

Postprint of article in IEEE Transactions on Software Engineering 39 (11): 1549–1563 (2013)

Equality to Equals and Unequals:
A Revisit of the Equivalence and

Nonequivalence Criteria in Class-Level
Testing of Object-Oriented Software*

Huo Yan Chen and T.H. Tse, Senior Member, IEEE

Abstract—Algebraic specifications have been used in the testing of object-oriented programs and received much attention
since the 1990s. It is generally believed that class-level testing based on algebraic specifications involves two independent
aspects: the testing of equivalent and nonequivalent ground terms. Researchers have cited intuitive examples to illustrate the
philosophy that even if an implementation satisfies all the requirements specified by the equivalence of ground terms, it may still
fail to satisfy some of the requirements specified by the nonequivalence of ground terms. Thus, both the testing of equivalent
ground terms and the testing of nonequivalent ground terms have been considered as significant and cannot replace each
other.

In this paper, we present an innovative finding that, given any canonical specification of a class with proper imports, a
complete implementation satisfies all the observationally equivalent ground terms if and only if it satisfies all the observationally
nonequivalent ground terms. As a result, these two aspects of software testing cover each other and can therefore replace each
other. These findings provide a deeper understanding of software testing based on algebraic specifications, rendering the theory
more elegant and complete. We also highlight a couple of important practical implications of our theoretical results.

Index Terms—Software testing, equivalence criterion, nonequivalence criterion, algebraic specification, object-oriented
software

——————————  ——————————

1 INTRODUCTION

S a major formal method for defining the functional
requirements of object-oriented software, algebraic

specifications are very useful in the testing of their imple-
mentations with many benefits, including improvements
in the automation and effectiveness of test case genera-
tion.

In particular, class-level testing of object-oriented soft-
ware based on algebraic specifications has been studied
extensively. Previous work treats the testing of the
correctness of implementation in two aspects: whether
two sequences of operations (known formally as ground
terms) that are proven to be equivalent according to the
specification will result in equivalent objects in the imple-

mentation, and whether two sequences of operations that
are proven to be nonequivalent according to the specifica-
tion will result in nonequivalent objects in the implemen-
tation.

Previous research argues that, generally speaking, the
testing of all equivalent ground terms is not sufficient to
reveal the possible failures due to all the faults in the
implementation. The testing of all nonequivalent ground
terms is not sufficient either. Hence, one must conduct
both kinds of tests. Please refer to Example 2 in Section 4
for a commonly adopted intuitive illustration.

In this paper, we present our innovative finding that,
given a canonical specification of a class with proper
imports and a complete implementation, the testing of
observationally equivalent ground terms and the testing
of observationally nonequivalent ground terms cover
each other.1 In other words, if a failure due to a certain
fault in the implementation can be revealed by testing
observational nonequivalence, another failure due to the
same fault can also be revealed by testing observational
equivalence, and vice versa. As a result, contrary to the
general belief in previous work, we do not need to
conduct both kinds of tests. This finding deepens the
understanding of software testing based on algebraic

1 Thus, we attain “equality to equals and unequals,” quoted from Plato,

The Republic (380 BC).

————————————————
* © 2013 IEEE. This material is presented to ensure timely dissemination of

scholarly and technical work. Personal use of this material is permitted.
Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to
adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission
of the copyright holder. Permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

• Huo Yan Chen is with the Department of Computer Science, Jinan
University, Guangzhou, 510632, China.

• T.H. Tse is with the Department of Computer Science, The University of
Hong Kong, Pokfulam, Hong Kong. Email: thtse@cs.hku.hk.

A

Administrator
 HKU CS Tech Report TR-2013-06

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

specifications, and renders the theory more elegant and
complete. Furthermore, the theory has important practical
implications in real-world software testing. The remain-
ing sections describe our new theoretical and practical
findings in detail.

This paper is organized as follows: Section 2 describes
previous work related to the testing of object-oriented
software based on algebraic specifications. Section 3
outlines the basic concepts used in the paper. Section 4
investigates an innovative relationship between the
equivalence criterion and the nonequivalence criterion.
Section 5 applies the results of Section 4 to class-level
testing of object-oriented software and gives examples for
illustration. Section 6 discusses the theoretical implica-
tions in relation to previous work on class-level testing
based on algebraic specifications. Section 7 highlights two
important practical implications. Section 8 concludes the
paper.

2 RELATED PREVIOUS WORK

The idea of algebraic specifications originated from the
work of Zilles [33], Goguen et al. [21], and Guttag and
Horning [22]. There have been numerous proposals. For
example, Goguen and others introduced OBJ3 [20] and
extended it to FOOPS [6] for the object-oriented para-
digm, while Bidoit and Mosses [5] designed the Common
Algebraic Specification Language (CASL), which consoli-
dates various algebraic specification features into a gen-
eral purpose language.

A general theory for software testing based on alge-
braic specifications was proposed by Bernot et al. [3], [4].
It includes a regularity hypothesis, a uniformity hypothe-
sis, and other oracle hypotheses to formalize the oracle
problem. The main advantage of the framework is to
express in explicit terms the abilities and limitations of
testing as well as the gap between the testing and proving
of programs. Based on the framework, a tool has been
developed to generate test cases by replacing all the
variables in the axioms of the specification by ground
terms according to the uniformity and regularity hypoth-
eses [7], [14].

The DAISTS approach by Gannon et al. [17] suggests
selecting a tuple of argument values as inputs to the left-
and right-hand sides of an axiom, and then invokes a
user-supplied equality function to examine the outputs. A
failure is revealed if the outputs from both sides are not
equal. The testing approach proposed by Antoy and
Hamlet [2] uses proof techniques. Unlike DAISTS, they
test the equality of values of abstract date types in the
abstract domain rather than in the concrete domain.

Machado [27] proposed oracles derived from flat
algebraic specifications expressed in first-order logic.
Machado [28] presented an extension of the framework in
Bernot et al. [3], [4] to first-order logic with restrictions on
quantifiers. Machado and Sannella [29] further extended
the framework for CASL architectural specifications.

Jalote [24] considered the axioms as rewrite rules,
suggested choosing test cases from all legal combinations
of operations (that is, all terms), and derived correspond-
ing equivalent terms by means of the rewrite rules. They
checked whether the execution results corresponding to
every selected pair of equivalent terms are equivalent. If
not, a failure is revealed.

To facilitate testing object-oriented software at the class
level, Doong and Frankl [15], [16] proposed LOBAS, an
algebraic specification language whose syntax is similar
to object-oriented programming languages and whose
semantics is similar to that of OBJ3 and FOOPS.
The LOBAS language for algebraic specifications pro-
posed by Doong and Frankl [15], [16] is more suitable for
the class-level testing of object-oriented software. Based
on LOBAS, they extended the work of Jalote [24] and
developed a tool known as ASTOOT to generate test cases
from pairs of equivalent terms through rewriting, and
from pairs of nonequivalent terms by “exchanging path
conditions.”

In algebraic specifications, a ground term is said to be
a normal form if and only if it cannot be further rewritten
to another term using any axiom in the given specifica-
tion. In our earlier work [9], [10], two ground terms are
said to be equivalent if and only if both of them can be
written to the same normal form according to the given
canonical specification. If a pair of ground terms is
formed by replacing all the variables on both sides of an
axiom by normal forms of the given specification, we
refer to them as a fundamental pair of equivalent terms or
simply a fundamental pair (denoted by “u1 ~fun u2”). We
proved in [9] that, given any canonical specification of a
class with proper imports, a complete implementation
satisfies all the fundamental pairs if and only it satisfies
all pairs of observationally equivalent ground terms.

Further descriptions of the TACCLE methodology and
the results of [9], [10] are given in Sections 3 and 6.

According to previous work such as [10], [16], class-
level testing based on algebraic specifications involves
two aspects, namely, the testing of observationally equiv-
alent ground terms and the testing of observationally
nonequivalent ground terms. Intuitive examples 2 have
been used to illustrate the philosophy that even if the
testing of observationally equivalent ground terms is
exhaustive, it cannot reveal failures in which two differ-
ent states are being confused as a single state, that is, in
which two observationally nonequivalent ground terms
erroneously generate two equivalent objects [10], [16]. It
has been pointed out therefore that the testing of obser-
vationally nonequivalent ground terms is necessary and
cannot be ignored even after exhaustive testing of obser-
vationally equivalent ground terms.

Hierons et al. [23] and Zhu [32] have surveyed these
aspects. Kong et al. [25] and Yu et al. [31] extended the
algebraic testing approach to cover software components,
and presented an automated testing tool called CASCAT
for Java components.

2 Such as Example 2 in Section 4, which is refuted by Examples 3 and 4

in Section 4.

CHEN AND TSE: EQUALITY TO EQUALS AND UNEQUALS: A REVISIT OF THE EQUIVALENCE AND NONEQUIVALENCE CRITERIA 3

3 BASIC CONCEPTS OF CLASS-LEVEL TESTING

OF OBJECT-ORIENTED SOFTWARE BASED ON

ALGEBRAIC SPECIFICATIONS

This paper considers the class-level testing of object-
oriented software based on algebraic specifications. In
order that this paper may be self-contained, we first
summarize the basic concepts of algebraic specifications.
Readers may refer to existing work [9], [10], [16] for more
details of algebraic specifications for object-oriented soft-
ware. For fairness of comparison with previous work, we
will use the same level of constraint on algebraic
specifications as that in Aiguier et al. [1], Doong and
Frankl [15], [16], and Chen et al. [9], [10]. Readers may
also refer to Section 4.6 of [10] for an explanation of why
the constraints are reasonably justified in object-oriented
software testing. We concede that, like the related work
on the testing of object-oriented software based on alge-
braic specifications, we cannot cover nondeterministic
systems using canonical specifications. While this is an
interesting topic that is worth further research, it is
beyond the scope of the present paper.

