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Abstract

An insurance risk model where claims follow a Markovian arrival process (MArP) is consid-
ered in this paper. It is shown that the expected present value of total operating costs up to
default H, as a generalization of the classical Gerber-Shiu function, contains more non-trivial
quantities than those covered in Cai et al. (2009), such as all moments of the discounted claim
costs until ruin. However, it does not appear that the Gerber-Shiu function φ with a gener-
alized penalty function which additionally depends on the surplus level immediately after the
second last claim before ruin (Cheung et al. (2010a)) is contained in H. This motivates us
to investigate an even more general function Z from which both H and φ can be retrieved as
special cases. Using a matrix version of Dickson-Hipp operator (Feng (2009b)), it is shown that
Z satisfies a Markov renewal equation and hence admits a general solution. Applications to
other related problems such as the matrix scale function, the minimum and maximum surplus
levels before ruin are given as well.

Keywords: Claim costs up to ruin; Generalized penalty function; Gerber-Shiu function; Markovian
arrival process; Risk model; Dickson-Hipp operator; Markov renewal equation.

1 Introduction

1.1 Generalizations of the Gerber-Shiu function

In classical ruin theory, the expected present value (EPV) of penalty at ruin, also known as the
Gerber-Shiu function (Gerber and Shiu (1998)), has been one of the most popular quantities of
interest in recent ten years. For the purpose of comparison with other quantities, we introduce the
structure of this function in general terms. Let U = {Ut}t≥0 be a stochastic process representing
the surplus of an insurer under consideration. The process U is defined on a probability space
(Ω,F , {Pu, u ∈ R}) satisfying the usual conditions, with {Pu, u ∈ R} a family of probability measures
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associated with the process under which Pu(U0 = u) = 1. The quantity of concern to the insurer is
the time of ruin defined as τ := inf{t ≥ 0 : Ut < 0}. With slight variations under specific models,
the now classical Gerber-Shiu function is typically defined as

φCL(u) := Eu[e−δτw(Uτ− , |Uτ |)I(τ < ∞)], u ≥ 0, (1.1)

where Eu is the expectation taken under the measure Pu, δ ≥ 0 can be interpreted as a Laplace
transform argument or the force of interest, w is the so-called ‘penalty function’, and I(A) is the
indicator function for the event A. It is well-known that the above function provides a systematic
tool to exploit the relationship among the time of ruin τ , surplus prior to ruin Uτ− and deficit at
ruin |Uτ |.

In the recent literature, there have been various attempts to generalize the Gerber-Shiu function
in order to accommodate more quantities of interest. One of such attempts was made by Cheung
et al. (2010a) to incorporate an additional variable into the penalty function, namely the surplus
level at the time of the penultimate claim prior to ruin. Let N = {Nt}t≥0 be the number of
claims process and {Tk}∞k=1 be the sequence of arrival times of insurance claims (which is such that
Nt = sup{k ∈ N : Tk ≤ t} with the definition T0 = 0). Then Rn = UTn is the surplus level of U
immediately after the n-th claim for n = 1, 2, . . . with the definition R0 = U0. The generalization in
their work is formulated as

φ(u) := Eu[e−δτw(Uτ− , |Uτ |, RNτ−1)I(τ < ∞)], u ≥ 0, (1.2)

where w is now the extended penalty function. In addition to all that is known to the classical
Gerber-Shiu function (1.1), the generalized version (1.2) enables us to analyze the joint distribution
of the original three quantities along with the newly introduced RNτ−1. In particular, Cheung et al.
(2010a) used φ to obtain the joint and marginal distributions of the last interclaim time before ruin
occurs and the claim causing ruin in the compound Poisson risk model. The analysis of φ in other
risk models can be found in Cheung and Landriault (2009b), Cheung et al. (2010b), Woo (2010,
2012) and Cheung (2011), whereas the application of φ to derive some ordering properties for various
ruin-related quantities was done by Cheung et al. (2011).

Another development was made by Cai et al. (2009) to analyze quantities pertaining to the
survival of insurance business from the time of origin to the time of ruin. The quantity of interest is
interpreted as the EPV of total operating costs up to ruin, namely

H(u) := Eu

[∫ τ

0

e−δtl(Ut) dt

]
, u ≥ 0, (1.3)

where the ‘cost function’ l(x) represents the operating cost depending on the current surplus level
x for x ≥ 0. In the context of the compound Poisson risk model, Cai et al. (2009) showed that
the above function encompasses a variety of quantities including the classic Gerber-Shiu function
(1.1), EPV of claim costs up to ruin, EPV of insurer’s utility, EPV of dividends paid up to ruin,
etc. Added to the list as shown in this paper include the moments of discounted claim costs up to
ruin and the moments of operating costs up to ruin in a risk model with Markovian claim arrivals
as described in Section 1.2. The function H was also studied by Feng (2009a,b) for a renewal risk

2



model with phase-type interclaim times and used in Feng (2011) and Feng and Shimizu (2013a,b) to
obtain potential measures of jump diffusion processes and Lévy processes.

An imminent question arises with regard to the comparison of the two distinct generalizations
(1.2) and (1.3): Do they belong to an even larger class of functions? In this paper, we shall demon-
strate that both can indeed be accommodated by a more general form. More precisely, we further
allow the cost function l to depend on the surplus level immediately after the previous claim. Then
such a more general function is defined as

Z(u) := Eu

[∫ τ

0

e−δtl(Ut, UTNt
) dt

]
, u ≥ 0, (1.4)

with l now being the extended cost function.

