why 
the constraints are reasonably justified in object-oriented 
software testing. We concede that, like the related work 
on the testing of object-oriented software based on alge-
braic specifications, we cannot cover nondeterministic 
systems using canonical specifications. While this is an 
interesting topic that is worth further research, it is 
beyond the scope of the present paper. 

An algebraic specification of a class consists of two parts. 
The first part defines the syntax of the class by declaring 
the operations in terms of their input and output classes. 
The second part defines the semantics of the class by list-
ing the axioms in the form of conditional equations, which 
describe the functional requirements of the operations. 
The following is an example of an algebraic specification. 
For ease of reading, we will reuse the same example for 
different purposes in the paper. 

Example 1 (adapted from Chen et al. [9]). Algebraic 
specification of a class IntStack of stacks of integers. 

module INTSTACK 
class IntStack 
import classes Int // the class of integers 

 Bool // the class of Boolean values 
operations 
 new: → IntStack 
 _.isEmpty: IntStack → Bool 
 _.push(_): IntStack Int → IntStack 
 _.pop: IntStack → IntStack 
 _.top: IntStack → Int ∪ {nil} 
variables 
 S: IntStack; N: Int 
axioms 
 a1: new.isEmpty = true 
 a2: S.push(N).isEmpty = false 
 a3: new.pop = new 
 a4: S.push(N).pop = S 
 a5: S.top = nil if S.isEmpty 
 a6: S.push(N).top = N 

The statement “_.push(_): IntStack Int → IntStack” 
means that the operation push has an input class IntStack, 
a parameter class Int, and an output class IntStack. 

Given an algebraic specification, a syntactically valid 
sequence of operations is called a term. A term without 
variables is known as a ground term. In Example 1, for 
instance, S.push(N).pop.top is a term and 
new.push(2).pop.top is a ground term. 

Suppose a ground term u contains a subterm v that is 
an instance of the left-hand side vi of an axiom ai: vi = vi’. If 
we replace the subterm v by the corresponding instance v’ 
of the right-hand side vi’, and if the result is a ground 
term u’, then u is said to be rewritten into u’ using axiom ai 
as a left-to-right rewrite rule. For instance, a ground term 
new.push(2).pop.top in Example 1 can be rewritten to 
new.top using axiom a4 as a rewrite rule. 

Let u1, u2, ..., un be ground terms. If u1 can be rewritten 
to u2, and u2 can be rewritten to u3, and …, and un–1 can be 
rewritten to un, then we say that there is a rewriting 
relation from u1 to un (denoted by “u1 ~rew un”). 

We say that a ground term is in a normal form if and 
only if it cannot be further rewritten by any axiom in the 
specification. An algebraic specification is said to be 
canonical if and only if every ground term can be rewrit-
ten to a unique normal form through a finite number of 
rewrites. 

We refer to the specified functions in a specification as 
operations and the implemented functions in a program as 
methods. The operations (or methods) that create objects in 
a class C are called the creators of C. An attribute of an 
object is a visible property of that object. For any given 
object, the collection of all the attributes and their respec-
tive values is called the state of the object. The operations 
(or methods) that return the values of attributes of objects 
in C without any change of state are called the observers 
of C. The operations (or methods) that change the states 
of objects in C are called the constructors or transformers 
of C. In particular, a constructor of an object can remain in 
a normal form after transformations by axioms, whereas a 
transformer will ultimately be eliminated by some rewrite 
rule and cannot appear in a normal form. 

For any operation or method _.f(_, _, ..., _): C C1 C2 ... Cn 
→ D, we refer to C as the input class of f, D as the output 
class of f, and C1, C2, ..., Cn as the parameter classes of f. Let f 
and g be operations (or methods). If the output class of f is 
the same as the input class of g, we say that g is applicable 
to f and that f.g is syntactically valid. Let f be the last opera-
tion in a term u (or the last method in a method sequence 
u) and g be the first operation in a term v (or the first 
method in a method sequence v). If g is applicable to f, we 
say that v is applicable to u and that u.v is syntactically valid. 

An observable context on a class C is either an observer 
or a syntactically valid sequence of constructors or trans-
formers in C that ends with an observer. 

Consider a canonical specification of a given class. Two 
ground terms u1 and u2 are said to be normally equivalent 
(denoted by “u1 ~nor u2”) if and only if both of them have 
the same normal form. Two ground terms u1 and u2 are 
said to be observationally equivalent (denoted by “u1 ~obs 
u2”) if and only if 1) u1.oc and u2.oc are observationally 
equivalent for any applicable observable context oc, and 
2) u1 and u2 are normally equivalent when there is no 
applicable observable context oc. (Notice that this defini-
tion is recursive.) Two ground terms u1 and u2 are said to 
be attributively equivalent (denoted by “u1 ~att u2”) if and 
only if 1) u1.ob and u2.ob are observationally equivalent for 
any applicable observer ob, and 2) u1 and u2 are normally 
equivalent when there is no applicable observer ob. From 
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the definition, normal equivalence is a special case of 
observational equivalence, which is a special case of 
attributive equivalence. 

Consider a canonical specification and an implementa-
tion of a given class. Two objects O1 and O2 are said to be 
observationally equivalent (denoted by “O1 ≈obs O2”) if and 
only if 1) O1.oc and O2.oc are observationally equivalent 
objects for any applicable observable context oc, and 2) O1 
and O2 are identical objects (denoted by O1 = O2) when 
there is no applicable observable context oc. Two objects 
O1 and O2 are said to be attributively equivalent (denoted 
by “O1 ≈att O2”) if and only if 1) O1.ob and O2.ob are 
observationally equivalent objects for any applicable 
observer ob, and 2) O1 and O2 are identical objects when 
there is no applicable observer ob. 

If the output class of the last operation in the term u is 
a primitive type (that is, it corresponds to a built-in type in 
the implementation language, such as int in C++), then 
the normal form of u is a constant k of the primitive type. 
In such case, we write “u ~nor k,” “u ~obs k,” and “u ~att k” 
in the specification as “u = k,” where “=” denotes equality 
in the primitive type. Similarly, we write “O1 ≈obs k” and 
“O1 ≈att k” in the implementation as “O1 = k.” 

Given an algebraic specification of a class C, suppose 
oci (i = 1, 2, ..., n) is an observable context on C and every 
ocj (j = 2, 3, ..., n) is applicable to ocj–1. Then, the sequence 
oc1.oc2.···.ocn is called an observable context sequence (or 
simply an oc sequence) on C, and its length is said to be n. If 
the output class of ocn is a primitive type (that is, a built-in 
type in the implementation language), then oc1.oc2.···.ocn is 
called a primitive oc sequence on C. 

A module in an algebraic specification may import 
known classes to support the functional requirements of a 
specified class. We say that the specification of the class 
has proper imports if and only if every oc sequence is of 
finite length and can be extended to a primitive oc 
sequence in a finite number of steps. We say that an 
implementation P of a class is complete with respect to an 
algebraic specification Sp if and only if every operation f 
in Sp is implemented by a unique method Θ(f) in P such 
that the output class or type of Θ(f) is consistent with the 
output class or type of f, and the constants in P are 
consistent with the constants in Sp. 

For a complete implementation, given any ground 
term u in Sp, we use Θ(u) to denote the unique object that 
results from executing the implemented method sequence 
corresponding to u. In particular, for a complete imple-
mentation, any constant k in Sp corresponds to a constant 
k in P. We write Θ(k) = k. 

Given a canonical specification Sp of a class with 
proper imports and a complete implementation P, we 
define P to be correct with respect to Sp if and only if both of 
the following criteria are satisfied: 

1. Equivalence Criterion. For any pair of observationally 
equivalent terms u1 and u2, the objects Θ(u1) and Θ(u2) 
that result from executing the corresponding 
implemented method sequences are observationally 
equivalent. That is, (∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs 
Θ(u2))). In this case, we also say P satisfies all the 
observationally equivalent ground pairs specified in Sp. 