An algebraic specification of a class consists of two parts.
The first part defines the syntax of the class by declaring
the operations in terms of their input and output classes.
The second part defines the semantics of the class by list-
ing the axioms in the form of conditional equations, which
describe the functional requirements of the operations.
The following is an example of an algebraic specification.
For ease of reading, we will reuse the same example for
different purposes in the paper.

Example 1 (adapted from Chen et al. [9]). Algebraic
specification of a class IntStack of stacks of integers.

module INTSTACK
class IntStack
import classes Int // the class of integers

 Bool // the class of Boolean values
operations
 new: → IntStack
 _.isEmpty: IntStack → Bool
 .push(): IntStack Int → IntStack
 _.pop: IntStack → IntStack
 _.top: IntStack → Int ∪ {nil}
variables
 S: IntStack; N: Int
axioms
 a1: new.isEmpty = true
 a2: S.push(N).isEmpty = false
 a3: new.pop = new
 a4: S.push(N).pop = S
 a5: S.top = nil if S.isEmpty
 a6: S.push(N).top = N

The statement “_.push(_): IntStack Int → IntStack”
means that the operation push has an input class IntStack,
a parameter class Int, and an output class IntStack.

Given an algebraic specification, a syntactically valid
sequence of operations is called a term. A term without
variables is known as a ground term. In Example 1, for
instance, S.push(N).pop.top is a term and
new.push(2).pop.top is a ground term.

Suppose a ground term u contains a subterm v that is
an instance of the left-hand side vi of an axiom ai: vi = vi’. If
we replace the subterm v by the corresponding instance v’
of the right-hand side vi’, and if the result is a ground
term u’, then u is said to be rewritten into u’ using axiom ai
as a left-to-right rewrite rule. For instance, a ground term
new.push(2).pop.top in Example 1 can be rewritten to
new.top using axiom a4 as a rewrite rule.

Let u1, u2, ..., un be ground terms. If u1 can be rewritten
to u2, and u2 can be rewritten to u3, and …, and un–1 can be
rewritten to un, then we say that there is a rewriting
relation from u1 to un (denoted by “u1 ~rew un”).

We say that a ground term is in a normal form if and
only if it cannot be further rewritten by any axiom in the
specification. An algebraic specification is said to be
canonical if and only if every ground term can be rewrit-
ten to a unique normal form through a finite number of
rewrites.

We refer to the specified functions in a specification as
operations and the implemented functions in a program as
methods. The operations (or methods) that create objects in
a class C are called the creators of C. An attribute of an
object is a visible property of that object. For any given
object, the collection of all the attributes and their respec-
tive values is called the state of the object. The operations
(or methods) that return the values of attributes of objects
in C without any change of state are called the observers
of C. The operations (or methods) that change the states
of objects in C are called the constructors or transformers
of C. In particular, a constructor of an object can remain in
a normal form after transformations by axioms, whereas a
transformer will ultimately be eliminated by some rewrite
rule and cannot appear in a normal form.

For any operation or method _.f(_, _, ..., _): C C1 C2 ... Cn
→ D, we refer to C as the input class of f, D as the output
class of f, and C1, C2, ..., Cn as the parameter classes of f. Let f
and g be operations (or methods). If the output class of f is
the same as the input class of g, we say that g is applicable
to f and that f.g is syntactically valid. Let f be the last opera-
tion in a term u (or the last method in a method sequence
u) and g be the first operation in a term v (or the first
method in a method sequence v). If g is applicable to f, we
say that v is applicable to u and that u.v is syntactically valid.

An observable context on a class C is either an observer
or a syntactically valid sequence of constructors or trans-
formers in C that ends with an observer.

Consider a canonical specification of a given class. Two
ground terms u1 and u2 are said to be normally equivalent
(denoted by “u1 ~nor u2”) if and only if both of them have
the same normal form. Two ground terms u1 and u2 are
said to be observationally equivalent (denoted by “u1 ~obs
u2”) if and only if 1) u1.oc and u2.oc are observationally
equivalent for any applicable observable context oc, and
2) u1 and u2 are normally equivalent when there is no
applicable observable context oc. (Notice that this defini-
tion is recursive.) Two ground terms u1 and u2 are said to
be attributively equivalent (denoted by “u1 ~att u2”) if and
only if 1) u1.ob and u2.ob are observationally equivalent for
any applicable observer ob, and 2) u1 and u2 are normally
equivalent when there is no applicable observer ob. From

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

the definition, normal equivalence is a special case of
observational equivalence, which is a special case of
attributive equivalence.

Consider a canonical specification and an implementa-
tion of a given class. Two objects O1 and O2 are said to be
observationally equivalent (denoted by “O1 ≈obs O2”) if and
only if 1) O1.oc and O2.oc are observationally equivalent
objects for any applicable observable context oc, and 2) O1
and O2 are identical objects (denoted by O1 = O2) when
there is no applicable observable context oc. Two objects
O1 and O2 are said to be attributively equivalent (denoted
by “O1 ≈att O2”) if and only if 1) O1.ob and O2.ob are
observationally equivalent objects for any applicable
observer ob, and 2) O1 and O2 are identical objects when
there is no applicable observer ob.

If the output class of the last operation in the term u is
a primitive type (that is, it corresponds to a built-in type in
the implementation language, such as int in C++), then
the normal form of u is a constant k of the primitive type.
In such case, we write “u ~nor k,” “u ~obs k,” and “u ~att k”
in the specification as “u = k,” where “=” denotes equality
in the primitive type. Similarly, we write “O1 ≈obs k” and
“O1 ≈att k” in the implementation as “O1 = k.”

Given an algebraic specification of a class C, suppose
oci (i = 1, 2, ..., n) is an observable context on C and every
ocj (j = 2, 3, ..., n) is applicable to ocj–1. Then, the sequence
oc1.oc2.···.ocn is called an observable context sequence (or
simply an oc sequence) on C, and its length is said to be n. If
the output class of ocn is a primitive type (that is, a built-in
type in the implementation language), then oc1.oc2.···.ocn is
called a primitive oc sequence on C.

A module in an algebraic specification may import
known classes to support the functional requirements of a
specified class. We say that the specification of the class
has proper imports if and only if every oc sequence is of
finite length and can be extended to a primitive oc
sequence in a finite number of steps. We say that an
implementation P of a class is complete with respect to an
algebraic specification Sp if and only if every operation f
in Sp is implemented by a unique method Θ(f) in P such
that the output class or type of Θ(f) is consistent with the
output class or type of f, and the constants in P are
consistent with the constants in Sp.

For a complete implementation, given any ground
term u in Sp, we use Θ(u) to denote the unique object that
results from executing the implemented method sequence
corresponding to u. In particular, for a complete imple-
mentation, any constant k in Sp corresponds to a constant
k in P. We write Θ(k) = k.

Given a canonical specification Sp of a class with
proper imports and a complete implementation P, we
define P to be correct with respect to Sp if and only if both of
the following criteria are satisfied:

1. Equivalence Criterion. For any pair of observationally
equivalent terms u1 and u2, the objects Θ(u1) and Θ(u2)
that result from executing the corresponding
implemented method sequences are observationally
equivalent. That is, (∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs
Θ(u2))). In this case, we also say P satisfies all the
observationally equivalent ground pairs specified in Sp.

2. Nonequivalence Criterion. For any pair of observa-
tionally nonequivalent terms v1 and v2, the objects
Θ(v1) and Θ(v2) that result from executing the
corresponding implemented method sequences are
observationally nonequivalent. That is, (∀v1)(∀v2)(¬(v1
∼obs v2) → ¬(Θ(v1) ≈obs Θ(v2))). In this case, we also say P
satisfies all the observationally nonequivalent ground pairs
specified in Sp.

We say that a failure of P with respect to Sp is revealed if
either of the above criteria is negated, that is, if one of the
following conditions is satisfied:

1’. Equivalence Failure Criterion. (∃u1)(∃u2)((u1 ∼obs u2) ∧
¬(Θ(u1) ≈obs Θ(u2))).

2’. Nonequivalence Failure Criterion. (∃v1)(∃v2)(¬(v1 ∼obs
v2) ∧ (Θ(v1) ≈obs Θ(v2))).

4 NEW RELATIONSHIP BETWEEN THE

EQUIVALENCE AND NONEQUIVALENCE CRITERIA

Class-level testing based on algebraic specifications
involves two aspects, namely, the testing of observation-
ally equivalent ground terms and the testing of observa-
tionally nonequivalent ground terms. Two important
questions immediately arise: What is the relationship
between these two aspects? How much does one cover
the other?

Previous work such as Doong and Frankl [16], Gaudel
[18], Chen et al. [10], and Zhu [32] argues that successful
exhaustive testing of one aspect does not entail successful
testing of the other. As pointed out by Gaudel [18], “The
definition of [the set of all ground instances of all the
axioms] ExhaustSp comes from the notion of satisfaction of
[21]. However, it does not correspond exactly to initial
semantics of algebraic specifications since inequalities are
not tested: it rather corresponds to loose semantics. ... In
[16], a bigger exhaustive test set is mentioned which
includes for every ground term the inequalities with other
normal forms, following the definition of initial seman-
tics.” Zhu [32] further recognizes that “One of [Doong
and Frankl’s] most important contributions ... is the
extension of test cases to include negative test cases,
which consists of two terms that are supposed to generate
non-equivalent results.”

The following is an intuitive example that is repre-
sentative of this philosophy.

Example 2 (adapted from Doong and Frankl [16] and
Chen et al. [10]). Suppose none of the operations
changes the states of objects in a faulty implementation.
Given any two observationally equivalent ground
terms, the corresponding objects returned by the imple-
mentation will, of course, be equivalent. Intuitively, the
failure cannot be revealed by testing equivalent terms
only. One can conclude, therefore, that the testing of
observationally nonequivalent ground terms is argu-
ably necessary and cannot be ignored.