1.2 Markovian arrival process

In this paper, we assume that the insurer’s surplus process U = {Ut}t≥0 is described by

Ut = u + ct−
Nt∑

k=1

Yk, t ≥ 0,

where claims arrive according to a Markovian arrival process. The constant u ≥ 0 is the initial
surplus level and c > 0 is the incoming premium rate per unit time. Moreover, N = {Nt}t≥0 is the
number of claims process and J = {Jt}t≥0 is a homogeneous irreducible continuous-time Markov
chain (CTMC) with finite state space E = {1, . . . , m} and arbitrary initial probability vector. The
natural filtration of this bivariate Markov process (N ,J ) = {(Nt, Jt)}t≥0 is denoted by {Ft}t≥0

associated with the family of measures {P(u,i)} each of which determines P(u,i)(U0 = u, J0 = i) = 1.
The evolution of the bivariate Markov process on the state space N × E is governed by the m ×m
square matrices Λ0 and Λ1. The (i, j)-th element of Λ0, namely λ0

ij ≥ 0, is the instantaneous rate
of transition of J from state i to state j 6= i in E without an associated claim occurrence. On
the other hand, the (i, j)-th element of the matrix Λ1, namely λ1

ij ≥ 0, is the instantaneous rate
of transition from state i to state j in E with an accompanying claim. The diagonal elements of
Λ0 are assumed to be negative and such that the sum of the elements on each row of the matrix
Λ0 +Λ1 is zero. The sequence {Yk}∞k=1 represents insurance claims with Yk being the size of the k-th
claim. For a transition of the underlying CTMC J from state i to state j at the time of a claim,
the accompanying claim is assumed to have density pij(·), cumulative distribution function Pij(·),
survival function P ij(·) := 1 − Pij(·) and mean µij. For later use it will be convenient to define
the matrix p(·) := [pij(·)]mi,j=1. The positive security loading condition (under which ruin does not
happen with probability 1) is given by (e.g. Cheung and Landriault (2010))

m∑
i=1

πi

m∑
j=1

λ1
ijµij < c. (1.5)

Here πi’s are the stationary probabilities of the CTMC J which are the solution of the system of
linear equations comprising{ ∑m

j=1,j 6=i πj(λ
0
ji + λ1

ji) = −πiλ
0
ii, i ∈ E.∑m

j=1 πj = 1.
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The condition (1.5) may or may not be assumed. More specifically, as a general rule of thumb, we
only require either (1.5) or δ > 0 (see Remark 4).

Throughout the paper, we shall use the acronym MArP for Markovian arrival process. Readers
are referred to Neuts (1989) and Latouche and Ramaswami (1999) for introduction to MArP. Analysis
of MArP risk models can be found in e.g. Badescu et al. (2005, 2007a,b), Ahn and Badescu (2007),
Ahn et al. (2007), and Cheung and Landriault (2009a, 2010). Well-known special cases of MArP
risk models include Sparre Andersen models with phase-type inter-arrival times (e.g. Cheung (2007)
and Feng (2009a,b)), the Markov-modulated (or regime-switching) risk processes (e.g. Li and Lu
(2007, 2008) and Zhu and Yang (2008, 2009)), and the semi-Markovian risk model by Albrecher and
Boxma (2005).

1.3 Notation and organization of paper

We shall use the following convention of matrix notation throughout the paper. Whenever A is a
matrix, the (i, j)-th element is denoted by [A]ij = Aij and the j-th column is denoted by A·j by
convention. Whenever A is a vector, the i-th entry is denoted by [A]i = Ai. All vectors in this paper
are column vectors by default. We shall also use the superscript> to denote the transpose of a matrix.
The notation ◦ denotes the Hadamard product (entrywise multiplication), i.e. [A ◦B]ij = AijBij for
all i, j’s. The expectation E(u,i) is taken under the measure P(u,i), and Eu is treated as a vector with
i-th element being the expectation E(u,i). The symbols 0, I and 1 are used for zero matrix, identity
matrix and a vector of ones respectively, all of appropriate dimension. Although most quantities of
interest in this paper are dependent on the force of interest δ, we shall suppress the argument δ for
notational brevity.

The rest of the paper is organized as follows. In Section 2, various new moment-based quantities
and a transition kernel characterizing φ are shown to be non-trivial special cases of H under different
choices of the cost function l, although φ itself does not appear to be contained in H. Section 3
unifies the study of all quantities by proposing the novel quantity Z defined via (1.4) which includes
not only H but also φ as special cases. The derivation of the general solution to Z relies heavily
on the use of matrix Dickson-Hipp operators. The notion of matrix Dickson-Hipp operators was
introduced by Feng (2009b) which serves as an extension of the classical scalar counterpart proposed
by Dickson and Hipp (2001). Section 4 is concerned with a few examples to see how the results and
techniques involved can be applied to related problems such as the minimum and maximum surplus
levels before ruin.

2 Non-trivial special cases of H

2.1 Moment-based quantities in relation to discounted costs up to ruin

We first aim at extending the so-called ‘EPV of total claim costs up to ruin’ introduced by Cai et
al. (2009, Equation (1.2)) (see also Feng (2009a, Equation (4.15) and 2009b, Section 5.2)), which
is known to contain the classical Gerber-Shiu function φCL as a special case (see Remark 1). In
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particular, we shall consider the higher moments of the discounted total claim costs up to ruin. In
the context of the MArP risk model it is defined by, for n = 0, 1, . . .,

Cn,i(u) := E(u,i)

[(
Nτ∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

)

)n]
, u ≥ 0, (2.1)

where $ij is a function on [0,∞) × (−∞,∞) representing the ‘cost’ associated with a claim if the
claim is a result of a transition of J from state i to state j. For this quantity we assume a strictly
positive discount factor of δ > 0, as the total claim costs may be infinite without discounting when
ruin does not occur. Note that C0,i(u) = 1 by definition, and we define the column vector Cn(u)
with i-th element [Cn(u)]i := Cn,i(u).

Remark 1 When n = 1, it is known from Feng (2009a, Equation (4.28)) that the classical Gerber-
Shiu function under a penalty function of w(·, ·) is a special case of the EPV of total claim costs up
to ruin. More precisely, in the present context the Gerber-Shiu function

φCL,ij(u) := E(u,i)[e−δτw(Uτ− , |Uτ |)I(τ < ∞, Jτ = j)], u ≥ 0, (2.2)

can be retrieved from C1,i(u) by letting

$kl(x, y) =

{
0, y ≥ 0.
w(x,−y)I(l = j), y < 0.