2. Nonequivalence Criterion. For any pair of observa-
tionally nonequivalent terms v1 and v2, the objects 
Θ(v1) and Θ(v2) that result from executing the 
corresponding implemented method sequences are 
observationally nonequivalent. That is, (∀v1)(∀v2)(¬(v1 
∼obs v2) → ¬(Θ(v1) ≈obs Θ(v2))). In this case, we also say P 
satisfies all the observationally nonequivalent ground pairs 
specified in Sp. 

We say that a failure of P with respect to Sp is revealed if 
either of the above criteria is negated, that is, if one of the 
following conditions is satisfied: 

1’. Equivalence Failure Criterion. (∃u1)(∃u2)((u1 ∼obs u2) ∧ 
¬(Θ(u1) ≈obs Θ(u2))). 

2’. Nonequivalence Failure Criterion. (∃v1)(∃v2)(¬(v1 ∼obs 
v2) ∧ (Θ(v1) ≈obs Θ(v2))). 

4 NEW RELATIONSHIP BETWEEN THE 

EQUIVALENCE AND NONEQUIVALENCE CRITERIA 

Class-level testing based on algebraic specifications 
involves two aspects, namely, the testing of observation-
ally equivalent ground terms and the testing of observa-
tionally nonequivalent ground terms. Two important 
questions immediately arise: What is the relationship 
between these two aspects? How much does one cover 
the other? 

Previous work such as Doong and Frankl [16], Gaudel 
[18], Chen et al. [10], and Zhu [32] argues that successful 
exhaustive testing of one aspect does not entail successful 
testing of the other. As pointed out by Gaudel [18], “The 
definition of [the set of all ground instances of all the 
axioms] ExhaustSp comes from the notion of satisfaction of 
[21]. However, it does not correspond exactly to initial 
semantics of algebraic specifications since inequalities are 
not tested: it rather corresponds to loose semantics. ... In 
[16], a bigger exhaustive test set is mentioned which 
includes for every ground term the inequalities with other 
normal forms, following the definition of initial seman-
tics.” Zhu [32] further recognizes that “One of [Doong 
and Frankl’s] most important contributions ... is the 
extension of test cases to include negative test cases, 
which consists of two terms that are supposed to generate 
non-equivalent results.” 

The following is an intuitive example that is repre-
sentative of this philosophy. 

Example 2 (adapted from Doong and Frankl [16] and 
Chen et al. [10]). Suppose none of the operations 
changes the states of objects in a faulty implementation. 
Given any two observationally equivalent ground 
terms, the corresponding objects returned by the imple-
mentation will, of course, be equivalent. Intuitively, the 
failure cannot be revealed by testing equivalent terms 
only. One can conclude, therefore, that the testing of 
observationally nonequivalent ground terms is argu-
ably necessary and cannot be ignored. 

Although Example 2 appears intuitively to be valid, it 
is, in fact, not always the case. We can construct a simple 
counterexample as follows: 
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Example 3. Consider the algebraic specification of the 
class IntStack in Example 1 again. Suppose an imple-
mentation of this specification is as follows, where 
array[1] is the top of the stack and array[100] is the 
bottom. 

 # include <iostream> 
 # define SIZE 100 
 # define NIL 0 
 class intStack { 
    int array[SIZE]; 
    public: ... 
 }; 
 ... 
 void intStack :: newStack() { 
    for (int j = 1; j <= 100; j ++) 
       array[j] = NIL; 
 } 
 void intStack :: push(int N) { 
    for (int j = 100; j > 1; j − −) 
       array[j] = array[j − 1]; 
    array[1] = NIL; 
    /* There is a fault in the above statement. */ 
    /* It should be "array[1] = N;". */ 
 } 
 void intStack :: pop () { 
    for (int j = 1; j < 100; j++) 
       array[j] = array[j + 1]; 
    array[100] = NIL; 
 } 
 int intStack :: top () { 
    return array[1]; 
 } 
As a result of the fault in the implemented method 

push(int N), the states of all the objects in the 
implemented class are always (NIL, NIL, …, NIL), 
satisfying the precondition that “none of the operations 
changes the states of objects” of Example 2. However, 
the conclusion that “the failure cannot be revealed by 
testing equivalent terms only” of Example 2 is not true, 
because a pair of failure-revealing equivalent terms can 
be constructed thus: 

Substituting S by “new” and N by any value (such as 
6) in the axiom a5: S.push(N).top = N, we obtain the 
following fundamental pair of equivalent terms: 

 new.push(6).top ∼ 6 
Under the above implementation, these two terms 

return different observable results, namely, “nil” and 
“6”, respectively. Hence, this fundamental pair reveals 
a failure due to the fault in the implemented method 
push(int N). Thus, Example 2 is refuted. 

Following standard practice in software testing, we use 
the term “fault” to mean an incorrect instruction in the 
program and the term “failure” to mean an incorrect exe-
cution result. In Example 3, for instance, array[1] = NIL is 
a fault and Θ(new.push(6).top) ≈obs Θ(new.push(8).top) is a 
failure due to that fault. In general, a fault may cause 
more than one failure. For instance, Θ(new.top) ≈obs 
Θ(new.push(4).top) is another failure due to the same 
fault. We note also that in Example 3 as well as Examples 
4 and 5 that follow, we assume that there is a built-in type 

int in the implementation language for the type Int in the 
specification. This assumption is reasonable. 

On one hand, Example 3 serves as a counterexample to 
refute the intuitive Example 2. On the other hand, Exam-
ple 3 shows only one particular scenario where, given an 
observationally nonequivalent pair that reveals a failure, 
there is an observationally equivalent pair that also re-
veals a failure due to the same fault. To take a broader 
view, let us consider a slightly more general Example 4 
first, and then follow up with generalized lemmas, 
theorem, and proofs. 

Example 4. Take the algebraic specification of the class 
IntStack in Example 1 and the implementation in 
Example 3 again. Consider a pair of ground terms 
new.push(1).push(3).push(5) and 
new.push(2).push(3).push(5). They exhibit the follow-
ing properties: 
(a) There is an observable context in the specification, 

namely, pop.pop.top, which operates on the two 
ground terms to give different results: 

 new.push(1).push(3).push(5).pop.pop.top = 1 (4.1) 
 new.push(2).push(3).push(5).pop.pop.top = 2 (4.2) 

 Hence, the two original ground terms are observa-
tionally nonequivalent. 

(b) Based on the two ground terms in the specification, 
two sequences of methods in the implementation 
in Example 3 will be executed, namely, 

 Θ(new).Θ(push(1)).Θ(push(3)).Θ(push(5))  and 
 Θ(new).Θ(push(2)).Θ(push(3)).Θ(push(5)). 

 The two objects that result from executing these 
sequences of methods corresponding to the two 
ground terms are observationally equivalent 
because they are both observationally equivalent to 
Θ(new). Hence, the two ground terms 
new.push(1).push(3).push(5) and 
new.push(2).push(3).push(5) reveal a failure. In 
particular, the observable context in the imple-
mentation corresponding to pop.pop.top, namely, 
Θ(pop).Θ(pop).Θ(top), operates on the two objects 
to give the same result: 

 Θ(new).Θ(push(1)).Θ(push(3)).Θ(push(5)). 
Θ(pop).Θ(pop).Θ(top) = 0 (4.3) 

 Θ(new).Θ(push(2)).Θ(push(3)).Θ(push(5)). 
Θ(pop).Θ(pop).Θ(top) = 0 (4.4) 

(c) At least one of the right-hand values in (4.1) and 
(4.2) for the specification is inconsistent with the 
right-hand value in (4.3) and (4.4) for the imple-
mentation. In this particular example, Θ(1) = 1 and 
Θ(2) = 2, which are both different from 0. Without 
loss of generality, consider (4.1). It can be regarded 
as a pair of observationally equivalent ground 
terms 

 new.push(1).push(3).push(5).pop.pop.top  and 
 1. 
 However, their corresponding objects are non-

equivalent: 
 Θ(new).Θ(push(1)).Θ(push(3)).Θ(push(5)). 