Although Example 2 appears intuitively to be valid, it
is, in fact, not always the case. We can construct a simple
counterexample as follows:

CHEN AND TSE: EQUALITY TO EQUALS AND UNEQUALS: A REVISIT OF THE EQUIVALENCE AND NONEQUIVALENCE CRITERIA 5

Example 3. Consider the algebraic specification of the
class IntStack in Example 1 again. Suppose an imple-
mentation of this specification is as follows, where
array[1] is the top of the stack and array[100] is the
bottom.

 # include <iostream>
 # define SIZE 100
 # define NIL 0
 class intStack {
 int array[SIZE];
 public: ...
 };
 ...
 void intStack :: newStack() {
 for (int j = 1; j <= 100; j ++)
 array[j] = NIL;
 }
 void intStack :: push(int N) {
 for (int j = 100; j > 1; j − −)
 array[j] = array[j − 1];
 array[1] = NIL;
 /* There is a fault in the above statement. */
 /* It should be "array[1] = N;". */
 }
 void intStack :: pop () {
 for (int j = 1; j < 100; j++)
 array[j] = array[j + 1];
 array[100] = NIL;
 }
 int intStack :: top () {
 return array[1];
 }
As a result of the fault in the implemented method

push(int N), the states of all the objects in the
implemented class are always (NIL, NIL, …, NIL),
satisfying the precondition that “none of the operations
changes the states of objects” of Example 2. However,
the conclusion that “the failure cannot be revealed by
testing equivalent terms only” of Example 2 is not true,
because a pair of failure-revealing equivalent terms can
be constructed thus:

Substituting S by “new” and N by any value (such as
6) in the axiom a5: S.push(N).top = N, we obtain the
following fundamental pair of equivalent terms:

 new.push(6).top ∼ 6
Under the above implementation, these two terms

return different observable results, namely, “nil” and
“6”, respectively. Hence, this fundamental pair reveals
a failure due to the fault in the implemented method
push(int N). Thus, Example 2 is refuted.

Following standard practice in software testing, we use
the term “fault” to mean an incorrect instruction in the
program and the term “failure” to mean an incorrect exe-
cution result. In Example 3, for instance, array[1] = NIL is
a fault and Θ(new.push(6).top) ≈obs Θ(new.push(8).top) is a
failure due to that fault. In general, a fault may cause
more than one failure. For instance, Θ(new.top) ≈obs
Θ(new.push(4).top) is another failure due to the same
fault. We note also that in Example 3 as well as Examples
4 and 5 that follow, we assume that there is a built-in type

int in the implementation language for the type Int in the
specification. This assumption is reasonable.

On one hand, Example 3 serves as a counterexample to
refute the intuitive Example 2. On the other hand, Exam-
ple 3 shows only one particular scenario where, given an
observationally nonequivalent pair that reveals a failure,
there is an observationally equivalent pair that also re-
veals a failure due to the same fault. To take a broader
view, let us consider a slightly more general Example 4
first, and then follow up with generalized lemmas,
theorem, and proofs.

Example 4. Take the algebraic specification of the class
IntStack in Example 1 and the implementation in
Example 3 again. Consider a pair of ground terms
new.push(1).push(3).push(5) and
new.push(2).push(3).push(5). They exhibit the follow-
ing properties:
(a) There is an observable context in the specification,

namely, pop.pop.top, which operates on the two
ground terms to give different results:

 new.push(1).push(3).push(5).pop.pop.top = 1 (4.1)
 new.push(2).push(3).push(5).pop.pop.top = 2 (4.2)

 Hence, the two original ground terms are observa-
tionally nonequivalent.

(b) Based on the two ground terms in the specification,
two sequences of methods in the implementation
in Example 3 will be executed, namely,

 Θ(new).Θ(push(1)).Θ(push(3)).Θ(push(5)) and
 Θ(new).Θ(push(2)).Θ(push(3)).Θ(push(5)).

 The two objects that result from executing these
sequences of methods corresponding to the two
ground terms are observationally equivalent
because they are both observationally equivalent to
Θ(new). Hence, the two ground terms
new.push(1).push(3).push(5) and
new.push(2).push(3).push(5) reveal a failure. In
particular, the observable context in the imple-
mentation corresponding to pop.pop.top, namely,
Θ(pop).Θ(pop).Θ(top), operates on the two objects
to give the same result:

 Θ(new).Θ(push(1)).Θ(push(3)).Θ(push(5)).
Θ(pop).Θ(pop).Θ(top) = 0 (4.3)

 Θ(new).Θ(push(2)).Θ(push(3)).Θ(push(5)).
Θ(pop).Θ(pop).Θ(top) = 0 (4.4)

(c) At least one of the right-hand values in (4.1) and
(4.2) for the specification is inconsistent with the
right-hand value in (4.3) and (4.4) for the imple-
mentation. In this particular example, Θ(1) = 1 and
Θ(2) = 2, which are both different from 0. Without
loss of generality, consider (4.1). It can be regarded
as a pair of observationally equivalent ground
terms

 new.push(1).push(3).push(5).pop.pop.top and
 1.
 However, their corresponding objects are non-

equivalent:
 Θ(new).Θ(push(1)).Θ(push(3)).Θ(push(5)).

Θ(pop).Θ(pop).Θ(top) = 0 but
 Θ(1) ≠ 0.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

 Hence, they also reveal a failure due to the same
fault.

In summary, based on a given pair of observationally
nonequivalent ground terms
new.push(1).push(3).push(5) and
new.push(2).push(3).push(5) that reveal a failure, we
have identified a pair of observationally equivalent
ground terms new.push(1).push(3).push(5).pop.pop.top
and 1 that also reveal a failure due to the same fault.

Let us consider also the reverse scenario.
Example 5. Take the algebraic specification of the class
IntStack in Example 1 again. Consider another faulty
implementation in which pop is implemented as a null
operation that does nothing while other operations are
implemented correctly. The pair of observationally
equivalent ground terms new.push(1) and
new.push(1).push(3).pop reveal a failure because they
are observationally equivalent but produce different
objects in the given implementation. They also exhibit
the following properties:
(a) There is an observable context in the specification,

namely, top, which operates on the two ground
terms to give identical results

 new.push(1).top = 1 (4.5)
 new.push(1).push(3).pop.top = 1 (4.6)

(b) The two objects that result from executing the
operations in the implementation corresponding to
new.push(1) and new.push(1).push(3).pop
(namely, Θ(new).Θ(push(1)) and
Θ(new).Θ(push(1)).Θ(push(3)).Θ(pop)) are observa-
tionally nonequivalent because the corresponding
observable context in the implementation (namely,
Θ(top)) operates on the two objects to give different
results

 Θ(new).Θ(push(1)).Θ(top) = 1 (4.7)
 Θ(new).Θ(push(1)).Θ(push(3)).Θ(pop).Θ(top)
 = 3 (4.8)

(c) At least one of the right-hand values in (4.7) and
(4.8) for the implementation is inconsistent with the
right-hand value in (4.5) and (4.6) for the specifica-
tion. In this particular example, (4.8) is inconsistent
with the specification. Let us take the pair of
observationally nonequivalent ground terms
new.push(1).push(3).pop.top (that is, the left-hand
side of (4.6)) and 3. Their corresponding objects

 Θ(new).Θ(push(1)).Θ(push(3)).Θ(pop).Θ(top)
 and Θ(3)

 are observationally equivalent by (4.8). Hence, they
also reveal a failure due to the same fault.

In short, based on a given pair of observationally
equivalent ground terms new.push(1) and
new.push(1).push(3).pop that reveal a failure, we can
identify a pair of observationally nonequivalent ground
terms new.push(1).push(3).pop.top and 3 that also
reveal a failure due to the same fault.

Is there a specific class of specifications and implemen-
tations such that if an observationally nonequivalent
ground pair reveals a failure due to a certain fault, then
there exists an observationally equivalent ground pair
that will also reveal a failure due to the same fault, and

vice versa? That is, under what conditions will the testing
of observationally equivalent ground terms and observa-
tionally nonequivalent ground terms cover each other?
The following lemmas and theorem help answer the
questions.

Lemma 1. Given a canonical specification Sp of a
class with proper imports and a complete imple-
mentation P, if P satisfies all the observationally
equivalent ground pairs specified in Sp, it will also
satisfy all the observationally nonequivalent ground
terms specified in Sp. Formally, given such a speci-
fication and implementation,

(∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs Θ(u2)))
 (∀u1)(∀u2)(¬(u1 ∼obs u2) → ¬(Θ(u1) ≈obs Θ(u2))).
 (4.9)

The following is the formal proof of Lemma 1.
Example 4 above illustrates its train of thought.

Proof. We prove the lemma by reductio ad absurdum.
Assume that the left-hand side of (4.9) is true but the
right-hand side is false, that is, (∃u1)(∃u2)(¬(u1 ∼obs u2) ∧
(Θ(u1) ≈obs Θ(u2))). In this case, Θ(u1) ≈obs Θ(u2) is caused by
an implementation fault, which we will denote by f.

Since ¬(u1 ∼obs u2) and the given class has proper
imports, according to the definition of observational
equivalence ∼obs and the definition of proper imports,
there exists an oc sequence ocs on the specification such
that the output class of the observer at the end of the ocs is
a primitive type, and u1.ocs ≠ u2.ocs.3 Hence, there are two
values k1 and k2 of the primitive type such that k1 ≠ k2,
u1.ocs = k1, and u2.ocs = k2. As the implementation is
complete, there is a unique method sequence Θ(ocs) that
implements ocs. Since the class has proper imports and
the implementation is complete, Θ(ocs) must also end
with a primitive type, so that Θ(u1).Θ(ocs) = k for some
value k of the primitive type. Because Θ(u1) ≈obs Θ(u2),
according to the definition of observational equivalence
≈obs, we have Θ(u2).Θ(ocs) = Θ(u1).Θ(ocs) = k.

As k1 ≠ k2, we must have k ≠ k1 or k ≠ k2. Without loss of
generality, suppose k ≠ k1. In that case, we have u1.ocs = k1
but Θ(u1).Θ(ocs) = k ≠ k1.