¤
An alternative quantity of interest would be, for n = 0, 1, . . .,

Ĉn,ij(u) := E(u,i)

[(
Nτ∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

)

)n

I(τ < ∞, Jτ = j)

]
, u ≥ 0. (2.3)

The quantity Ĉn,ij only takes into account the discounted total claim costs until ruin if ruin occurs
while J is in state j. In contrast, the state at ruin is not present in the definition of Cn,i in (2.1)

allowing the possibility that ruin does not occur (under (1.5)). When n = 0, Ĉ0,ij(u) reduces to
the probability of ruin in state j, namely ψij(u) := P(u,i)(τ < ∞, Jτ = j), which is a special case of

φCL,ij(u) in (2.2) by letting δ = 0 and w(·, ·) ≡ 1. Unlike the case of Cn,i, we allow δ = 0 for Ĉn,ij.
One can obtain from (2.3) the moments of the number of claims up to ruin by letting δ = 0 and
$ij(·, ·) ≡ 1 for all i, j’s. We also define the square matrices Ĉn(u) and Ψ(u) with (i, j)-th elements

[Ĉn(u)]ij := Ĉn,ij(u) and [Ψ(u)]ij := ψij(u) respectively. Note that the moments of discounted total
claim costs without ruin occurring can be obtained as

E(u,i)

[(
Nτ∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

)

)n

I(τ = ∞)

]
= Cn,i(u)−

m∑
j=1

Ĉn,ij(u), u ≥ 0.

See Badescu and Landriault (2008) for a similar situation in which the dividend moments for MArP
risk models with threshold strategies are distinguished according to whether ruin occurs.
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By the same logic, we may also extend the EPV of total operating costs up to ruin defined by
(1.3) and consider higher moments defined in the present context by, for n = 0, 1, . . .,

Hn,i(u) := E(u,i)

[(∫ τ

0

e−δtlJt(Ut) dt

)n]
, u ≥ 0, (2.4)

where lj is the cost function and is allowed to depend on the state of the Markov chain J . The gener-
alized version (2.4) for n > 1 allows for the calculation of, for example, the moments of accumulated
utility of the insurer. Note that H0,i(u) = 1, and we define [Hn(u)]i := Hn,i(u) and [l(u)]i := li(u).
Similarly, we can also define the moments of discounted total operating costs up to ruin with ruin
occurring by, for n = 0, 1, . . .,

Ĥn,ij(u) := E(u,i)

[(∫ τ

0

e−δtlJt(Ut) dt

)n

I(τ < ∞, Jτ = j)

]
, u ≥ 0.

The function Ĥn,ij is different from Hn,i in that the operating costs are counted only for the cases

where ruin occurs in state j. When n = 0, Ĥ0,ij reduces to the probability of ruin ψij. For convenience

we define the matrix Ĥn(u) := [Ĥn,ij(u)]mi,j=1.

As we shall see, the above moment-based quantities can be retrieved from H1 under appropriate
choices of the cost function l. To make the presentation clear, we reinstate the first moment of
discounted total operating costs up to ruin with a cost function l∗ (such that [l∗(·)]j := l∗j (·)) and
force of interest δ∗ as

H∗(u) := Eu

[∫ τ

0

e−δ∗tl∗Jt
(Ut) dt

]
, u ≥ 0,

which is the column vector with i-th element [H∗(u)]i = H∗
i (u) := E(u,i)[

∫ τ

0
e−δ∗tl∗Jt

(Ut) dt].

Proposition 1 Define $k(·, ·) := [$k
ij(·, ·)]mi,j=1. For n = 1, 2, . . .,

1. Cn is a special case of H∗ with δ∗ = nδ and

l∗(x) =
n−1∑

k=1

(
n

k

) ∫ x

0

(Λ1◦p(y)◦$n−k(x, x−y))Ck(x−y) dy+

∫ ∞

0

(Λ1◦p(y)◦$n(x, x−y))1 dy.

(2.5)

2. Ĉn,·j is a special case of H∗ with δ∗ = nδ and

l∗(x) =
n−1∑

k=0

(
n

k

) ∫ x

0

(Λ1◦p(y)◦$n−k(x, x−y))Ĉk,·j(x−y) dy+

∫ ∞

x

(Λ1◦p(y)◦$n(x, x−y))·j dy.

(2.6)

Proof. We follow a similar proof as in Feng (2009a, Theorem 4.1). Denote the time of first transition
of the underlying Markov chain J by σ. Conditioning on σ and the resulting claim (if any), we have
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Cn,i(u) =

∫ ∞

0

e(λ0
ii−nδ)t

m∑

j=1,j 6=i

λ0
ijCn,j(u + ct) dt

+

∫ ∞

0

e(λ0
ii−nδ)t

m∑
j=1

λ1
ij

[ ∫ u+ct

0

n∑

k=0

(
n

k

)
pij(y)$n−k

ij (u + ct, u + ct− y)Ck,j(u + ct− y) dy

+

∫ ∞

u+ct

pij(y)$n
ij(u + ct, u + ct− y) dy

]
dt. (2.7)

Note that

E(u,i)
[
e−nδσCn,Jσ(Uσ)

]

=

∫ ∞

0

eλ0
iit

[
m∑

j=1,j 6=i

λ0
ije

−nδtCn,j(u + ct) +
m∑

j=1

λ1
ije

−nδt

∫ u+ct

0

pij(y)Cn,j(u + ct− y) dy

]
dt,

and

E(u,i)
[
e−nδσ$n−k

(Jσ− ,Jσ)(Uσ− , Uσ)Ck,Jσ(Uσ)I(T1 = σ)
]

=

∫ ∞

0

eλ0
iit

m∑
j=1

λ1
ije

−nδt

∫ ∞

0

pij(y)$n−k
ij (u + ct, u + ct− y)Ck,j(u + ct− y) dy dt

=

{ ∫∞
0

eλ0
iit

∑m
j=1 λ1

ije
−nδt

∫∞
0

pij(y)$n
ij(u + ct, u + ct− y) dy dt, k = 0,∫∞

0
eλ0

iit
∑m

j=1 λ1
ije

−nδt
∫ u+ct

0
pij(y)$n−k

ij (u + ct, u + ct− y)Ck,j(u + ct− y) dy dt, k = 1, 2, . . . , n− 1,

where we follow the usual convention that C0,j(u) ≡ 1 for all u and Ck,j(u) ≡ 0 for u < 0 and
k = 1, 2, . . .. Therefore, (2.7) can be expressed as

Cn,i(u) =
n−1∑

k=0

(
n

k

)
E(u,i)

[
e−nδσ$n−k

(Jσ− ,Jσ)(Uσ− , Uσ)Ck,Jσ(Uσ)I(T1 = σ)
]

+ E(u,i)
[
e−nδσCn,Jσ(Uσ)

]
.