Θ(pop).Θ(pop).Θ(top) = 0  but 
 Θ(1) ≠ 0. 
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 Hence, they also reveal a failure due to the same 
fault. 

In summary, based on a given pair of observationally 
nonequivalent ground terms  
new.push(1).push(3).push(5)  and  
new.push(2).push(3).push(5)  that reveal a failure, we 
have identified a pair of observationally equivalent 
ground terms new.push(1).push(3).push(5).pop.pop.top  
and  1  that also reveal a failure due to the same fault. 

Let us consider also the reverse scenario. 
Example 5. Take the algebraic specification of the class 
IntStack in Example 1 again. Consider another faulty 
implementation in which pop is implemented as a null 
operation that does nothing while other operations are 
implemented correctly. The pair of observationally 
equivalent ground terms new.push(1) and 
new.push(1).push(3).pop reveal a failure because they 
are observationally equivalent but produce different 
objects in the given implementation. They also exhibit 
the following properties: 
(a) There is an observable context in the specification, 

namely, top, which operates on the two ground 
terms to give identical results 

 new.push(1).top = 1 (4.5) 
 new.push(1).push(3).pop.top = 1 (4.6) 

(b) The two objects that result from executing the 
operations in the implementation corresponding to 
new.push(1) and new.push(1).push(3).pop 
(namely, Θ(new).Θ(push(1)) and 
Θ(new).Θ(push(1)).Θ(push(3)).Θ(pop)) are observa-
tionally nonequivalent because the corresponding 
observable context in the implementation (namely, 
Θ(top)) operates on the two objects to give different 
results 

 Θ(new).Θ(push(1)).Θ(top) = 1 (4.7) 
 Θ(new).Θ(push(1)).Θ(push(3)).Θ(pop).Θ(top) 
 = 3 (4.8) 

(c) At least one of the right-hand values in (4.7) and 
(4.8) for the implementation is inconsistent with the 
right-hand value in (4.5) and (4.6) for the specifica-
tion. In this particular example, (4.8) is inconsistent 
with the specification. Let us take the pair of 
observationally nonequivalent ground terms 
new.push(1).push(3).pop.top (that is, the left-hand 
side of (4.6))  and  3. Their corresponding objects 

 Θ(new).Θ(push(1)).Θ(push(3)).Θ(pop).Θ(top) 
 and  Θ(3) 

 are observationally equivalent by (4.8). Hence, they 
also reveal a failure due to the same fault. 

In short, based on a given pair of observationally 
equivalent ground terms new.push(1) and 
new.push(1).push(3).pop that reveal a failure, we can 
identify a pair of observationally nonequivalent ground 
terms  new.push(1).push(3).pop.top  and  3  that also 
reveal a failure due to the same fault. 

Is there a specific class of specifications and implemen-
tations such that if an observationally nonequivalent 
ground pair reveals a failure due to a certain fault, then 
there exists an observationally equivalent ground pair 
that will also reveal a failure due to the same fault, and 

vice versa? That is, under what conditions will the testing 
of observationally equivalent ground terms and observa-
tionally nonequivalent ground terms cover each other? 
The following lemmas and theorem help answer the 
questions. 

Lemma 1. Given a canonical specification Sp of a 
class with proper imports and a complete imple-
mentation P, if P satisfies all the observationally 
equivalent ground pairs specified in Sp, it will also 
satisfy all the observationally nonequivalent ground 
terms specified in Sp. Formally, given such a speci-
fication and implementation, 

(∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs Θ(u2))) 
 (∀u1)(∀u2)(¬(u1 ∼obs u2) → ¬(Θ(u1) ≈obs Θ(u2))).
 (4.9) 

The following is the formal proof of Lemma 1. 
Example 4 above illustrates its train of thought. 

Proof. We prove the lemma by reductio ad absurdum. 
Assume that the left-hand side of (4.9) is true but the 
right-hand side is false, that is, (∃u1)(∃u2)(¬(u1 ∼obs u2) ∧ 
(Θ(u1) ≈obs Θ(u2))). In this case, Θ(u1) ≈obs Θ(u2) is caused by 
an implementation fault, which we will denote by f. 

Since ¬(u1 ∼obs u2) and the given class has proper 
imports, according to the definition of observational 
equivalence ∼obs and the definition of proper imports, 
there exists an oc sequence ocs on the specification such 
that the output class of the observer at the end of the ocs is 
a primitive type, and u1.ocs ≠ u2.ocs.3 Hence, there are two 
values k1 and k2 of the primitive type such that k1 ≠ k2, 
u1.ocs = k1, and u2.ocs = k2. As the implementation is 
complete, there is a unique method sequence Θ(ocs) that 
implements ocs. Since the class has proper imports and 
the implementation is complete, Θ(ocs) must also end 
with a primitive type, so that Θ(u1).Θ(ocs) = k for some 
value k of the primitive type. Because Θ(u1) ≈obs Θ(u2), 
according to the definition of observational equivalence 
≈obs, we have Θ(u2).Θ(ocs) = Θ(u1).Θ(ocs) = k. 

As k1 ≠ k2, we must have k ≠ k1 or k ≠ k2. Without loss of 
generality, suppose k ≠ k1. In that case, we have u1.ocs = k1 
but Θ(u1).Θ(ocs) = k ≠ k1. 

Let Θ(u1.ocs) denote the execution result of imple-
mented method sequence corresponding to the specified 
operation sequence u1.ocs. Since the implementation is 
complete, we have Θ(u1.ocs) = Θ(u1).Θ(ocs) = k ≠ k1. Let 
Θ(k1) denote the execution result of k1. Because k1 is the 
value of a primitive type, we have Θ(k1) = k1 ≠ k. Based on 
these relations, we obtain u1.ocs = k1 but Θ(u1.ocs) ≠ Θ(k1). 

According to the definition of observational equiva-
lence, as the output class of the operation at the end of 
u1.ocs is a primitive type, u1.ocs = k1 means u1.ocs ∼obs k1 and 
Θ(u1.ocs) ≠ Θ(k1) means ¬(Θ(u1.ocs) ≈obs Θ(k1)). (See the 
basic concept of primitive types in Section 3.) Thus, we 
have (u1.ocs ∼obs k1) ∧ ¬(Θ(u1.ocs) ≈obs Θ(k1)). This 
contradicts the left-hand side of (4.9). 

                                                             
3 If u1 or u2 ends with an observer of a primitive type, then ocs will be 

empty. Consider, for instance, u1 = new.push(1).top and u2 = 2 in 
Example 1. Since new.push(1).top ≠ 2 according to axiom a6, we have 
¬(u1 ∼obs u2). See the explanation of primitive types in Section 3. In this 
case, u1 ends with an observer top and hence ocs is empty. 
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We note from the above that ¬(Θ(u1.ocs) ≈obs Θ(k1)) is 
derived from Θ(u1) ≈obs Θ(u2), which is caused by the fault 
f. In other words, ¬(Θ(u1.ocs) ≈obs Θ(k1) and Θ(u1) ≈obs Θ(u2) 
are due to the same fault f.  