Let Θ(u1.ocs) denote the execution result of imple-
mented method sequence corresponding to the specified
operation sequence u1.ocs. Since the implementation is
complete, we have Θ(u1.ocs) = Θ(u1).Θ(ocs) = k ≠ k1. Let
Θ(k1) denote the execution result of k1. Because k1 is the
value of a primitive type, we have Θ(k1) = k1 ≠ k. Based on
these relations, we obtain u1.ocs = k1 but Θ(u1.ocs) ≠ Θ(k1).

According to the definition of observational equiva-
lence, as the output class of the operation at the end of
u1.ocs is a primitive type, u1.ocs = k1 means u1.ocs ∼obs k1 and
Θ(u1.ocs) ≠ Θ(k1) means ¬(Θ(u1.ocs) ≈obs Θ(k1)). (See the
basic concept of primitive types in Section 3.) Thus, we
have (u1.ocs ∼obs k1) ∧ ¬(Θ(u1.ocs) ≈obs Θ(k1)). This
contradicts the left-hand side of (4.9).

3 If u1 or u2 ends with an observer of a primitive type, then ocs will be

empty. Consider, for instance, u1 = new.push(1).top and u2 = 2 in
Example 1. Since new.push(1).top ≠ 2 according to axiom a6, we have
¬(u1 ∼obs u2). See the explanation of primitive types in Section 3. In this
case, u1 ends with an observer top and hence ocs is empty.

CHEN AND TSE: EQUALITY TO EQUALS AND UNEQUALS: A REVISIT OF THE EQUIVALENCE AND NONEQUIVALENCE CRITERIA 7

We note from the above that ¬(Θ(u1.ocs) ≈obs Θ(k1)) is
derived from Θ(u1) ≈obs Θ(u2), which is caused by the fault
f. In other words, ¬(Θ(u1.ocs) ≈obs Θ(k1) and Θ(u1) ≈obs Θ(u2)
are due to the same fault f. 

The converse of Lemma 1 is also true, as stated as
follows:

Lemma 2. Given a canonical specification Sp of a
class with proper imports and a complete imple-
mentation P, if P satisfies all observationally non-
equivalent ground pairs specified in Sp, it will also
satisfy all observationally equivalent ground pairs
specified in Sp. Formally, given such a specification
and implementation,

(∀u1)(∀u2)(¬(u1 ∼obs u2) → ¬(Θ(u1) ≈obs Θ(u2)))
 (∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs Θ(u2))).

 (4.10)

The following is the formal proof of Lemma 2.
Example 5 above illustrates its train of thought.

Proof. We also prove the lemma by reductio ad
absurdum. Assume that the left-hand side of (4.10) holds
but the right-hand side is false, that is, (∃u1)(∃u2)((u1 ∼obs
u2) ∧ ¬(Θ(u1) ≈obs Θ(u2))).

Since ¬(Θ(u1) ≈obs Θ(u2)) and the given class has proper
imports, according to the definition of observational
equivalence ≈obs and the definition of proper imports,
there exists an oc sequence Θ(ocs) in the implementation
such that the output class of the observer at the end of
Θ(ocs) is a primitive type, and Θ(u1).Θ(ocs) ≠ Θ(u2).Θ(ocs).4
In other words, Θ(u1).Θ(ocs) = k1 and Θ(u2).Θ(ocs) = k2 for
some values k1 and k2 of a primitive type such that k1 ≠ k2.

As the implementation is complete, there exists a
unique operation sequence ocs implemented by Θ(ocs).
Since the class has proper imports and the implementa-
tion is complete, ocs must also end with a primitive type,
so that u1.ocs = k for some value k of the primitive type.
Because u1 ∼obs u2, according to the definition of observa-
tional equivalence ∼obs, we have u2.ocs = u1.ocs = k. As k1 ≠
k2, we must have k ≠ k1 or k ≠ k2. Without loss of
generality, suppose k ≠ k1. In such case, we have u1.ocs = k
≠ k1 but Θ(u1).Θ(ocs) = k1. Let Θ(u1.ocs) denote the
execution result of the method sequence that implements
the specified operation sequence u1.ocs. Since the imple-
mentation is complete, we have Θ(u1.ocs) = Θ(u1).Θ(ocs).
Let Θ(k1) denote the execution result of k1. Because k1 is
the value of a primitive type, we have Θ(k1) = k1. Based on
these relations, we obtain u1.ocs ≠ k1 but Θ(u1.ocs) = Θ(k1).
In other words, ¬(u1.ocs ∼obs k1) ∧ (Θ(u1.ocs) ≈obs Θ(k1)). This
contradicts the left-hand side of (4.10).

Similarly to the note at the end of the proof of Lemma
1, Θ(u1.ocs) ≈obs Θ(k1) and ¬(Θ(u1) ≈obs Θ(u2)) are due to the
same fault. 

Putting Lemmas 1 and 2 together, we arrive immedi-
ately at the following theorem.

Theorem 1. Given a canonical specification of a
class with proper imports and a complete imple-
mentation, the following two criteria

4 If O1 and O2 are values of a primitive type, then ocsimpl is empty.

a. Equivalence Criterion:
(∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs Θ(u2)))

b. Nonequivalence Criterion:
(∀v1)(∀v2)(¬(v1 ∼obs v2) → ¬(Θ(v1) ≈obs Θ(v2)))

imply each other. Hence, the implementation satis-
fies the specification if and only if we can show that
either a or b is satisfied.

We can express Theorem 1 in the form
(∀u1)(∀u2)((u1 ∼obs u2) → (Θ(u1) ≈obs Θ(u2)))
⇔ (∀v1)(∀v2)(¬(v1 ∼obs v2) → ¬(Θ(v1) ≈obs Θ(v2))).
 (4.11)

Let OE denote the set of all pairs of observationally
equivalent ground terms of Sp, and OE’ denote the set of
all pairs of observational nonequivalent ground terms. It
follows from (4.11) that

(∀{u1, u2} ∈ OE)(Θ(u1) ≈obs Θ(u2))
⇔ (∀{v1, v2}∈ OE’)(¬(Θ(v1) ≈obs Θ(v2))). (4.12)

However, this may be too formal for the average software
tester. For the sake of brevity, we will define a concept of
“P satisfies X” in the paper as follows:

Definition 1 (P Satisfies X).
a. Given any set AE of pairs of attributively

equivalent terms, “P satisfies AE” means that for
any pair of terms u1 and u2 in AE, their corres-
ponding implementations Θ(u1) and Θ(u2) are
attributively equivalent. That is,

(∀{u1, u2} ∈ AE)(Θ(u1) ≈att Θ(u2)).
b. Given any set X of pairs of equivalent terms of a

specified type other than attributive equivalence,
“P satisfies X” means that for any pair of terms u1
and u2 in X, their corresponding implementations
Θ(u1) and Θ(u2) are observationally equivalent.
That is,

(∀{u1, u2} ∈ X)(Θ(u1) ≈obs Θ(u2)).
c. Given any set AE’ of pairs of attributively non-

equivalent terms, “P satisfies AE’ ” means that
for any pair of terms v1 and v2 in AE’, their cor-
responding implementations Θ(v1) and Θ(v2) are
attributively nonequivalent. That is,

(∀{v1, v2}∈ AE’)(¬(Θ(v1) ≈att Θ(v2))).
d. Given any set X’ of pairs of nonequivalent terms

of a specified type other than attributive non-
equivalence, “P satisfies X’ ” means that for any
pair of terms v1 and v2 in X, their corresponding
implementations Θ(v1) and Θ(v2) are observation-
ally nonequivalent. That is,

(∀v1, v2 ∈ X’)(¬(Θ(v1) ≈obs Θ(v2))).

Attributive equivalence is treated separately in Definition
1a because it would be too strong to require that u1 and u2
are attributively equivalent in the specification but Θ(u1)
and Θ(u2) are observationally equivalent in the implemen-
tation. Readers may refer to [10, Theorems 2 and 3] and
[10, note (f), p. 78] for more reasoning behind this point.
For the sake of uniformity of style, we also treat
attributive nonequivalence separately in Definition 1c.

Based on the notation in Definition 1, we can simply
write (4.12) as

(P satisfies OE) ⇔ (P satisfies OE’). (4.13)

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

This is an important result because OE and OE’ are
intuitively not subsets of each other. In fact, OE ∩ OE’
= Ø.

In Section 6, we will further extend (4.13) with other
forms of “P satisfies X” proposed by previous related
work, such as “P satisfies FP,” “P satisfies CI,” “P satisfies
GI,” “P satisfies RP,” “P satisfies NE,” “P satisfies AE,”
and “P satisfies AE’.”

5 MUTUAL REPLACEABILITY OF EQUIVALENCE AND

NONEQUIVALENCE CRITERIA

In this section, we discuss the implications of the new
results in the last section to the class-level testing of
object-oriented software.

Taking the negations of criteria a and b in Theorem 1,
we obtain:

Corollary 1. Given a canonical specification of a
class with proper imports and a complete imple-
mentation, the following two criteria

a’. Equivalence Failure Criterion:
(∃u1)(∃u2)((u1 ∼obs u2) ∧ ¬(Θ(u1) ≈obs Θ(u2)))

b’. Nonequivalence Failure Criterion:
(∃v1)(∃v2)(¬(v1 ∼obs v2) ∧ (Θ(v1) ≈obs Θ(v2)))

imply each other.

Corollary 2. Given any canonical specification of a
class with proper imports, suppose its implementa-
tion is complete. If a pair of nonequivalent terms
¬(v1 ∼obs v2) reveals a failure due to a fault f, then
there exists a pair of equivalent terms (u1 ∼obs u2) that
will also reveal a failure due to the same fault f, and
vice versa. In other words, the testing of observa-
tionally equivalent ground terms and the testing of
observationally nonequivalent ground terms cover
each other.