(2.8)
Since a claim resulting from a transition in J from i to j can be viewed as the first event of
an independent Poisson random measure Nij with characteristics (λ1

ij, νij) where E[Nij(t, A)] :=
λ1

ijt νij(A) for all Borel sets A and νij([0, x]) = Pij(x), we obtain

E(u,i)
[
e−nδσ$n−k

(Jσ− ,Jσ)(Uσ− , Uσ)Ck,Jσ(Uσ)I(T1 = σ)
]

=
m∑

j=1

E(u,i)
[
e−nδσ$n−k

(Jσ− ,Jσ)(Uσ− , Uσ)Ck,Jσ(Uσ)I(T1 = σ, Jσ = j)
]

=
m∑

j=1

E(u,i)

[∫ σ

0

e−nδt

∫ ∞

0

$n−k
ij (Ut− , Ut− − y)Ck,j(Ut− − y)Nij( dt, dy)

]

=
m∑

j=1

E(u,i)

[∫ σ

0

e−nδt

∫ ∞

0

$n−k
ij (Ut− , Ut− − y)Ck,j(Ut− − y)λ1

ijpij(y) dy dt

]
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=
m∑

j=1

E(u,i)

[∫ σ

0

e−nδt

∫ ∞

0

$n−k
ij (Ut, Ut − y)Ck,j(Ut − y)λ1

ijpij(y) dy dt

]
, (2.9)

with the last equality from the fact that {t ≥ 0 : Ut 6= Ut−} is a countable set. Hence, we can rewrite
(2.8) as

Cn,i(u) = E(u,i)

[∫ σ

0

e−nδt

n−1∑

k=0

(
n

k

) m∑
j=1

∫ ∞

0

$n−k
ij (Ut, Ut − y)Ck,j(Ut − y)λ1

ijpij(y) dy dt

]

+ E(u,i)
[
e−nδσCn,Jσ(Uσ)

]
. (2.10)

On the other hand, by conditioning on the time of first transition and then applying the strong
Markov property to H∗

i (u), we arrive at

H∗
i (u) = E(u,i)

[∫ σ

0

e−δ∗tl∗i (Ut) dt

]
+ E(u,i)

[
e−δ∗σH∗

Jσ
(Uσ)

]
, (2.11)

where it is understood that H∗
i (u) ≡ 0 for u < 0. It follows immediately by comparing (2.10) and

(2.11) that Cn,i(u) is a special case of H∗
i (u) with δ∗ = nδ and

l∗i (x) =
n−1∑

k=0

(
n

k

) m∑
j=1

∫ ∞

0

$n−k
ij (x, x− y)Ck,j(x− y)λ1

ijpij(y) dy

=
n−1∑

k=1

(
n

k

) m∑
j=1

∫ x

0

λ1
ijpij(y)$n−k

ij (x, x− y)Ck,j(x− y) dy +
m∑

j=1

∫ ∞

0

λ1
ijpij(y)$n

ij(x, x− y) dy,

whose matrix representation is given by (2.5).

Similarly, for the second statement, we first arrive at

Ĉn,ij(u) =

∫ ∞

0

e(λ0
ii−nδ)t

m∑

h=1,h6=i

λ0
ihĈn,hj(u + ct) dt

+

∫ ∞

0

e(λ0
ii−nδ)t

[
m∑

h=1

λ1
ih

∫ u+ct

0

n∑

k=0

(
n

k

)
pih(y)$n−k

ih (u + ct, u + ct− y)Ĉk,hj(u + ct− y) dy

+ λ1
ij

∫ ∞

u+ct

pij(y)$n
ij(u + ct, u + ct− y) dy

]
dt. (2.12)

Note that the condition that ruin occurs is already embedded in the renewal argument for the first
integral term in the square brackets. Again we have that

E(u,i)
[
e−nδσĈn,(Jσ,j)(Uσ)

]

=

∫ ∞

0

eλ0
iit

[
m∑

h=1,h6=i

λ0
ihe

−nδtĈn,hj(u + ct) +
m∑

h=1

λ1
ihe

−nδt

∫ u+ct

0

pih(y)Ĉn,hj(u + ct− y) dy

]
dt,

8



and

E(u,i)
[
e−nδσ$n−k

(Jσ− ,Jσ)(Uσ− , Uσ)Ĉk,(Jσ ,j)(Uσ)I(T1 = σ)
]

=





∫∞
0

eλ0
iit

[∑m
h=1 λ1

ihe
−nδt

∫ u+ct

0
pih(y)$n

ih(u + ct, u + ct− y)Ĉ0,hj(u + ct− y) dy,

+ λ1
ije

−nδt
∫∞

u+ct
pij(y)$n

ij(u + ct, u + ct− y) dy
]
dt, k = 0,∫∞

0
eλ0

iit
∑m

h=1 λ1
ihe

−nδt
∫ u+ct

0
pih(y)$n−k

ih (u + ct, u + ct− y)Ĉk,hj(u + ct− y) dy dt, k = 1, 2, . . . , n− 1,

where we follow the usual convention that when u < 0 one has Ĉ0,ij(u) = I(i = j) and Ĉk,ij(u) ≡ 0
for k = 1, 2, . . .. Now, we can rewrite (2.12) as

Ĉn,ij(u) =
n−1∑

k=0

(
n

k

)
E(u,i)

[
e−nδσ$n−k

(Jσ− ,Jσ)(Uσ− , Uσ)Ĉk,(Jσ,j)(Uσ)I(T1 = σ)
]

+ E(u,i)
[
e−nδσĈn,(Jσ,j)(Uσ)

]

= E(u,i)

[∫ σ

0

e−nδt

n−1∑

k=0

(
n

k

) m∑

h=1

∫ ∞

0

$n−k
ih (Ut, Ut − y)Ĉk,hj(Ut − y)λ1

ihpih(y) dy dt

]

+ E(u,i)
[
e−nδσĈn,(Jσ ,j)(Uσ)

]
, (2.13)

where the last line follows since, as in (2.9),

E(u,i)
[
e−nδσ$n−k

(Jσ− ,Jσ)(Uσ− , Uσ)Ĉk,(Jσ ,j)(Uσ)I(T1 = σ)
]

=
m∑

h=1

E(u,i)

[∫ σ

0

e−nδt

∫ ∞

0

$n−k
ih (Ut, Ut − y)Ĉk,hj(Ut − y)λ1

ihpih(y) dy dt

]
.