The converse of Lemma 1 is also true, as stated as 
follows: 

Lemma 2. Given a canonical specification Sp of a 
class with proper imports and a complete imple-
mentation P, if P satisfies all observationally non-
equivalent ground pairs specified in Sp, it will also 
satisfy all observationally equivalent ground pairs 
specified in Sp. Formally, given such a specification 
and implementation, 

(∀u1)(∀u2)(¬(u1 ∼obs u2) → ¬(Θ(u1) ≈obs Θ(u2))) 
 (∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs Θ(u2))).

 (4.10) 

The following is the formal proof of Lemma 2. 
Example 5 above illustrates its train of thought. 

Proof. We also prove the lemma by reductio ad 
absurdum. Assume that the left-hand side of (4.10) holds 
but the right-hand side is false, that is, (∃u1)(∃u2)((u1 ∼obs 
u2) ∧ ¬(Θ(u1) ≈obs Θ(u2))). 

Since ¬(Θ(u1) ≈obs Θ(u2)) and the given class has proper 
imports, according to the definition of observational 
equivalence ≈obs and the definition of proper imports, 
there exists an oc sequence Θ(ocs) in the implementation 
such that the output class of the observer at the end of 
Θ(ocs) is a primitive type, and Θ(u1).Θ(ocs) ≠ Θ(u2).Θ(ocs).4 
In other words, Θ(u1).Θ(ocs) = k1 and Θ(u2).Θ(ocs) = k2 for 
some values k1 and k2 of a primitive type such that k1 ≠ k2. 

As the implementation is complete, there exists a 
unique operation sequence ocs implemented by Θ(ocs). 
Since the class has proper imports and the implementa-
tion is complete, ocs must also end with a primitive type, 
so that u1.ocs = k for some value k of the primitive type. 
Because u1 ∼obs u2, according to the definition of observa-
tional equivalence ∼obs, we have u2.ocs = u1.ocs = k. As k1 ≠ 
k2, we must have k ≠ k1 or k ≠ k2. Without loss of 
generality, suppose k ≠ k1. In such case, we have u1.ocs = k 
≠ k1 but Θ(u1).Θ(ocs) = k1. Let Θ(u1.ocs) denote the 
execution result of the method sequence that implements 
the specified operation sequence u1.ocs. Since the imple-
mentation is complete, we have Θ(u1.ocs) = Θ(u1).Θ(ocs). 
Let Θ(k1) denote the execution result of k1. Because k1 is 
the value of a primitive type, we have Θ(k1) = k1. Based on 
these relations, we obtain u1.ocs ≠ k1 but Θ(u1.ocs) = Θ(k1). 
In other words, ¬(u1.ocs ∼obs k1) ∧ (Θ(u1.ocs) ≈obs Θ(k1)). This 
contradicts the left-hand side of (4.10). 

Similarly to the note at the end of the proof of Lemma 
1, Θ(u1.ocs) ≈obs Θ(k1) and ¬(Θ(u1) ≈obs Θ(u2)) are due to the 
same fault.  

Putting Lemmas 1 and 2 together, we arrive immedi-
ately at the following theorem. 

Theorem 1. Given a canonical specification of a 
class with proper imports and a complete imple-
mentation, the following two criteria 

                                                             
4 If O1 and O2 are values of a primitive type, then ocsimpl is empty. 

a. Equivalence Criterion: 
(∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs Θ(u2))) 

b. Nonequivalence Criterion: 
(∀v1)(∀v2)(¬(v1 ∼obs v2) → ¬(Θ(v1) ≈obs Θ(v2))) 

imply each other. Hence, the implementation satis-
fies the specification if and only if we can show that 
either a or b is satisfied. 

We can express Theorem 1 in the form 
(∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs Θ(u2))) 
⇔ (∀v1)(∀v2)(¬(v1 ∼obs v2) → ¬(Θ(v1) ≈obs Θ(v2))). 
 (4.11) 

Let OE denote the set of all pairs of observationally 
equivalent ground terms of Sp, and OE’ denote the set of 
all pairs of observational nonequivalent ground terms. It 
follows from (4.11) that 

(∀{u1, u2} ∈ OE)(Θ(u1) ≈obs Θ(u2)) 
⇔ (∀{v1, v2}∈ OE’)(¬(Θ(v1) ≈obs Θ(v2))). (4.12) 

However, this may be too formal for the average software 
tester. For the sake of brevity, we will define a concept of 
“P satisfies X” in the paper as follows: 

Definition 1 (P Satisfies X). 
a. Given any set AE of pairs of attributively 

equivalent terms, “P satisfies AE” means that for 
any pair of terms u1 and u2 in AE, their corres-
ponding implementations Θ(u1) and Θ(u2) are 
attributively equivalent. That is, 

(∀{u1, u2} ∈ AE)(Θ(u1) ≈att Θ(u2)). 
b. Given any set X of pairs of equivalent terms of a 

specified type other than attributive equivalence, 
“P satisfies X” means that for any pair of terms u1 
and u2 in X, their corresponding implementations 
Θ(u1) and Θ(u2) are observationally equivalent. 
That is, 

(∀{u1, u2} ∈ X)(Θ(u1) ≈obs Θ(u2)). 
c. Given any set AE’ of pairs of attributively non-

equivalent terms, “P satisfies AE’ ” means that 
for any pair of terms v1 and v2 in AE’, their cor-
responding implementations Θ(v1) and Θ(v2) are 
attributively nonequivalent. That is, 

(∀{v1, v2}∈ AE’)(¬(Θ(v1) ≈att Θ(v2))). 
d. Given any set X’ of pairs of nonequivalent terms 

of a specified type other than attributive non-
equivalence, “P satisfies X’ ” means that for any 
pair of terms v1 and v2 in X, their corresponding 
implementations Θ(v1) and Θ(v2) are observation-
ally nonequivalent. That is, 

(∀v1, v2 ∈ X’)(¬(Θ(v1) ≈obs Θ(v2))). 

Attributive equivalence is treated separately in Definition 
1a because it would be too strong to require that u1 and u2 
are attributively equivalent in the specification but Θ(u1) 
and Θ(u2) are observationally equivalent in the implemen-
tation. Readers may refer to [10, Theorems 2 and 3] and 
[10, note (f), p. 78] for more reasoning behind this point. 
For the sake of uniformity of style, we also treat 
attributive nonequivalence separately in Definition 1c.  

Based on the notation in Definition 1, we can simply 
write (4.12) as 

(P satisfies OE) ⇔ (P satisfies OE’). (4.13) 



8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 

 

This is an important result because OE and OE’ are 
intuitively not subsets of each other. In fact, OE ∩ OE’ 
= Ø. 

In Section 6, we will further extend (4.13) with other 
forms of “P satisfies X” proposed by previous related 
work, such as “P satisfies FP,” “P satisfies CI,” “P satisfies 
GI,” “P satisfies RP,” “P satisfies NE,” “P satisfies AE,” 
and “P satisfies AE’.” 

5 MUTUAL REPLACEABILITY OF EQUIVALENCE AND 

NONEQUIVALENCE CRITERIA 

In this section, we discuss the implications of the new 
results in the last section to the class-level testing of 
object-oriented software. 

Taking the negations of criteria a and b in Theorem 1, 
we obtain: 

Corollary 1. Given a canonical specification of a 
class with proper imports and a complete imple-
mentation, the following two criteria 

a’. Equivalence Failure Criterion: 
(∃u1)(∃u2)((u1 ∼obs u2) ∧ ¬(Θ(u1) ≈obs Θ(u2))) 

b’. Nonequivalence Failure Criterion: 
(∃v1)(∃v2)(¬(v1 ∼obs v2) ∧ (Θ(v1) ≈obs Θ(v2))) 

imply each other. 