Proof. If a pair of nonequivalent terms ¬(v1 ∼obs v2)
reveals a failure, according to the nonequivalent failure
criterion, we have Θ(v1) ≈obs Θ(v2). Similarly to the proof of
Lemma 1, we have (v1.ocs ∼obs k1) and ¬(Θ(v1.ocs) ≈obs Θ(k1)),
where, ¬(Θ(v1.ocs) ≈obs Θ(k1)) and Θ(u1) ≈obs Θ(u2) are due to
the same fault f. Thus, the pair of equivalent terms (v1.ocs
∼obs k1) also reveals a failure due to the same fault f. The
proof of the converse is similar. 

Corollary 3. Given any canonical specification of a
class with proper imports, suppose its implementa-
tion is complete. Let OE be the set of all observa-
tionally equivalent ground pairs and OE’ be the set
of all observationally nonequivalent ground pairs.
Given any finite test suit OEs’ ⊂ OE’, there exists a
finite test suit OEs ⊂ OE such that for any failure
(due to a fault) revealed by a test case in OEs’, a
failure (due the same fault) can also be revealed by
a test case in OEs. Conversely, given any finite test
suite OEt ⊂ OE, there exists a finite test suite OEt’ ⊂
OE’ such that for any failure (due to a certain fault)
revealed by a test case in OEt, a failure (due to the
same fault) can also be revealed by a test case in
OEt’. Thus, we can replace a finite test suit of obser-

vationally nonequivalent ground pairs by a finite
test suit of observationally equivalent ground pairs
while revealing failures due to the same faults, and vice
versa.

Proof. For any failure (due to a fault, say, f) revealed
by a nonequivalent pair oe’ in OEs’, by Corollary 2, there
exists an equivalent pair oe that will also reveal a failure
due to the same fault f. Let OEs be the set of all such oe. As
OEs’ is finite and every test case in OEs’ may reveal at
most one failure, OEs is also finite and satisfies the post-
condition. The proof of the converse is similar. 

In addition to a formal proof, readers may also be
interested in how OEs can actually be constructed. This
can be achieved by the following procedure:

Procedure 1. Given any canonical specification of a
class with proper imports, suppose its implementation
is complete. Suppose further that there is a set F of
failures that can be revealed by a finite test suite OEs’ (⊂
OE’) of observationally nonequivalent ground pairs.
The following procedure shows that there exists
another finite test suite OEs (⊂ OE) of observationally
equivalent ground pairs such that, for every failure in F
(due to a certain fault f), there is a test case in OEs that
can also reveal a failure due to the same fault f.

 Procedure {
 Read OEs’;
 OEs = Ø;
 For each oe’ ∈ OEs’ do {
 /* Each oe’ should be of the form ¬(u1 ∼obs u2).
 Each oe’ reveals a failure in F. */
 /* Under such oe’, Θ(u1) ≈obs Θ(u2). */
 There exists an oc sequence ocs on the
 specification such that the output class of the
 observer at the end of the ocs is a primitive
 type and u1.ocs ≠ u2.ocs;
 Suppose u1.ocs = k1 and u2.ocs = k2 such that
 k1 ≠ k2;
 There exists a unique method sequence Θ(ocs)
 that implements ocs;
 If Θ(u1).Θ(ocs) = k, as Θ(u1) ≈obs Θ(u2),
 we should have
 Θ(u2).Θ(ocs) = Θ(u1).Θ(ocs) = k;
 As k1 ≠ k2, we must have k ≠ k1 or k ≠ k2;
 Without loss of generality, suppose k ≠ k1;
 Thus, we have u1.ocs = k1
 but Θ(u1).Θ(ocs) = k ≠ k1;
 Let Θ(u1.ocs) denote the execution result of
 implemented method sequence
 corresponding to u1.ocs;
 We have Θ(u1.ocs) = Θ(u1).Θ(ocs) = k ≠ k1;
 Thus, we obtain u1.ocs = k1
 but Θ(u1.ocs) ≠ Θ(k1) = k1,
 that is, (u1.ocs ∼obs k1) ∧ ¬(Θ(u1.ocs) ≈obs Θ(k1));
 Denote the pair of equivalent terms
 (u1.ocs ∼obs k1) by oe;
 Set OEs = OEs ∪ {oe};
 }
 Write OEs;
 }

CHEN AND TSE: EQUALITY TO EQUALS AND UNEQUALS: A REVISIT OF THE EQUIVALENCE AND NONEQUIVALENCE CRITERIA 9

In summary, given a canonical specification of a class
with proper imports and a complete implementation, as
candidate sets for test case selection, the infinite set of all
observationally nonequivalent ground pairs can be re-
placed by the infinite set of all observationally equivalent
ground pairs while revealing failures due to the same faults,
and vice versa. Furthermore, as test suites, a given finite
set of observationally nonequivalent ground pairs can be
replaced by a finite set of observationally equivalent
ground pairs while revealing failures due to the same faults,
and vice versa. Of course, we should not expect that the
infinite set of all observationally nonequivalent (or equiv-
alent, respectively) ground pairs can be replaced by a
finite set of observationally equivalent (or nonequivalent,
respectively) ground pairs while revealing failures due to
the same faults.

6 THEORETICAL IMPLICATIONS IN RELATION TO

PREVIOUS WORK ON CLASS-LEVEL TESTING

BASED ON ALGEBRAIC SPECIFICATIONS

In this section, we present the theoretical impacts and
contributions of our present work in relation to previous
research on object-oriented software testing based on
algebraic specifications. We will present the practical
implications in the next section.
(a) In previous work such as Aiguier et al. [1], Bernot et

al. [3], [4], Le Gall and Arnould [26], Machado [27],
[28], and Machado and Sannella [29], the authors
defined that a program P is correct with respect to a
specification Sp if and only if P satisfies the set of all
ground instances of every axiom in Sp. For the sake
of brevity, we will use GI to denote this set of all such
ground instances. Although the above authors
referred to GI as an “exhaustive test set,” Gaudel [18]
pointed out that “it does not correspond exactly to
initial semantics of algebraic specifications since
inequalities are not tested: it rather corresponds to
loose semantics.”

(b) Aiguier et al. [1] proved that, given a canonical 5
specification Sp, if P satisfies the set of all ground
instances of every axiom in Sp that contains only
creators or constructors (but not transformers), then P
satisfies GI. We will use CI to denote this set of all
ground instances of every axiom that contains only
creators or constructors.6 In other words, Aiguier et
al. proved that

(P satisfies CI)  (P satisfies GI).
On the other hand, we note that the ground instances
of any axiom may or may not contain only creators or
constructors in general. Hence,

CI ⊂ GI, (6.1)

5 The original wording in Aiguier et al. [1] was “under the form of a

reductive and confluent rewrite system”. Readers in theoretical computer
science may recall that a specification in a rewrite system is canonical if
and only if it is reductive and confluent.

6 Other authors such as Gaudel and Le Gall [19] refer to CI as the set of
ground instances of every axiom that contains only constructors, because
they regard creators as constructors also.

where “⊂” denotes “is a proper subset of.” In other
words, CI ≠ GI. It follows from (6.1) and Definition 1b
that

(P satisfies GI)  (P satisfies CI). (6.2)
(c) In 1994, Doong and Frankl [16] defined that P is

correct with respect to Sp if and only if P satisfies the
set of all “equivalent” ground pairs in Sp and the set
of all “nonequivalent” ground pairs in Sp, where two
ground terms are said to be “equivalent” if and only
if the first can be rewritten into the second. Intui-
tively, the new definition requires that P should not
only satisfy every axiom individually, but also satisfy
the results from multiple usages of axioms as left-to-
right rewrite rules. The former does not necessarily
imply the latter, as pointed out by Weyuker’s anti-
composition and antidecomposition axioms [30].

We will use RP to denote the former set of all such
“equivalent” ground pairs7 and use RP’ to denote the
latter set of all “nonequivalent” ground pairs.
According to Gaudel [18], this “bigger exhaustive test
set [RP ∪ RP’] ... includes for every ground term the
inequalities with other normal forms, following the
definition of initial semantics.” Gaudel and Le Gall
[19] indicate that this is “an example of a case where
the [bigger] exhaustive test set is not built from
instantiations of the axioms, but more generally from
an adequate set of semantic consequences of the spec-
ification.” Zhu [32] further recognizes that “One of
[Doong and Frankl’s] most important contributions ...
is the extension of test cases to include negative test
cases, which consists of two terms that are supposed
to generate non-equivalent results.”

A pair of ground terms u1 and u2 is said to be
“equivalent” in Doong and Frankl [16] if and only if
u1 can be rewritten to u2 using one or more axioms as
left-to-right rewrite rules. In particular, if only one
axiom is used, u1 and u2 will be a ground instance of
an axiom. Hence, we have

GI ⊂ RP, (6.3)
where the symbol “⊂” again denotes “is a proper
subset of.” It follows from (6.3) and Definition 1b that

(P satisfies RP)  (P satisfies GI). (6.4)
We will discuss the converse after consolidating all
the logic relationships in the proof of (6.16).

(d) In 1998, Chen et al. [9] found that the “equivalence”
criterion in Doong and Frankl [16] corresponding to
“P satisfies RP” is problematic. To solve the problem,
they defined the concepts of normal equivalence and
fundamental pairs. Any pair of ground terms u1 and
u2 are normally equivalent if and only if both of them
can be rewritten to the same normal form. Each
fundamental pair is formed by replacing all the
variables on both sides of an axiom by normal forms.
We will use NE to denote the set of normally equiva-
lent pairs, and FP to denote the set of all fundamental
pairs. We note the following properties:

7 RP is an abbreviation for “Rewriting Pair”.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

(i) Chen et al. prove in [9, Theorem 2] that, given a
canonical specification of a class with proper
imports and a complete implementation P,

(P satisfies NE) ⇔ (P satisfies FP) (6.5)
even though FP is only a proper subset of NE.