By comparing (2.13) and (2.11), one observes that Ĉn,ij(u) is a special case of H∗
i (u) with δ∗ = nδ

and

l∗i (x) =
n−1∑

k=0

(
n

k

) m∑

h=1

∫ ∞

0

$n−k
ih (x, x− y)Ĉk,hj(x− y)λ1

ihpih(y) dy

=
n−1∑

k=0

(
n

k

) m∑

h=1

∫ x

0

λ1
ihpih(y)$n−k

ih (x, x− y)Ĉk,hj(x− y) dy +

∫ ∞

x

λ1
ijpij(y)$n

ij(x, x− y) dy,

which is (2.6).

Proposition 2 For n = 1, 2, . . .,

1. Hn is a special case of H∗ with δ∗ = nδ and l∗(x) = nl(x) ◦Hn−1(x).

2. Ĥn,·j is a special case of H∗ with δ∗ = nδ and l∗(x) = nl(x) ◦ Ĥn−1,·j(x).

Proof. For the first statement, since

n

∫ T

0

g(t)

(∫ T

t

g(s) ds

)n−1

dt =− n

∫ T

0

(∫ T

t

g(s) ds

)n−1

d

(∫ T

t

g(s) ds

)

=− n

(∫ T

t

g(s) ds

)n∣∣∣∣
T

0

=

(∫ T

0

g(t) dt

)n

,

9



it follows immediately that

Hn(u) = Eu

[
n

∫ τ

0

e−δt lJt(Ut)

(∫ τ

t

e−δslJs(Us) ds

)n−1

dt

]

= Eu

[
n

∫ ∞

0

e−nδt lJt(Ut) I(τ > t)

(∫ τ

t

e−δ(s−t)lJs(Us) ds

)n−1

dt

]

= Eu

[
n

∫ ∞

0

e−nδt lJt(Ut) I(τ > t)Eu

[(∫ τ

t

e−δ(s−t)lJs(Us) ds

)n−1
∣∣∣∣∣Ft

]
dt

]

= Eu

[
n

∫ τ

0

e−nδt lJt(Ut)Hn−1,Jt(Ut) dt

]
= Eu

[∫ τ

0

e−δ∗t l∗Jt
(Ut) dt

]
,

where δ∗ = nδ and l∗i (x) = nli(x)Hn−1,i(x). Note that the Tonelli’s Theorem and the double ex-
pectation formula have been used in the third equality. (More precisely, we are doing operations
E[

∫∞
0

A(t) dt] =
∫∞

0
E[A(t)] dt =

∫∞
0
E[E[A(t)|Ft]] dt = E[

∫∞
0
E[A(t)|Ft] dt].)

The proof for the second statement can be carried out in a similar manner as

Ĥn,·j(u) = Eu

[
n

∫ τ

0

e−δt lJt(Ut)

(∫ τ

t

e−δslJs(Us) ds

)n−1

I(τ < ∞, Jτ = j) dt

]

= Eu

[
n

∫ τ

0

e−nδt lJt(Ut)Eu

[(∫ τ

t

e−δ(s−t)lJs(Us) ds

)n−1

I(τ < ∞, Jτ = j)

∣∣∣∣∣Ft

]
dt

]

= Eu

[
n

∫ τ

0

e−nδt lJt(Ut)Ĥn−1,(Jt,j)(Ut) dt

]
= Eu

[∫ τ

0

e−δ∗t l∗Jt
(Ut) dt

]
,

where δ∗ = nδ and l∗i (x) = nli(x)Ĥn−1,ij(x).

The implication of Propositions 1 and 2 is that the moment-based quantities Cn, Ĉn,·j, Hn and

Ĥn,·j can all be studied via H1, and the EPV of total operating costs up to ruin H1 is indeed far
more general than the examples listed in Cai et al. (2009). The procedure is recursive as the order
of moment n increases. In Proposition 1 the recursion for Cn starts itself at n = 1, whereas the
starting point of the recursion for Ĉn,·j is given by Ĉ0,·j ≡ Ψ·j. In Proposition 2, the starting points

are H0 ≡ 1 and Ĥ0,·j ≡ Ψ·j respectively.

Similarly, we can show that every column vector of Ĉ1 is a special case of C1. To avoid the
ambiguity on the notation of cost functions, we reiterate the definition of C∗ with the claim cost
function $∗(·, ·) := [$∗

ij(·, ·)]mi,j=1 as

C∗(u) := Eu

[
Nτ∑

k=1

e−δTk$∗
(J

T−
k

,JTk
)(UT−k

, UTk
)

]
, u ≥ 0, (2.14)

which has i-th element [C∗(u)]i = C∗
i (u) := E(u,i)[

∑Nτ

k=1 e−δTk$∗
(J

T−
k

,JTk
)(UT−k

, UTk
)].
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Proposition 3 For u ≥ 0, Ĉ1,·j(u) is a special case of C∗(u) with the claim cost

$∗
ik(x, y) = $ik(x, y)ψkj(y), (2.15)

where it is understood that ψij(y) = I(i = j) for y < 0.

Proof. Note that

Ĉ1,ij(u) = E(u,i)

[
Nτ∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

)I(τ < ∞, Jτ = j)

]

= E(u,i)

[ ∞∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

)I(τ ≥ Tk)I(τ < ∞, Jτ = j)

]

= E(u,i)

[ ∞∑

k=1

E(u,i)

[
e−δTk$(J

T−
k

,JTk
)(UT−k

, UTk
)I(τ ≥ Tk)I(τ < ∞, Jτ = j)

∣∣∣∣FTk

]]

= E(u,i)

[ ∞∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

)I(τ ≥ Tk)E(UTk
,JTk

) [I(τ < ∞, Jτ = j)]

]

= E(u,i)

[
Nτ∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

)ψ(JTk
,j)(UTk

)

]

= E(u,i)

[
Nτ−1∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

)ψ(JTk
,j)(UTk

) + e−δτ$(Jτ− ,Jτ )(Uτ− , Uτ )I(Jτ = j)

]
.

In the third equality the double expectation formula for filtration at random time is used (Karatzas
and Shreve (1991, Problem 2.17)). Thus, Ĉ1,ij(u) is a special case of C∗

i (u) with the claim cost
function $∗

ik as in (2.15).

Proposition 3 is quite intuitive: (while ruin has not occurred) the claim cost associated with a
claim is included in Ĉ1,ij(u) if and only if ruin occurs in state j in the future.