Corollary 2. Given any canonical specification of a 
class with proper imports, suppose its implementa-
tion is complete. If a pair of nonequivalent terms 
¬(v1 ∼obs v2) reveals a failure due to a fault f, then 
there exists a pair of equivalent terms (u1 ∼obs u2) that 
will also reveal a failure due to the same fault f, and 
vice versa. In other words, the testing of observa-
tionally equivalent ground terms and the testing of 
observationally nonequivalent ground terms cover 
each other. 

Proof. If a pair of nonequivalent terms ¬(v1 ∼obs v2) 
reveals a failure, according to the nonequivalent failure 
criterion, we have Θ(v1) ≈obs Θ(v2). Similarly to the proof of 
Lemma 1, we have (v1.ocs ∼obs k1) and ¬(Θ(v1.ocs) ≈obs Θ(k1)), 
where, ¬(Θ(v1.ocs) ≈obs Θ(k1)) and Θ(u1) ≈obs Θ(u2) are due to 
the same fault f. Thus, the pair of equivalent terms (v1.ocs 
∼obs k1) also reveals a failure due to the same fault f. The 
proof of the converse is similar.  

Corollary 3. Given any canonical specification of a 
class with proper imports, suppose its implementa-
tion is complete. Let OE be the set of all observa-
tionally equivalent ground pairs and OE’ be the set 
of all observationally nonequivalent ground pairs. 
Given any finite test suit OEs’ ⊂ OE’, there exists a 
finite test suit OEs ⊂ OE such that for any failure 
(due to a fault) revealed by a test case in OEs’, a 
failure (due the same fault) can also be revealed by 
a test case in OEs. Conversely, given any finite test 
suite OEt ⊂ OE, there exists a finite test suite OEt’ ⊂ 
OE’ such that for any failure (due to a certain fault) 
revealed by a test case in OEt, a failure (due to the 
same fault) can also be revealed by a test case in 
OEt’. Thus, we can replace a finite test suit of obser-

vationally nonequivalent ground pairs by a finite 
test suit of observationally equivalent ground pairs 
while revealing failures due to the same faults, and vice 
versa. 

Proof. For any failure (due to a fault, say, f) revealed 
by a nonequivalent pair oe’ in OEs’, by Corollary 2, there 
exists an equivalent pair oe that will also reveal a failure 
due to the same fault f. Let OEs be the set of all such oe. As 
OEs’ is finite and every test case in OEs’ may reveal at 
most one failure, OEs is also finite and satisfies the post-
condition. The proof of the converse is similar.   

In addition to a formal proof, readers may also be 
interested in how OEs can actually be constructed. This 
can be achieved by the following procedure: 

Procedure 1. Given any canonical specification of a 
class with proper imports, suppose its implementation 
is complete. Suppose further that there is a set F of 
failures that can be revealed by a finite test suite OEs’ (⊂ 
OE’) of observationally nonequivalent ground pairs. 
The following procedure shows that there exists 
another finite test suite OEs (⊂ OE) of observationally 
equivalent ground pairs such that, for every failure in F 
(due to a certain fault f), there is a test case in OEs that 
can also reveal a failure due to the same fault f. 

 Procedure { 
 Read OEs’; 
 OEs = Ø; 
 For each oe’ ∈ OEs’ do { 
  /* Each oe’ should be of the form ¬(u1 ∼obs u2). 
   Each oe’ reveals a failure in F. */ 
  /* Under such oe’, Θ(u1) ≈obs Θ(u2). */ 
  There exists an oc sequence ocs on the 
   specification such that the output class of the 
   observer at the end of the ocs is a primitive 
   type and u1.ocs ≠ u2.ocs; 
  Suppose u1.ocs = k1 and u2.ocs = k2 such that 
   k1 ≠ k2; 
  There exists a unique method sequence Θ(ocs) 
   that implements ocs; 
  If Θ(u1).Θ(ocs) = k, as Θ(u1) ≈obs Θ(u2), 
   we should have 
   Θ(u2).Θ(ocs) = Θ(u1).Θ(ocs) = k; 
  As k1 ≠ k2, we must have k ≠ k1 or k ≠ k2; 
  Without loss of generality, suppose k ≠ k1; 
  Thus, we have u1.ocs = k1 
   but Θ(u1).Θ(ocs) = k ≠ k1; 
  Let Θ(u1.ocs) denote the execution result of 
   implemented method sequence 
   corresponding to u1.ocs; 
  We have Θ(u1.ocs) = Θ(u1).Θ(ocs) = k ≠ k1; 
  Thus, we obtain u1.ocs = k1 
   but Θ(u1.ocs) ≠ Θ(k1) = k1, 
   that is, (u1.ocs ∼obs k1) ∧ ¬(Θ(u1.ocs) ≈obs Θ(k1)); 
  Denote the pair of equivalent terms 
    (u1.ocs ∼obs k1) by oe; 
  Set OEs = OEs ∪ {oe}; 
  } 
 Write OEs; 
 } 
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In summary, given a canonical specification of a class 
with proper imports and a complete implementation, as 
candidate sets for test case selection, the infinite set of all 
observationally nonequivalent ground pairs can be re-
placed by the infinite set of all observationally equivalent 
ground pairs while revealing failures due to the same faults, 
and vice versa. Furthermore, as test suites, a given finite 
set of observationally nonequivalent ground pairs can be 
replaced by a finite set of observationally equivalent 
ground pairs while revealing failures due to the same faults, 
and vice versa. Of course, we should not expect that the 
infinite set of all observationally nonequivalent (or equiv-
alent, respectively) ground pairs can be replaced by a 
finite set of observationally equivalent (or nonequivalent, 
respectively) ground pairs while revealing failures due to 
the same faults. 

6 THEORETICAL IMPLICATIONS IN RELATION TO 

PREVIOUS WORK ON CLASS-LEVEL TESTING 

BASED ON ALGEBRAIC SPECIFICATIONS 

In this section, we present the theoretical impacts and 
contributions of our present work in relation to previous 
research on object-oriented software testing based on 
algebraic specifications. We will present the practical 
implications in the next section. 
(a) In previous work such as Aiguier et al. [1], Bernot et 

al. [3], [4], Le Gall and Arnould [26], Machado [27], 
[28], and Machado and Sannella [29], the authors 
defined that a program P is correct with respect to a 
specification Sp if and only if P satisfies the set of all 
ground instances of every axiom in Sp. For the sake 
of brevity, we will use GI to denote this set of all such 
ground instances. Although the above authors 
referred to GI as an “exhaustive test set,” Gaudel [18] 
pointed out that “it does not correspond exactly to 
initial semantics of algebraic specifications since 
inequalities are not tested: it rather corresponds to 
loose semantics.” 

(b) Aiguier et al. [1] proved that, given a canonical 5 
specification Sp, if P satisfies the set of all ground 
instances of every axiom in Sp that contains only 
creators or constructors (but not transformers), then P 
satisfies GI. We will use CI to denote this set of all 
ground instances of every axiom that contains only 
creators or constructors.6 In other words, Aiguier et 
al. proved that 

(P satisfies CI)  (P satisfies GI). 
On the other hand, we note that the ground instances 
of any axiom may or may not contain only creators or 
constructors in general. Hence, 

CI ⊂ GI, (6.1) 

                                                             
5 The original wording in Aiguier et al. [1] was “under the form of a 

reductive and confluent rewrite system”. Readers in theoretical computer 
science may recall that a specification in a rewrite system is canonical if 
and only if it is reductive and confluent. 