(ii) Each pair of terms in CI is formed by replacing
all the variables on both sides of an axiom by
ground terms containing only creators or construc-
tors. Since every normal form contains only
creators or constructors, we have FP ⊆ CI. Con-
versely, it is proven in [8, Proposition 4] that
every ground term containing only creators or
constructors may not necessarily be in normal
form, and hence we have FP ≠ CI, and hence

FP ⊂ CI. (6.6)
It follows from (6.6) and Definition 1b that

(P satisfies CI)  (P satisfies FP). (6.7)
We will also discuss the converse after consoli-
dating all the logic relationships in the proof
of (6.16).

(e) In 2001, Chen et al. [10] showed that the “equivalence
and not-equivalence” criteria in Doong and Frankl
[16] corresponding to “P satisfies RP and P satisfies
RP’ ” are problematic. Given any pair of ground
terms u1 and u2, if u1 can be rewritten to u2, then they
are said to be “equivalent” in the sense of RP.
However, since u2 cannot be rewritten to u1 in many
circumstances, they are not “equivalent” in the sense
of RP, thus giving contradictory verdicts. More
seriously, the terms new.push(1).push(3).pop and
new.push(5).pop.push(1) under the specification in
Example 1 produce observationally equivalent ob-
jects when the implementation is correct. However,
they are not “equivalent” in the sense of RP in [16].
Thus, they wrongly report a failure.

As proven in [10, Theorem 1], “equivalence” in the
sense of RP implies normal equivalence, but not vice
versa. Hence, we have

RP ⊂ NE. (6.8)
It follows from (6.8) and Definition 1b that

(P satisfies NE)  (P satisfies RP). (6.9)
We will again discuss the converse after consoli-
dating all the logic relationships in the proof of (6.16).

(f) Chen et al. [10] further defined that P is correct with
respect to Sp if and only if P satisfies the set (OE) of
all observationally equivalent ground pairs in Sp and
the set (OE’) of all the observationally nonequivalent
ground pairs in Sp.

Let AE denote the set of all attributively equivalent
ground pairs and AE’ denote the set of all attribu-
tively nonequivalent ground pairs. Chen et al. proved
in [10, Theorems 1, 3, and 4] that

NE ⊂ OE ⊂ AE and AE’ ⊂ OE’, (6.10)
(P satisfies AE) ⇔ (P satisfies OE)

⇔ (P satisfies NE), (6.11)
(P satisfies OE’) ⇔ (P satisfies AE’). (6.12)

(g) In Theorem 1 of this paper, we go one step further to
connect (6.11) and (6.12) by proving mathematically
that “P satisfies OE” if and only if “P satisfies OE’.”

Hence, either one of them is a necessary and
sufficient condition for verifying the general program
correctness criterion of “P satisfies OE ∪ OE’.” In
other words, although

OE ⊂ OE ∪ OE’, (6.13)
we have

(P satisfies OE ∪ OE’) ⇔ (P satisfies OE)
⇔ (P satisfies OE’). (6.14)

Taking the subset relationships (6.1), (6.3), (6.6), (6.8),
(6.10), and (6.13) together, for a canonical specification of
a class with proper imports and a complete implementa-
tion, we have

FP ⊂ CI ⊂ GI ⊂ RP ⊂ NE ⊂ OE ⊂ AE
and OE ⊂ OE ∪ OE’. (6.15)

Taking the logic relationships (6.2), (6.4), (6.5), (6.7),
(6.9), (6.11), (6.12), and (6.14) together, for a canonical
specification of a class with proper imports and a
complete implementation, we have

(P satisfies OE ∪ OE’)
⇔ (P satisfies OE) ⇔ (P satisfies OE’)
⇔ (P satisfies AE) ⇔ (P satisfies AE’)
⇔ (P satisfies NE)  (P satisfies RP)
 (P satisfies GI)  (P satisfies CI)
 (P satisfies FP) ⇔ (P satisfies NE).

Note that the relationships from “(P satisfies NE)” in
line 4 to “(P satisfies NE)” in line 6 of the above statement
form a cycle. We conclude that

(P satisfies OE ∪ OE’)
⇔ (P satisfies OE) ⇔ (P satisfies OE’)
⇔ (P satisfies AE) ⇔ (P satisfies AE’)
⇔ (P satisfies NE) ⇔ (P satisfies RP)
⇔ (P satisfies GI) ⇔ (P satisfies CI)
⇔ (P satisfies FP). (6.16)

In summary, earlier work defined program correctness
via GI, which included only a subset of test cases for
verifying equivalent ground terms and did not include
any test case for verifying nonequivalent ground terms.
Doong and Frankl enhanced the semantics by expanding
GI to RP ∪ RP’, which included subsets of test cases for
verifying equivalent and nonequivalent ground terms.
Chen et al. further improved the semantics by replacing
RP ∪ RP’ by OE ∪ OE’. They also proved that, given a
canonical specification of a class with proper imports and
a complete implementation, the equivalence criterion “P
satisfies OE” and the nonequivalence criterion “P satisfies
OE’ ” can be expressed in terms of attributive equivalence
and nonequivalence, which can be verified more easily in
real-world practice. In this paper, we further prove that
the equivalence criterion can be substituted by the non-
equivalence criterion and vice versa while revealing
failures due to the same faults. In other words, either “P
satisfies OE” or “P satisfies OE’ ” will be necessary and
sufficient to confirm that “P satisfies OE ∪ OE’.”

Please refer also to Table 1 for a visual summary. From
the table, we see that researchers have gone a long way
since the first proposal for program correctness according
to “P satisfies GI.”

CHEN AND TSE: EQUALITY TO EQUALS AND UNEQUALS: A REVISIT OF THE EQUIVALENCE AND NONEQUIVALENCE CRITERIA 11

Table 1. Summary of Research on Program Correctness with Respect to Algebraic Specifications

Bernot [3] in 1991 
Bernot et al. [4] in 1991 
Gaudel [18] in 1995 
Le Gall and Arnould [26] in 1996 
Machado [27] in 1998 
Machado [28] in 2000 
Machado and Sannella [29] in 2002 
Aiguier et al. [1] in 2006  
Gaudel and Le Gall [19] in 2008 
Doong and Frankl [16] in 1994 
Chen et al. [9] in 1998 
Chen et al. [10] in 2001  
Chen and Tse in the present paper 

Definitions of the Correctness of a Program P with Respect to a Specification Sp

Define that P is correct with respect to Sp if and only if P satisfies the set (GI) of all ground
instances of every axiom in Sp.

Define a pair of “equivalent” ground terms as two ground terms such that one can be rewritten
to the other using the axioms in Sp as left-to-right rewrite rules. Define that P is correct with
respect to Sp if and only if P satisfies the set (RP) of all “equivalent” ground pairs in Sp and
satisfies the set (RP’) of all “nonequivalent” ground pairs in Sp.

Point out that the “equivalence” and “nonequivalence” criteria (namely, P satisfies RP and P
satisfies RP’) in the previous definition are problematic. Define pairs of observationally equivalent
ground terms*. Define that P is correct with respect to Sp if and only if P satisfies the set (OE) of all
observationally equivalent ground pairs in Sp and satisfies the set (OE’) of all the observationally
nonequivalent ground pairs in Sp.

Preconditions for the Correctness of a Program P with Respect to a Specification Sp
Prove that, given a canonical specification Sp, if P satisfies the set (CI) of all ground instances of every
axiom in Sp that contains creators or constructors only, then P satisfies GI.
Define two ground terms as (normally) equivalent if and only if both can be rewritten to the same normal
form using the axioms in Sp as left-to-right rewrite rules. Further define a fundamental pair as two
(normally) equivalent ground terms formed by replacing all the variables on both sides of an axiom by
normal forms. Prove that, given a canonical specification Sp with proper imports and a complete
implementation P, P satisfies the set (NE) of all normally equivalent ground pairs in Sp if and
only if P satisfies the set (FP) of all fundamentals pairs in Sp, even though FP is only a proper subset of NE.
Prove that, given a canonical specification Sp with proper imports and a complete implementation P,
P satisfies AE if and only if P satisfies OE, P satisfies OE if and only if P satisfies NE, and
P satisfies AE’ if and only if P satisfies OE’.

Prove that, given a canonical specification Sp with proper imports and a complete implementation P,
P satisfies OE if and only if P satisfies OE’.

Highlight that

FP ⊂ CI ⊂ GI ⊂ RP ⊂ NE ⊂ OE ⊂ AE, and OE ⊂ OE ∪ OE’

where the relation “X ⊂ Y” denotes that X is a proper subset of Y, which infers that X ≠ Y.
Prove that, given a canonical specification Sp with proper imports and a complete implementation P,

 (P satisfies OE ∪ OE’) ⇔ (P satisfies OE) ⇔ (P satisfies OE’)
 ⇔ (P satisfies AE) ⇔ (P satisfies AE’)
 ⇔ (P satisfies NE) ⇔ (P satisfies RP) ⇔ (P satisfies GI)
 ⇔ (P satisfies CI) ⇔ (P satisfies FP).

Based on these relations, emphasize that if P satisfies AE’, then P satisfies all the sets AE, FP, CI, GI, RP, NE, OE,
OE’, and OE ∪ OE’ in previous work. Then, conclude that it will be most effective to select test cases from the
subset AE’, which is most easily conducted in real world practice. (See Section 7.2 for the details of this final
point.)
* Previous work defined observational equivalence of objects but did not define observational equivalence of terms.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

In general, a program P is correct if and only if it
satisfies the requirements of its specification. In the case of
an algebraic specification Sp, the requirements include
two aspects:
1. the program P must satisfy every axiom in Sp, and
2. the program P must satisfy all the consequences

derived from the axioms in Sp.
OE ∪ OE’ is the set of all such consequences. Hence, the
definition that program P is correct if and only if P satis-
fies GI, defined by early authors, considers aspect 1 only.
However, the definition that program P is correct if and
only if P satisfies OE ∪ OE’, defined in our previous work,
takes into account not only aspect 1 but also aspect 2. As
GI is only a proper subset of OE ∪ OE’, we have (P
satisfies OE ∪ OE’)  (P satisfies GI) but the converse is
not necessarily true. Under what conditions will the
converse be valid? Other authors did not investigate this
problem, while (6.16) and its proof in our current paper
show that, given a canonical specification of a class with
proper imports and a complete implementation, the
converse will also hold. Under this specific condition, the
previous proposal for program correctness according to
“P satisfies GI ” can theoretically be retained. Similar
arguments apply also to FP, CI, RP, NE, AE, and AE’.