2.2 A transition kernel χ characterizing φ

Next, we are interested in a quantity introduced by Cheung (2011) that is known to play a crucial
role in analyzing the Gerber-Shiu function (1.2) in the context of a dependent Sparre Andersen risk
model. It is interpreted as the discounted kernel density of reaching a certain surplus level after an
arbitrary number of claims prior to ruin. In the present risk model with Markovian arrivals, it has
a matrix counterpart which is defined as χ(u, z) := [χij(u, z)]mi,j=1 with

χij(u, z) :=
∞∑

k=1

E(u,i)[e−δTk∆(UTk
− z)I(Tk < τ, JTk

= j)], u, z ≥ 0. (2.16)

Here ∆ represents the Dirac delta function which assigns a probability mass 1 to the point 0.
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Proposition 4 χ·j(u, z) is a special case of H∗(u) with δ∗ = δ and

l∗(x) =

{
(Λ1 ◦ p(x− z))·j, z < x.
0, z ≥ x.

Proof. Because {Tk < τ} = {k < Nτ}, we must have

χij(u, z) = E(u,i)

[
Nτ−1∑

k=1

e−δTk∆(UTk
− z)I(JTk

= j)

]
,

which is clearly a special case of C∗
i (u) (see (2.14)) with the claim cost given by

$∗
kl(x, y) = ∆(y − z)I(l = j).

According to Proposition 1(1) (with n = 1), this C∗
i (u) is in turn a special case of H∗

i (u) with δ∗ = δ
and

l∗k(x) =
m∑

l=1

∫ ∞

0

λ1
klpkl(y)$∗

kl(x, x− y) dy =
m∑

l=1

∫ ∞

0

λ1
klpkl(y)∆(x− y − z)I(l = j) dy

= λ1
kjpkj(x− z)I(x− z > 0).

Hence the result follows.

In the present MArP risk model, the Gerber-Shiu function (1.2) with a generalized penalty is
defined as

φij(u) := E(u,i)[e−δτw(Uτ− , |Uτ |, RNτ−1)I(τ < ∞, Jτ = j)], u ≥ 0. (2.17)

Its matrix version Φ(u) := [φij(u)]mi,j=1 is characterized by χ via the following Proposition.

Proposition 5 The Gerber-Shiu function Φ admits the representation

Φ(u) = β(u) +

∫ ∞

0

χ(u, z)β(z) dz, u ≥ 0, (2.18)

where

β(u) = [βij(u)]mi,j=1 :=
1

c

∫ ∞

0

∫ ∞

u

w(x, y, u)e(−δI+Λ0)(x−u
c )(Λ1 ◦ p(x + y)) dx dy, u ≥ 0. (2.19)

Proof. First we want to argue that β(u) represents the contribution to Φ(u) by ruin occurring upon
the first claim. Note that the probability that the CTMC J (starting in state i at time 0) is in state
k at time t without a claim in the interim is given by [eΛ0t]ik. Being in state k at any instant, a
claim that brings J to state j occurs at rate λ1

kj = [Λ1]kj, and the resulting claim follows density
pkj(·) = [p(·)]kj. See e.g. Asmussen (2003, Proposition XI.1.5). Hence, further using the fact that
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Nτ = 1 (or τ = T1) implies Uτ− = U0 + cT1, Uτ = U0 + cT1 − Y1 and RNτ−1 = U0, the contribution
by ruin on the first claim is given by

E(u,i)
[
e−δτw(Uτ− , |Uτ |, RNτ−1)I(τ < ∞, Jτ = j, Nτ = 1)

]

=
m∑

k=1

∫ ∞

0

∫ ∞

u+ct

e−δtw(u + ct, y − (u + ct), u)[eΛ0t]ikλ
1
kjpkj(y) dy dt

=

∫ ∞

0

∫ ∞

u+ct

e−δtw(u + ct, y − (u + ct), u)[eΛ0t(Λ1 ◦ p(y))]ij dy dt

=
1

c

∫ ∞

0

∫ ∞

u

w(x, y, u)
[
e(−δI+Λ0)(x−u

c )(Λ1 ◦ p(x + y))
]

ij
dx dy, u ≥ 0,

where the last line follows from a change of variables. By comparing with (2.19), it is immediate
that

βij(u) = E(u,i)
[
e−δτw(Uτ− , |Uτ |, RNτ−1)I(τ < ∞, Jτ = j, Nτ = 1)

]
, u ≥ 0. (2.20)

Next, we shall follow similar probabilistic arguments as in Cheung and Landriault (2009b, Section
4.2) to prove the representation (2.18) for Φ. Since β(u) is the contribution to Φ(u) by ruin occurring
upon the first claim, it remains to prove that the integral term

∫∞
0

χ(u, z)β(z) dz is the contribution
by ruin on claims subsequent to the first. From (2.16), one observes that χik(u, z) represents the
discounted kernel density that the surplus process U (starting at U0 = u and J0 = i) is at level z in
state k after an arbitrary number (≥ 1) of claims without ruin in the interim. Starting at this newly
established level z in state k, the process U restarts because of its Markovian nature, and if the next
claim causes ruin in state j, then the surplus level immediately after the penultimate claim prior to
ruin RNτ−1 will be precisely z, resulting in a contribution of [β(z)]kj. Because the level z and the
state k are arbitrary, summing over k and integrating over z yields

E(u,i)
[
e−δτw(Uτ− , |Uτ |, RNτ−1)I(τ < ∞, Jτ = j, Nτ > 1)

]
=

m∑

k=1

∫ ∞

0

χik(u, z)βkj(z) dz. (2.21)

By adding (2.20) and (2.21), one obtains φij(u) according to the definition (2.17) and hence the
representation (2.18) is proved.

We also refer interested readers to Cheung (2011, Lemma 1 and Proposition 1) for the mathe-
matical details in the scalar case regarding the Proof of (2.18). As discussed in Cheung (2011), the
advantage of the representation (2.18) is that the dependence of Φ on the penalty function w(·, ·, ·)
only appears through the function β, which is explicitly given by (2.19). Therefore, the Gerber-
Shiu function Φ is essentially characterized by the transition function χ defined by (2.16), which is
independent of the choice of w(·, ·, ·).