6 Other authors such as Gaudel and Le Gall [19] refer to CI as the set of 
ground instances of every axiom that contains only constructors, because 
they regard creators as constructors also. 

where “⊂” denotes “is a proper subset of.” In other 
words, CI ≠ GI. It follows from (6.1) and Definition 1b 
that 

(P satisfies GI)  (P satisfies CI). (6.2) 
(c) In 1994, Doong and Frankl [16] defined that P is 

correct with respect to Sp if and only if P satisfies the 
set of all “equivalent” ground pairs in Sp and the set 
of all “nonequivalent” ground pairs in Sp, where two 
ground terms are said to be “equivalent” if and only 
if the first can be rewritten into the second. Intui-
tively, the new definition requires that P should not 
only satisfy every axiom individually, but also satisfy 
the results from multiple usages of axioms as left-to-
right rewrite rules. The former does not necessarily 
imply the latter, as pointed out by Weyuker’s anti-
composition and antidecomposition axioms [30]. 

We will use RP to denote the former set of all such 
“equivalent” ground pairs7 and use RP’ to denote the 
latter set of all “nonequivalent” ground pairs. 
According to Gaudel [18], this “bigger exhaustive test 
set [RP ∪ RP’ ] ... includes for every ground term the 
inequalities with other normal forms, following the 
definition of initial semantics.” Gaudel and Le Gall 
[19] indicate that this is “an example of a case where 
the [bigger] exhaustive test set is not built from 
instantiations of the axioms, but more generally from 
an adequate set of semantic consequences of the spec-
ification.” Zhu [32] further recognizes that “One of 
[Doong and Frankl’s] most important contributions ... 
is the extension of test cases to include negative test 
cases, which consists of two terms that are supposed 
to generate non-equivalent results.” 

A pair of ground terms u1 and u2 is said to be 
“equivalent” in Doong and Frankl [16] if and only if 
u1 can be rewritten to u2 using one or more axioms as 
left-to-right rewrite rules. In particular, if only one 
axiom is used, u1 and u2 will be a ground instance of 
an axiom. Hence, we have 

GI ⊂ RP, (6.3) 
where the symbol “⊂” again denotes “is a proper 
subset of.” It follows from (6.3) and Definition 1b that 

(P satisfies RP)  (P satisfies GI). (6.4) 
We will discuss the converse after consolidating all 
the logic relationships in the proof of (6.16). 

(d) In 1998, Chen et al. [9] found that the “equivalence” 
criterion in Doong and Frankl [16] corresponding to 
“P satisfies RP” is problematic. To solve the problem, 
they defined the concepts of normal equivalence and 
fundamental pairs. Any pair of ground terms u1 and 
u2 are normally equivalent if and only if both of them 
can be rewritten to the same normal form. Each 
fundamental pair is formed by replacing all the 
variables on both sides of an axiom by normal forms. 
We will use NE to denote the set of normally equiva-
lent pairs, and FP to denote the set of all fundamental 
pairs. We note the following properties: 

                                                             
7 RP is an abbreviation for “Rewriting Pair”. 
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(i) Chen et al. prove in [9, Theorem 2] that, given a 
canonical specification of a class with proper 
imports and a complete implementation P, 

(P satisfies NE) ⇔ (P satisfies FP) (6.5) 
even though FP is only a proper subset of NE. 

(ii) Each pair of terms in CI is formed by replacing 
all the variables on both sides of an axiom by 
ground terms containing only creators or construc-
tors. Since every normal form contains only 
creators or constructors, we have FP ⊆ CI. Con-
versely, it is proven in [8, Proposition 4] that 
every ground term containing only creators or 
constructors may not necessarily be in normal 
form, and hence we have FP ≠ CI, and hence 

FP ⊂ CI. (6.6) 
It follows from (6.6) and Definition 1b that 

(P satisfies CI)  (P satisfies FP). (6.7) 
We will also discuss the converse after consoli-
dating all the logic relationships in the proof 
of (6.16). 

(e) In 2001, Chen et al. [10] showed that the “equivalence 
and not-equivalence” criteria in Doong and Frankl 
[16] corresponding to “P satisfies RP and P satisfies 
RP’ ” are problematic. Given any pair of ground 
terms u1 and u2, if u1 can be rewritten to u2, then they 
are said to be “equivalent” in the sense of RP. 
However, since u2 cannot be rewritten to u1 in many 
circumstances, they are not “equivalent” in the sense 
of RP, thus giving contradictory verdicts. More 
seriously, the terms new.push(1).push(3).pop and 
new.push(5).pop.push(1) under the specification in 
Example 1 produce observationally equivalent ob-
jects when the implementation is correct. However, 
they are not “equivalent” in the sense of RP in [16]. 
Thus, they wrongly report a failure. 

As proven in [10, Theorem 1], “equivalence” in the 
sense of RP implies normal equivalence, but not vice 
versa. Hence, we have 

RP ⊂ NE. (6.8) 
It follows from (6.8) and Definition 1b that 

(P satisfies NE)  (P satisfies RP). (6.9) 
We will again discuss the converse after consoli-
dating all the logic relationships in the proof of (6.16). 

(f) Chen et al. [10] further defined that P is correct with 
respect to Sp if and only if P satisfies the set (OE) of 
all observationally equivalent ground pairs in Sp and 
the set (OE’) of all the observationally nonequivalent 
ground pairs in Sp. 

Let AE denote the set of all attributively equivalent 
ground pairs and AE’ denote the set of all attribu-
tively nonequivalent ground pairs. Chen et al. proved 
in [10, Theorems 1, 3, and 4] that 

NE ⊂ OE ⊂ AE  and  AE’ ⊂ OE’, (6.10) 
(P satisfies AE) ⇔ (P satisfies OE) 

⇔ (P satisfies NE), (6.11) 
(P satisfies OE’) ⇔ (P satisfies AE’). (6.12) 

(g) In Theorem 1 of this paper, we go one step further to 
connect (6.11) and (6.12) by proving mathematically 
that “P satisfies OE” if and only if “P satisfies OE’.” 
 

Hence, either one of them is a necessary and 
sufficient condition for verifying the general program 
correctness criterion of “P satisfies OE ∪ OE’.” In 
other words, although 

OE ⊂ OE ∪ OE’, (6.13) 
we have 

(P satisfies OE ∪ OE’) ⇔ (P satisfies OE) 
⇔ (P satisfies OE’). (6.14) 

Taking the subset relationships (6.1), (6.3), (6.6), (6.8), 
(6.10), and (6.13) together, for a canonical specification of 
a class with proper imports and a complete implementa-
tion, we have 

FP  ⊂  CI  ⊂  GI  ⊂  RP  ⊂  NE  ⊂  OE  ⊂  AE 
and  OE  ⊂  OE ∪ OE’. (6.15) 

Taking the logic relationships (6.2), (6.4), (6.5), (6.7), 
(6.9), (6.11), (6.12), and (6.14) together, for a canonical 
specification of a class with proper imports and a 
complete implementation, we have 

(P satisfies OE ∪ OE’) 
⇔ (P satisfies OE) ⇔ (P satisfies OE’) 
⇔ (P satisfies AE) ⇔ (P satisfies AE’) 
⇔ (P satisfies NE)  (P satisfies RP) 
 (P satisfies GI)  (P satisfies CI) 
 (P satisfies FP) ⇔ (P satisfies NE). 