Given (6.16), does it mean that any of these criteria
require the same amount of testing effort from software
testers in real-world practice? The answer is not so simple.
We will discuss the practical implications of (6.16) in the
next section.

7 PRACTICAL IMPLICATIONS IN CLASS-LEVEL

TESTING BASED ON ALGEBRAIC SPECIFICATIONS

7.1 Practical Implication in Test Case Selection

This section discusses the practical implications due to the
new relationship between the testing of observationally
equivalent ground pairs and the testing of observationally
nonequivalent ground pairs. For the sake of brevity, we
will refer to the former as the testing of OE and the latter
as the testing of OE’. In general, the relationship between
the testing of OE and the testing of OE’ may fall into either
of the following possibilities:

Possibility 1: The testing of OE and the testing of OE’
does not imply each other. This has been the assumption
of previous work such as Doong and Frankl [16], Gaudel
[18], Gaudel and Le Gall [19], Chen et al. [10], and Zhu
[32]. Under this view, a fault that causes a failure detecta-
ble by the testing of OE may or may not cause a failure
detectable by the testing of OE’, and vice versa. Hence,
given any implementation fault, it may
a. cause a failure detectable by the testing of OE but does

not cause a failure detectable by the testing of OE’, or
b. cause a failure detectable by the testing of OE’ but does

not cause a failure detectable by the testing of OE, or
c. cause a failure detectable by the testing of OE as well

as cause another failure detectable by the testing of
OE’.

Thus, test cases have to be selected for verifying a, b, and
c. This is similar to the partition testing approach in
traditional program testing. Techniques such as propor-
tional sampling strategy [12] may be applied, where the
selected numbers of test cases for testing a, b, and c are
proportional to their relative input domain sizes. If
Possibility 1 is indeed true, a difficulty we need to face is
that the relative input domain sizes for a, b, and c are not
easy to estimate in order to apply the proportional
sampling technique. Fortunately, the main theorem in this
paper proves that, given a canonical specification of a
class with proper imports and a complete implementation,
Possibility 1 is not true.

Possibility 2: The testing of OE and the testing of OE’
imply each other. In this case, a fault that causes a failure
detectable by the testing of OE must cause a failure detect-
able by the testing of OE’, and vice versa. As the main
contribution of the present paper, Theorem 1 proves that,
given a canonical specification of a class with proper
imports and a complete implementation, only Possibility 2
is the true scenario. In this scenario, if we select test cases
for verifying both OE and OE’, it will likely result in
redundancy, which lowers the effectiveness and efficiency
of testing. Hence, we should select test cases for either OE
or OE’ but not both.

7.2 Practical Implication in Verifying Observational
Equivalence and Nonequivalence of Objects

As we have seen in Section 6, various researchers have
proposed different criteria to test the correctness of a
program P with respect to a specification Sp, including
whether P satisfies OE ∪ OE’, whether P satisfies OE’,
whether P satisfies OE, whether P satisfies NE, whether P
satisfies RP, whether P satisfies GI, whether P satisfies CI,
whether P satisfies FP, whether P satisfies AE, and
whether P satisfies AE’. Our analysis in Section 7.1, based
on Theorem 1, eliminates the need to verify whether P
satisfies OE ∪ OE’. Our proof of (6.16) in Section 6 also
shows that, given a canonical specification of a class with
proper imports and a complete implementation, all the
above criteria are theoretically equivalent. However, does
it mean that any of these criteria require the same amount
of testing effort from software testers in real-world
practice? This section further analyzes the issue and
proposes a practically feasible choice.

Based on Definition 1 in Section 4, the above criteria
can be classified into three distinct categories:

1. For criteria of the form “whether P satisfies X,”
where X is OE, NE, RP, GI, CI, and FP, we need to
test whether, for any pair of terms u1 and u2 in X,
their corresponding implementations Θ(u1) and
Θ(u2) are observationally equivalent. It is practically
impossible to verify observational equivalence in
real-world software testing because each test case
involves an infinite set of potential observable
contexts. These criteria are not ideal choices in
practice. Although we proposed in [9], [10] that we
test whether P satisfies FP, which is the smallest set

CHEN AND TSE: EQUALITY TO EQUALS AND UNEQUALS: A REVISIT OF THE EQUIVALENCE AND NONEQUIVALENCE CRITERIA 13

among those in (6.15), we needed a heuristic white-
box technique ROCS [11] to select a relevant finite
subset of the set of observable contexts so as to
determine the observational equivalence of objects.

2. For the criterion “whether P satisfies OE’,” we need
to test whether, for any pair of terms u1 and u2 in
OE’, their corresponding implementations Θ(u1)
and Θ(u2) are observationally nonequivalent. It is
practically difficult to find observational non-
equivalence in real-world testing because we need
to go through possibly an infinite set of observable
contexts for each test case. Thus, this criterion is not
a practical choice either.

3. For the criteria “whether P satisfies AE” and
“whether P satisfies AE’,” we need to test whether,
for any pair of terms u1 and u2 in AE, their
corresponding implementations Θ(u1) and Θ(u2) are
attributively equivalent and nonequivalent, respec-
tively. It is simple to verify attributive equivalence
and nonequivalence of objects in real-world testing
because the set of attributes in any class is finite and
usually small. Thus, these two criteria are potential
practical choices. Readers may refer to [10,
paragraphs after Corollary 2 in Section 4.3] for more
analysis.

We have conducted an analysis on the need to test
“whether P satisfies AE” or “whether P satisfies AE’ ” or
both, similarly to that in Section 7.1 for OE and OE’. We
arrive at a similar conclusion that we should select test
cases for AE or AE’ but not both. In particular, we
recommend testing the criterion “whether P satisfies AE’ ”
because a technique has already been developed for
selecting a finite number of test cases from AE’. Our
Generating Attributively Nonequivalent terms (GAN)
approach in [10, Section 4.4] handles this process using
techniques in State-Transition Diagrams (STDs), and turns
it into a terminating process via interactive input from
users for the maximum numbers of iterations for cyclic
paths in STDs. The implementations and experimentation
of the GAN approach are also discussed in [10, Section 4].
A limitation of the GAN approach is that it assumes the
regularity hypothesis [3], [4], namely, that if a statement
has been tested for the positive integers 1, 2, ..., k for some
constant k, then it is assumed that the statement will hold
for all positive integers. Thus, having tested the cyclic
paths for the maximum number of iterations specified by
the users, it is assumed that the implementation is correct
with any number of iterations.

In summary, based on the practical considerations in
Sections 7.1 and 7.2, given a canonical specification of a
class with proper imports and a complete implementation
in real-world software testing, we recommend selecting
test cases from the set AE’ and verifying whether the
objects that result from executing the corresponding
implemented method sequences are attributively non-
equivalent, rather than selecting test cases from OE’, OE,
NE, RP, GI, CI, FP, or AE.

As future work, we will also study the application of
ARTOO [13] to select test cases from AE’ by defining the
object distance of nonequivalent terms with a view to
spreading the test cases evenly in the AE’. This will
alleviate the users from having to assume the regularity
hypothesis and make decisions on the maximum numbers
of iterations for cyclic paths.

8 CONCLUSION

It is generally believed that class-level testing of object-
oriented software based on algebraic specification in-
volves two independent aspects: the testing of equivalent
ground terms and the testing of nonequivalent ground
terms. Previous researchers have cited intuitive examples
to illustrate that the latter cannot be replaced by the
former, and is therefore of equal importance.

We have proven formally in this paper, however, that
given a canonical specification of a class with proper
imports and a complete implementation, the equivalence
criterion for testing observationally equivalent terms
(denoted by “P satisfies OE”) and the nonequivalence
criterion for testing observationally nonequivalent terms
(denoted by “P satisfies OE’ ”) imply each other. Based on
this result, we have shown that the testing of observation-
ally equivalent ground terms and the testing of observa-
tionally nonequivalent ground terms cover each other. In
other words, if a failure due to a certain fault in the
implementation that can be revealed by testing observa-
tionally nonequivalent ground terms, another failure due
to the same fault can also be revealed by testing
observationally equivalent ground terms, and vice versa.

We have discussed the theoretical implications of our
new findings to related work on class-level testing based
on algebraic specifications. We have proven that, given a
canonical specification with proper imports and a com-
plete implementation, all the correctness criteria proposed
by previous researchers are theoretically equivalent to “P
satisfies OE” and to “P satisfies OE’.” Under this specific
condition, the criteria proposed by previous researchers
for program correctness can theoretically be retained.

On the other hand, the need to test either “P satisfies
OE” or “P satisfies OE’ ” is an impossible task in software
testing because of the need to verify an infinite number of
behavioral outcomes even for one single test case. We
have discussed real-world implications, and recommend
to conduct testing using a more practical criterion “P satis-
fies AE’,” which is guaranteed by our theoretical results to
reveal failures due to the same faults. Even so, we need to
assume a regularity hypothesis. As future work, we
propose to study the application of ARTOO as an alterna-
tive technique to alleviate this assumption.

ACKNOWLEDGMENTS

This research was supported by a grant from the National
Science Foundation of China (project no. 60173038), grants
from the General Research Fund of the Research Grant

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Council of Hong Kong (project nos. 717811 and 716612),
and a linkage grant from the Australian Research Council
(project no. LP100200208). Part of the research was con-
ducted when Huo Yan Chen was in Canada supported by
CuiTeck Inc. in Montreal. Part of the research was
conducted when T.H. Tse was serving as a distinguished
visiting scholar at the Key Laboratory of Computer
Science, Institute of Software, Chinese Academy of
Sciences, Beijing, China.