However, although χ·j characterizing Φ is a special case of H1, the column vectors of the Gerber-
Shiu function Φ do not appear to be contained in H1. Therefore in the next section we shall study
(the matrix version of) Z (see (1.4)) in attempt to unify all quantities in this paper.
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3 A more general function Z

3.1 Definition and its special cases

In the MArP risk model, the matrix counterpart of (1.4) is

Z(u) := Eu

[∫ τ

0

e−δtlJt(Ut, UTNt
) dt

]
, u ≥ 0,

with lj(·, ·) being the extended cost function which possibly depends on the state of the Markov chain
J . In consistence with previous notation, Z(u) is the column vector with i-th element [Z(u)]i =
Zi(u) := E(u,i)[

∫ τ

0
e−δtlJt(Ut, UTNt

) dt]. Obviously, if lj(·, ·) does not depend on the second argument,

then Z reduces to H1 which is known to contain Cn, Ĉn,·j, Hn and Ĥn,·j and χ·j as special cases from
Section 2. For later use we define the column vector of cost functions l(·, ·) such that [l(·, ·)]j := lj(·, ·).

Next we shall focus on two quantities which do not appear to be special cases of H1 but can be
retrieved from the extended version Z. The first one can be regarded as an extension of C1 (see
(2.1)) and is defined by the column vector K(u) with i-th element [K(u)]i := Ki(u) given by

Ki(u) := E(u,i)

[
Nτ∑

k=1

e−δTk$(J
T−

k
,JTk

)(UT−k
, UTk

, UTk−1
)

]
, u ≥ 0. (3.1)

Here the ‘cost’ $ij(·, ·, ·) associated with the k-th claim is extended to three arguments and allowed
to further depend on the surplus level UTk−1

immediately after the previous claim (with T0 = 0).
Also define the matrix $(·, ·, ·) := [$ij(·, ·, ·)]mi,j=1. The following proposition gives the relationship
between K and Z.

Proposition 6 K is a special case of Z with the cost function

l(x, z) =

∫ ∞

0

(Λ1 ◦ p(y) ◦$(x, x− y, z))1 dy. (3.2)

Proof. Following similar arguments as in the Proof of Proposition 5 regarding the use of the matrix
exponential eΛ0t and the rate matrix Λ1, conditioning on the time and the resulting amount of the
first claim leads to

K(u) =

∫ ∞

0

e−δteΛ0t

[ ∫ u+ct

0

(Λ1 ◦ p(y))K(u + ct− y) dy

+

∫ ∞

0

(Λ1 ◦ p(y)) ◦$(u + ct, u + ct− y, u)1 dy

]
dt. (3.3)

For the quantity Z(u), we break down its contributions at the time of the first claim according
to two sources: (1) the present value of future costs given that the process J restarts at the surplus
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level immediately after the first claim (if it does not cause ruin), and (2) the accumulated value of
costs up to the time of the first claim. Therefore,

Z(u) =

∫ ∞

0

e−δteΛ0t

∫ u+ct

0

(Λ1 ◦ p(y))Z(u + ct− y) dy dt +

∫ ∞

0

e−δteΛ0tl(u + ct, u) dt. (3.4)

Note that in the second integral, the ‘current payment method’ in the context of life contingencies
has been used. A comparison of (3.3) and (3.4) yields the desired result of (3.2).

Another quantity which is a special case of Z is (each column of) the Gerber-Shiu function Φ
with a generalized penalty function, as shown in the next proposition.

Proposition 7 Φ·j is a special case of Z with cost function

l(x, z) =

∫ ∞

x

w(x, y − x, z)(Λ1 ◦ p(y))·j dy. (3.5)

Proof. From (2.17) and (3.1), it is clear that φij can be retrieved from Ki by choosing

$kl(x, y, z) =

{
0, y ≥ 0.
w(x,−y, z)I(l = j), y < 0.

(This actually complements Remark 1.) Hence by Proposition 6, φij is a special case of Zi with cost
function

lk(x, z) =
m∑

l=1

λ1
kl

∫ ∞

0

$kl(x, x− y, z)pkl(y) dy = λ1
kj

∫ ∞

x

w(x, y − x, z)pkj(y) dy,

which is the desired result.

3.2 General solution

In order to derive the general solution to the function Z, we shall apply a matrix operator approach.
An operator that is essential to our analysis is a matrix version of the Dickson-Hipp operator intro-
duced by Feng (2009b, Section 2), which is defined as

TSh(x) := eSx

∫ ∞

x

e−Syh(y) dy, x ≥ 0,

where S is a square matrix and h is a matrix function such that the integral exists. Note that if S = s
is a scalar, then one retrieves the usual Dickson-Hipp operator (see Dickson and Hipp (2001)) applied
to the matrix function h, which is understood to be the matrix containing the scalar Dickson-Hipp
transforms of the elements of h. If x = 0 in the above definition, then one can conveniently extend
the usual notation of Laplace transforms to matrix quantities and write

L{h}(S) := TSh(0) =

∫ ∞

0

e−Syh(y) dy.

Therefore one may use the notations L{h}(S) and TSh(0) interchangeably. We will require the
following Lemma in our analysis, and its proof can be found in Feng (2009b).
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Lemma 1 For any square matrices S1 and S2 of the same dimension and a matrix function h,

TS1(S2 − S1)TS2h(x) = TS1h(x)− TS2h(x), x ≥ 0.

The following Corollary is a direct consequence of the above Lemma when x = 0.

Corollary 1 For any square matrices S1 and S2 of the same dimension and a matrix function h,

L{(S2 − S1)TS2h} (S1) = L{h}(S1)− L{h}(S2).

Apart from matrix Dickson-Hipp operators, the convolution operator ∗ will also be used, and it
is defined as

(h1 ∗ h2)(x) :=

∫ x

0

h1(x− y)h2(y) dy, x ≥ 0,

for two conformable matrix functions h1 and h2. The n-fold convolution of a square matrix function
h can then be defined recursively via h∗n = (h∗(n−1) ∗ h) = (h ∗ h∗(n−1)) for n ≥ 2 with h∗1 ≡ h. We
have the following Lemma for the matrix Dickson-Hipp transform of a convolution.