Note that the relationships from “(P satisfies NE)” in 
line 4 to “(P satisfies NE)” in line 6 of the above statement 
form a cycle. We conclude that 

(P satisfies OE ∪ OE’) 
⇔ (P satisfies OE) ⇔ (P satisfies OE’) 
⇔ (P satisfies AE) ⇔ (P satisfies AE’) 
⇔ (P satisfies NE) ⇔ (P satisfies RP) 
⇔ (P satisfies GI) ⇔ (P satisfies CI) 
⇔ (P satisfies FP). (6.16) 

In summary, earlier work defined program correctness 
via GI, which included only a subset of test cases for 
verifying equivalent ground terms and did not include 
any test case for verifying nonequivalent ground terms. 
Doong and Frankl enhanced the semantics by expanding 
GI to RP ∪ RP’, which included subsets of test cases for 
verifying equivalent and nonequivalent ground terms. 
Chen et al. further improved the semantics by replacing 
RP ∪ RP’ by OE ∪ OE’. They also proved that, given a 
canonical specification of a class with proper imports and 
a complete implementation, the equivalence criterion “P 
satisfies OE” and the nonequivalence criterion “P satisfies 
OE’ ” can be expressed in terms of attributive equivalence 
and nonequivalence, which can be verified more easily in 
real-world practice. In this paper, we further prove that 
the equivalence criterion can be substituted by the non-
equivalence criterion and vice versa while revealing 
failures due to the same faults. In other words, either “P 
satisfies OE” or “P satisfies OE’ ” will be necessary and 
sufficient to confirm that “P satisfies OE ∪ OE’.” 

Please refer also to Table 1 for a visual summary. From 
the table, we see that researchers have gone a long way 
since the first proposal for program correctness according 
to “P satisfies GI.” 
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Table 1. Summary of Research on Program Correctness with Respect to Algebraic Specifications 

Bernot [3] in 1991     
Bernot et al. [4] in 1991     
Gaudel [18] in 1995     
Le Gall and Arnould [26] in 1996     
Machado [27] in 1998     
Machado [28] in 2000     
Machado and Sannella [29] in 2002     
Aiguier et al. [1] in 2006     
Gaudel and Le Gall [19] in 2008     
Doong and Frankl [16] in 1994     
Chen et al. [9] in 1998     
Chen et al. [10] in 2001     
Chen and Tse in the present paper     

Definitions of the Correctness of a Program P with Respect to a Specification Sp     

Define that P is correct with respect to Sp if and only if P satisfies the set (GI) of all ground 
instances of every axiom in Sp. 

   

Define a pair of “equivalent” ground terms as two ground terms such that one can be rewritten 
to the other using the axioms in Sp as left-to-right rewrite rules. Define that P is correct with 
respect to Sp if and only if P satisfies the set (RP) of all “equivalent” ground pairs in Sp and 
satisfies the set (RP’) of all “nonequivalent” ground pairs in Sp.

  

Point out that the “equivalence” and “nonequivalence” criteria (namely, P satisfies RP and P 
satisfies RP’) in the previous definition are problematic. Define pairs of observationally equivalent 
ground terms*. Define that P is correct with respect to Sp if and only if P satisfies the set (OE) of all 
observationally equivalent ground pairs in Sp and satisfies the set (OE’) of all the observationally 
nonequivalent ground pairs in Sp. 

 

Preconditions for the Correctness of a Program P with Respect to a Specification Sp 
Prove that, given a canonical specification Sp, if P satisfies the set (CI) of all ground instances of every 
axiom in Sp that contains creators or constructors only, then P satisfies GI.
Define two ground terms as (normally) equivalent if and only if both can be rewritten to the same normal 
form using the axioms in Sp as left-to-right rewrite rules. Further define a fundamental pair as two 
(normally) equivalent ground terms formed by replacing all the variables on both sides of an axiom by 
normal forms. Prove that, given a canonical specification Sp with proper imports and a complete 
implementation P, P satisfies the set (NE) of all normally equivalent ground pairs in Sp if and 
only if P satisfies the set (FP) of all fundamentals pairs in Sp, even though FP is only a proper subset of NE.
Prove that, given a canonical specification Sp with proper imports and a complete implementation P, 
P satisfies AE if and only if P satisfies OE,  P satisfies OE if and only if P satisfies NE,  and 
P satisfies AE’ if and only if P satisfies OE’.

 

Prove that, given a canonical specification Sp with proper imports and a complete implementation P, 
P satisfies OE if and only if P satisfies OE’. 

Highlight that 

FP  ⊂  CI  ⊂  GI  ⊂  RP  ⊂  NE  ⊂  OE  ⊂  AE,  and  OE  ⊂  OE ∪ OE’ 

where the relation “X ⊂ Y” denotes that X is a proper subset of Y, which infers that X ≠ Y. 
Prove that, given a canonical specification Sp with proper imports and a complete implementation P, 

 (P satisfies OE ∪ OE’) ⇔ (P satisfies OE) ⇔ (P satisfies OE’) 
 ⇔ (P satisfies AE) ⇔ (P satisfies AE’) 
 ⇔ (P satisfies NE) ⇔ (P satisfies RP) ⇔ (P satisfies GI) 
 ⇔ (P satisfies CI) ⇔ (P satisfies FP). 

Based on these relations, emphasize that if P satisfies AE’, then P satisfies all the sets AE, FP, CI, GI, RP, NE, OE, 
OE’, and OE ∪ OE’ in previous work. Then, conclude that it will be most effective to select test cases from the 
subset AE’, which is most easily conducted in real world practice. (See Section 7.2 for the details of this final 
point.) 
*  Previous work defined observational equivalence of objects but did not define observational equivalence of terms. 
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In general, a program P is correct if and only if it 
satisfies the requirements of its specification. In the case of 
an algebraic specification Sp, the requirements include 
two aspects: 
1. the program P must satisfy every axiom in Sp, and 
2. the program P must satisfy all the consequences 

derived from the axioms in Sp. 
OE ∪ OE’ is the set of all such consequences. Hence, the 
definition that program P is correct if and only if P satis-
fies GI, defined by early authors, considers aspect 1 only. 
However, the definition that program P is correct if and 
only if P satisfies OE ∪ OE’, defined in our previous work, 
takes into account not only aspect 1 but also aspect 2. As 
GI is only a proper subset of OE ∪ OE’, we have (P 
satisfies OE ∪ OE’)  (P satisfies GI) but the converse is 
not necessarily true. Under what conditions will the 
converse be valid? Other authors did not investigate this 
problem, while (6.16) and its proof in our current paper 
show that, given a canonical specification of a class with 
proper imports and a complete implementation, the 
converse will also hold. Under this specific condition, the 
previous proposal for program correctness according to 
“P satisfies GI ” can theoretically be retained. Similar 
arguments apply also to FP, CI, RP, NE, AE, and AE’. 

Given (6.16), does it mean that any of these criteria 
require the same amount of testing effort from software 
testers in real-world practice? The answer is not so simple. 
We will discuss the practical implications of (6.16) in the 
next section. 

7 PRACTICAL IMPLICATIONS IN CLASS-LEVEL 

TESTING BASED ON ALGEBRAIC SPECIFICATIONS 

7.1 Practical Implication in Test Case Selection 

This section discusses the practical implications due to the 
new relationship between the testing of observationally 
equivalent ground pairs and the testing of observationally 
nonequivalent ground pairs. For the sake of brevity, we 
will refer to the former as the testing of OE and the latter 
as the testing of OE’. In general, the relationship between 
the testing of OE and the testing of OE’ may fall into either 
of the following possibilities: 

Possibility 1: The testing of OE and the testing of OE’ 
does not imply each other. This has been the assumption 
of previous work such as Doong and Frankl [16], Gaudel 
[18], Gaudel and Le Gall [19], Chen et al. [10], and Zhu 
[32]. Under this view, a fault that causes a failure detecta-
ble by the testing of OE may or may not cause a failure 
detectable by the testing of OE’, and vice versa. Hence, 
given any implementation fault, it may 
a. cause a failure detectable by the testing of OE but does 

not cause a failure detectable by the testing of OE’, or 
b. cause a failure detectable by the testing of OE’ but does 

not cause a failure detectable by the testing of OE, or 
c. cause a failure detectable by the testing of OE as well 

as cause another failure detectable by the testing of 
OE’. 