REFERENCES

[1] M. Aiguier, A. Arnould, C. Boin, P. Le Gall, and B. Marre, “Testing from
Algebraic Specifications: Test Data Set Selection by Unfolding Axioms,”
Proceedings of the Fifth International Conference on Formal Approaches to
Software Testing (FATES ’05), pp. 203–217, 2006.

[2] S. Antoy and D. Hamlet, “Automatically Checking an Implementation
against Its Formal Specification,” IEEE Transactions on Software Engineer-
ing, vol. 26, no. 1, pp. 55–69, 2000.

[3] G. Bernot, “Testing against Formal Specifications: A Theoretical View,”
Proceedings of the Fourth International Joint CAAP/FASE Conference on
Theory and Practice of Software Development (TAPSOFT ’91), Part 2:
Advances in Distributed Computing and Colloquium on Combining
Paradigms for Software Development, pp. 99–119, 1991.

[4] G. Bernot, M.-C. Gaudel, and B. Marre, “Software Testing Based on
Formal Specifications: A Theory and a Tool,” Software Engineering
Journal, vol. 6, no. 6, pp. 387–405, 1991.

[5] M. Bidoit and P.D. Mosses, CASL User Manual: Introduction to Using the
Common Algebraic Specification Language CASL. Springer, 2004.

[6] P. Borba and J.A. Goguen, “An Operational Semantics for FOOPS,”
International Workshop on Information Systems: Correctness and Reusability
(IS-CORE ’94), 1994.

[7] L. Bougé, N. Choquet, L. Fribourg, and M.-C. Gaudel, “Test Sets
Generation from Algebraic Specifications Using Logic Programming,”
Journal of Systems and Software, vol. 6, pp. 343–360, 1986.

[8] H.Y. Chen and T.H. Tse, “Automatic Generation of Normal Forms for
Testing Object-Oriented Software,” Proceedings of the Ninth International
Conference on Quality Software (QSIC ’09), pp. 108–116, 2009.

[9] H.Y. Chen, T.H. Tse, F.T. Chan, and T.Y. Chen, “In Black and White: An
Integrated Approach to Class-Level Testing of Object-Oriented Pro-
grams,” ACM Transactions on Software Engineering and Methodology, vol.
7, no. 3, pp. 250–295, 1998.

[10] H.Y. Chen, T.H. Tse, and T.Y. Chen, “TACCLE: A Methodology for
Object-Oriented Software Testing at the Class and Cluster Levels,” ACM
Transactions on Software Engineering and Methodology, vol. 10, no. 1, pp.
56–109, 2001.

[11] H.Y. Chen, T.H. Tse, and Y.T. Deng, “ROCS: An Object-Oriented Class-
Level Testing System Based on the Relevant Observable Contexts
Technique,” Information and Software Technology, vol. 42, no. 10, pp. 677–
686, 2000.

[12] T.Y. Chen, T.H. Tse, and Y.T. Yu, “Proportional Sampling Strategy: A
Compendium and Some Insights,” Journal of Systems and Software, vol.
58, no. 1, pp. 65–81, 2001.

[13] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO: Adaptive
Random Testing for Object-Oriented Software,” Proceedings of the 30th
International Conference on Software Engineering (ICSE ’08), pp. 71–80,
2008.

[14] P. Dauchy, M.-C. Gaudel, and B. Marre, “Using Algebraic Specifications
in Software Testing: A Case Study on the Software of an Automatic
Subway,” Journal of Systems and Software, vol. 21, no. 3, pp. 229–244, 1993.

[15] R.-K. Doong, “An Approach to Testing Object-Oriented Programs,”
PhD thesis, Polytechnic University, Brooklyn, NY, 1993.

[16] R.-K. Doong and P.G. Frankl, “The ASTOOT Approach to Testing
Object-Oriented Programs,” ACM Transactions on Software Engineering
and Methodology, vol. 3, no. 2, pp. 101–130, 1994.

[17] J.D. Gannon, P.R. McMullin, and R. Hamlet, “Data Abstraction,
Implementation, Specification, and Testing,” ACM Transactions on
Programming Languages and Systems, vol. 3, no. 3, pp. 211–223, 1981.

[18] M.-C. Gaudel, “Testing Can Be Formal, Too,” Proceedings of the Sixth
International Joint CAAP/FASE Conference on Theory and Practice of
Software Development (TAPSOFT ’95), pp. 82–96, 1995.

[19] M.-C. Gaudel and P. Le Gall, “Testing Data Types Implementations
from Algebraic Specifications,” Formal Methods and Testing, R.M.
Hierons, J.P. Bowen, and M. Harman, eds., pp. 209–239, Springer, 2008.

[20] J.A. Goguen, C. Kirchner, H. Kirchner, A. Megrelis, and J. Meseguer,
“An Introduction to OBJ3,” Proceedings of the First Workshop on
Conditional Term Rewriting Systems, pp. 258–263, 1988.

[21] J.A. Goguen, J.W. Thatcher, and E.G. Wagner, “An Initial Algebra
Approach to the Specification, Correctness and Implementation of
Abstract Data Types,” Current Trends in Programming Methodology, Vol.
IV: Data Structuring, R.T. Yeh, ed., pp. 80–149, Prentice Hall, 1978.

[22] J.V. Guttag and J.J. Horning, “The Algebraic Specification of Abstract
Data Types,” Acta Informatica, vol. 10, no. 1, pp. 27–52, 1978.

[23] R.M. Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Derrick, J.
Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen,
A.J.H. Simons, S. Vilkomir, M.R. Woodward, and H. Zedan, “Using
Formal Specifications to Support Testing,” ACM Computing Surveys, vol.
41, no. 2, article no. 9, 2009.

[24] P. Jalote, “Specification and Testing of Abstract Data Types,” Proceedings
of the Seventh Annual International Computer Software and Applications
Conference (COMPSAC ’83), pp. 508–511, 1983.

[25] L. Kong, H. Zhu, and B. Zhou, “Automated Testing EJB Components
Based on Algebraic Specifications,” Proceedings of the 31st Annual Interna-
tional Computer Software and Applications Conference (COMPSAC ’07), pp.
717–722, 2007.

[26] P. Le Gall and A. Arnould, “Formal Specifications and Test: Correctness
and Oracle,” Selected Papers from the 11th Workshop on Specification of
Abstract Data Types Joint with the Eighth COMPASS Workshop on Recent
Trends in Data Type Specification, pp. 342–358, 1996.

[27] P.D.L. Machado, “On Oracles for Interpreting Test Results against
Algebraic Specifications,” Proceedings of the Seventh International
Conference on Algebraic Methodology and Software Technology (AMAST ’98),
pp. 502–518, 1998.

[28] P.D.L. Machado, “Testing from Structured Algebraic Specifications,”
Proceedings of the Ninth International Conference on Algebraic Methodology
and Software Technology (AMAST ’00), pp. 529–544, 2000.

[29] P.D.L. Machado and D. Sannella, “Unit Testing for CASL Architectural
Specifications,” Proceedings of the 27th Symposium on Mathematical
Foundations of Computer Science, pp. 506–518, Springer, 2002.

[30] E.J. Weyuker, “Axiomatizing Software Test Data Adequacy,” IEEE
Transactions on Software Engineering, vol. 12, no. 12, pp. 1128–1138, 1986.

[31] B. Yu, L. Kong, Y. Zhang, and H. Zhu, “Testing Java Components Based
on Algebraic Specifications,” Proceedings of the First International
Conference on Software Testing, Verification, and Validation (ICST ’08), pp.
190–199, 2008.

[32] H. Zhu, “A Note on Test Oracles and Semantics of Algebraic
Specifications,” Proceedings of the Third International Conference on Quality
Software (QSIC ’03), pp. 91–98, 2003.

[33] S.N. Zilles, “Algebraic Specification of Data Types,” Project MAC
Progress Report 11, MIT, 1974.

CHEN AND TSE: EQUALITY TO EQUALS AND UNEQUALS: A REVISIT OF THE EQUIVALENCE AND NONEQUIVALENCE CRITERIA 15

Huo Yan Chen received the BS degree in
mathematics from Nankai University,
China, in 1968 and the master’s degree by
research in computer science from Jinan
University, China, in 1982. He has been a
full professor of computer science at Jinan
University since 1991. He worked in an IT
company as a system analyst and software
designer for 10 years. He was a visiting
research scholar on computer science at
the University of Illinois at Urbana-
Champaign from 1986 to 1988. He has

conducted research collaborations in software engineering many
times at The University of Hong Kong. He was the president of the
Guangzhou Intelligent Engineering Association from 2002 to 2006,
and a vice-president of the Guangdong Computer Federation from
2004 to 2010. He has received three Science and Technology
Awards in software engineering and knowledge engineering from the
Ministry of Education and the Guangdong Province in China. He was
also recognized by the State Council of China for his outstanding
contributions in higher education and science.

T.H. Tse received the PhD degree from the
London School of Economics in 1988 and
was a visiting fellow at the University of
Oxford in 1990 and 1992. He is a professor
in computer science at The University of
Hong Kong. His current research interest is
in program testing, debugging, and
analysis. He is the steering committee
chair of QSIC and an editorial board
member of the Journal of Systems and
Software, Software Testing, Verification
and Reliability, Software: Practice and

Experience, and the Journal of Universal Computer Science. He also
served on the search committee for the editor-in-chief of the IEEE
Transactions on Software Engineering in 2013. He is a fellow of the
British Computer Society, a fellow of the Institute for the Management
of Information Systems, a fellow of the Institute of Mathematics and
Its Applications, and a fellow of the Hong Kong Institution of
Engineers. He was awarded an MBE by The Queen of the United
Kingdom. He is a senior member of the IEEE.