Thus, test cases have to be selected for verifying a, b, and 
c. This is similar to the partition testing approach in 
traditional program testing. Techniques such as propor-
tional sampling strategy [12] may be applied, where the 
selected numbers of test cases for testing a, b, and c are 
proportional to their relative input domain sizes. If 
Possibility 1 is indeed true, a difficulty we need to face is 
that the relative input domain sizes for a, b, and c are not 
easy to estimate in order to apply the proportional 
sampling technique. Fortunately, the main theorem in this 
paper proves that, given a canonical specification of a 
class with proper imports and a complete implementation, 
Possibility 1 is not true. 

Possibility 2: The testing of OE and the testing of OE’ 
imply each other. In this case, a fault that causes a failure 
detectable by the testing of OE must cause a failure detect-
able by the testing of OE’, and vice versa. As the main 
contribution of the present paper, Theorem 1 proves that, 
given a canonical specification of a class with proper 
imports and a complete implementation, only Possibility 2 
is the true scenario. In this scenario, if we select test cases 
for verifying both OE and OE’, it will likely result in 
redundancy, which lowers the effectiveness and efficiency 
of testing. Hence, we should select test cases for either OE 
or OE’ but not both. 

7.2 Practical Implication in Verifying Observational 
Equivalence and Nonequivalence of Objects 

As we have seen in Section 6, various researchers have 
proposed different criteria to test the correctness of a 
program P with respect to a specification Sp, including 
whether P satisfies OE ∪ OE’, whether P satisfies OE’, 
whether P satisfies OE, whether P satisfies NE, whether P 
satisfies RP, whether P satisfies GI, whether P satisfies CI, 
whether P satisfies FP, whether P satisfies AE, and 
whether P satisfies AE’. Our analysis in Section 7.1, based 
on Theorem 1, eliminates the need to verify whether P 
satisfies OE ∪ OE’. Our proof of (6.16) in Section 6 also 
shows that, given a canonical specification of a class with 
proper imports and a complete implementation, all the 
above criteria are theoretically equivalent. However, does 
it mean that any of these criteria require the same amount 
of testing effort from software testers in real-world 
practice? This section further analyzes the issue and 
proposes a practically feasible choice. 

Based on Definition 1 in Section 4, the above criteria 
can be classified into three distinct categories: 

1. For criteria of the form “whether P satisfies X,” 
where X is OE, NE, RP, GI, CI, and FP, we need to 
test whether, for any pair of terms u1 and u2 in X, 
their corresponding implementations Θ(u1) and 
Θ(u2) are observationally equivalent. It is practically 
impossible to verify observational equivalence in 
real-world software testing because each test case 
involves an infinite set of potential observable 
contexts. These criteria are not ideal choices in 
practice. Although we proposed in [9], [10] that we 
test whether P satisfies FP, which is the smallest set 
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among those in (6.15), we needed a heuristic white-
box technique ROCS [11] to select a relevant finite 
subset of the set of observable contexts so as to 
determine the observational equivalence of objects. 

2. For the criterion “whether P satisfies OE’,” we need 
to test whether, for any pair of terms u1 and u2 in 
OE’, their corresponding implementations Θ(u1) 
and Θ(u2) are observationally nonequivalent. It is 
practically difficult to find observational non-
equivalence in real-world testing because we need 
to go through possibly an infinite set of observable 
contexts for each test case. Thus, this criterion is not 
a practical choice either. 

3. For the criteria “whether P satisfies AE” and 
“whether P satisfies AE’,” we need to test whether, 
for any pair of terms u1 and u2 in AE, their 
corresponding implementations Θ(u1) and Θ(u2) are 
attributively equivalent and nonequivalent, respec-
tively. It is simple to verify attributive equivalence 
and nonequivalence of objects in real-world testing 
because the set of attributes in any class is finite and 
usually small. Thus, these two criteria are potential 
practical choices. Readers may refer to [10, 
paragraphs after Corollary 2 in Section 4.3] for more 
analysis. 

We have conducted an analysis on the need to test 
“whether P satisfies AE” or “whether P satisfies AE’ ” or 
both, similarly to that in Section 7.1 for OE and OE’. We 
arrive at a similar conclusion that we should select test 
cases for AE or AE’ but not both. In particular, we 
recommend testing the criterion “whether P satisfies AE’ ” 
because a technique has already been developed for 
selecting a finite number of test cases from AE’. Our 
Generating Attributively Nonequivalent terms (GAN) 
approach in [10, Section 4.4] handles this process using 
techniques in State-Transition Diagrams (STDs), and turns 
it into a terminating process via interactive input from 
users for the maximum numbers of iterations for cyclic 
paths in STDs. The implementations and experimentation 
of the GAN approach are also discussed in [10, Section 4]. 
A limitation of the GAN approach is that it assumes the 
regularity hypothesis [3], [4], namely, that if a statement 
has been tested for the positive integers 1, 2, ..., k for some 
constant k, then it is assumed that the statement will hold 
for all positive integers. Thus, having tested the cyclic 
paths for the maximum number of iterations specified by 
the users, it is assumed that the implementation is correct 
with any number of iterations. 

In summary, based on the practical considerations in 
Sections 7.1 and 7.2, given a canonical specification of a 
class with proper imports and a complete implementation 
in real-world software testing, we recommend selecting 
test cases from the set AE’ and verifying whether the 
objects that result from executing the corresponding 
implemented method sequences are attributively non-
equivalent, rather than selecting test cases from OE’, OE, 
NE, RP, GI, CI, FP, or AE. 

As future work, we will also study the application of 
ARTOO [13] to select test cases from AE’ by defining the 
object distance of nonequivalent terms with a view to 
spreading the test cases evenly in the AE’. This will 
alleviate the users from having to assume the regularity 
hypothesis and make decisions on the maximum numbers 
of iterations for cyclic paths. 

8 CONCLUSION 

It is generally believed that class-level testing of object-
oriented software based on algebraic specification in-
volves two independent aspects: the testing of equivalent 
ground terms and the testing of nonequivalent ground 
terms. Previous researchers have cited intuitive examples 
to illustrate that the latter cannot be replaced by the 
former, and is therefore of equal importance. 

We have proven formally in this paper, however, that 
given a canonical specification of a class with proper 
imports and a complete implementation, the equivalence 
criterion for testing observationally equivalent terms 
(denoted by “P satisfies OE”) and the nonequivalence 
criterion for testing observationally nonequivalent terms 
(denoted by “P satisfies OE’ ”) imply each other. Based on 
this result, we have shown that the testing of observation-
ally equivalent ground terms and the testing of observa-
tionally nonequivalent ground terms cover each other. In 
other words, if a failure due to a certain fault in the 
implementation that can be revealed by testing observa-
tionally nonequivalent ground terms, another failure due 
to the same fault can also be revealed by testing 
observationally equivalent ground terms, and vice versa. 

We have discussed the theoretical implications of our 
new findings to related work on class-level testing based 
on algebraic specifications. We have proven that, given a 
canonical specification with proper imports and a com-
plete implementation, all the correctness criteria proposed 
by previous researchers are theoretically equivalent to “P 
satisfies OE” and to “P satisfies OE’.” Under this specific 
condition, the criteria proposed by previous researchers 
for program correctness can theoretically be retained. 

On the other hand, the need to test either “P satisfies 
OE” or “P satisfies OE’ ” is an impossible task in software 
testing because of the need to verify an infinite number of 
behavioral outcomes even for one single test case. We 
have discussed real-world implications, and recommend 
to conduct testing using a more practical criterion “P satis-
fies AE’,” which is guaranteed by our theoretical results to 
reveal failures due to the same faults. Even so, we need to 
assume a regularity hypothesis. As future work, we 
propose to study the application of ARTOO as an alterna-
tive technique to alleviate this assumption. 
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