Lemma 2 For a square matrix S and two matrix functions h1 and h2,

TS(h1 ∗ h2)(x) = {(TSh1) ∗ h2} (x) + TS (L{h1}(S)h2) (x), x ≥ 0. (3.6)

Proof. By the definitions of Dickson-Hipp operator and convolution, one has

TS(h1 ∗ h2)(x) = eSx

∫ ∞

x

e−Sy

∫ y

0

h1(y − v)h2(v) dv dy

= eSx

(∫ x

0

∫ ∞

x

+

∫ ∞

x

∫ ∞

v

)
e−Syh1(y − v)h2(v) dy dv

=

∫ x

0

(
eS(x−v)

∫ ∞

x−v

e−Syh1(y) dy

)
h2(v) dv

+ eSx

∫ ∞

x

e−Sv

(∫ ∞

v

e−S(y−v)h1(y − v) dy

)
h2(v) dv

=

∫ x

0

[TSh1(x− v)]h2(v) dv + eSx

∫ ∞

x

e−Sv [L{h1}(S)]h2(v) dv

= {(TSh1) ∗ h2} (x) + TS (L{h1}(S)h2) (x),

which is the desired result. Note that in the second term above, the Dickson-Hipp operator is only
applied to the function h2, i.e. the term L{h1}(S) is viewed as a constant.

A useful special case of Lemma 2 is the case x = 0 in which the first term in (3.6) vanishes,
leading to the following Corollary.

Corollary 2 For a square matrix S and two matrix functions h1 and h2,

L{h1 ∗ h2}(S) = L{L{h1}(S)h2} (S).
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As we shall see, the general solution to the matrix function Z hinges on a crucial matrix R which
is a solution to the equation

L{Λ1 ◦ p}(R) = δI−Λ0 − cR. (3.7)

The above equation can be regarded as a matrix extension of Lundberg’s fundamental equation in
the classical compound Poisson risk model which is the scalar version of the present MArP model.
The determination of the matrix R relies on the more well-known version of Lundberg’s fundamental
equation

det

[(
ξ − δ

c

)
I +

1

c
Λ0 +

1

c
L{Λ1 ◦ p}(ξ)

]
= 0, (3.8)

which is known to have m roots with non-negative real parts (see e.g. Badescu (2008)). This will be
discussed in the Appendix. The following theorem gives the general solution to Z.

Theorem 1 The function Z satisfies the Markov renewal equation

Z(u) =

∫ u

0

f(y)Z(u− y) dy + v(u), u ≥ 0, (3.9)

where
v(u) := Γ(u) + TR(α−R)Γ(u), u ≥ 0, (3.10)

Γ(u) :=
1

c

∫ ∞

u

e−α(x−u)l(x, u) dx, u ≥ 0, (3.11)

f(y) :=
1

c
TR(Λ1 ◦ p)(y), y ≥ 0, (3.12)

and α := (δI−Λ0)/c. The general solution of Z is given by

Z(u) = v(u) +

∫ u

0

g(u− y)v(y) dy, u ≥ 0, (3.13)

where

g(y) :=
∞∑

n=1

f∗n(y), y ≥ 0.

Proof. With the definitions α = (δI − Λ0)/c and (3.11), by a change of variable (3.4) can be
rewritten as

Z(u) =
1

c
Tα

{
(Λ1 ◦ p) ∗ Z

}
(u) + Γ(u). (3.14)

For any arbitrary m×m matrix S, we proceed by pre-multiplying both sides of (3.14) by α−S and
then taking Laplace transform (with argument S). This yields

L{(α− S)Z}(S) =
1

c
L{

(α− S)Tα

{
(Λ1 ◦ p) ∗ Z

}}
(S) + L{(α− S)Γ}(S)

=
1

c

[L{
(Λ1 ◦ p) ∗ Z

}
(S)− L{

(Λ1 ◦ p) ∗ Z
}

(α)
]
+ L{(α− S)Γ}(S)

=
1

c

[L{L{Λ1 ◦ p}(S)Z
}

(S)− L{
(Λ1 ◦ p) ∗ Z

}
(α)

]
+ L{(α− S)Γ}(S),
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where Corollaries 1 and 2 have been applied in the second and third equalities. By rearranging terms,
we arrive at

L
{[

(α− S)− 1

c
L{Λ1 ◦ p}(S)

]
Z

}
(S) = −1

c
L{

(Λ1 ◦ p) ∗ Z
}

(α) + L{(α− S)Γ}(S). (3.15)

It is instructive to note that the term inside the square bracket on the left-hand side is simply a
constant, and the Laplace transform is taken with respect to the argument of the function Z only.
Because R satisfies (3.7) (and it is assumed that Z(ρi) is finite for i = 1, 2, . . . , m), substitution of
S = R into the above equation yields

1

c
L{

(Λ1 ◦ p) ∗ Z
}

(α) = L{(α−R)Γ}(R). (3.16)

Back substitution of (3.16) into (3.15) leads to

L
{[

(α− S)− 1

c
L{Λ1 ◦ p}(S)

]
Z

}
(S) = −L{(α−R)Γ}(R) + L{(α− S)Γ}(S).

From now on it is sufficient to consider S in the form of sI where s ≥ 0 is a scalar constant. Then
the above equation reduces to

L
{[

(α− sI)− 1

c
L{Λ1 ◦ p}(sI)

]
Z

}
(sI) = −L{(α−R)Γ}(R) + L{(α− sI)Γ}(sI). (3.17)

For the moment we focus on the square bracket on the left-hand side. The fact that R satisfies (3.7)
along with the use of Corollary 1 implies

(α− sI)− 1

c
L{Λ1 ◦ p}(sI) = R +

1

c
L{Λ1 ◦ p}(R)− sI− 1

c
L{Λ1 ◦ p}(sI)

= R− sI− 1

c
L{

(R− sI)TR(Λ1 ◦ p)
}

(sI)

= R− sI− 1

c
(R− sI)L{TR(Λ1 ◦ p)

}
(sI)

= (R− sI)

[
I− 1

c
L{TR(Λ1 ◦ p)

}
(s)

]
. (3.18)

Note that the second last equality follows because R and sI commute. Further using this fact again,
the left-hand side of (3.17) can be rewritten as

L
{[

(α− sI)− 1

c
L{Λ1 ◦ p}(sI)

]
Z

}
(sI) = L

{
(R− sI)

[
I− 1

c
L{TR(Λ1 ◦ p)

}
(s)

]
Z

}
(sI)

= (R− sI)

[
I− 1

c
L{TR(Λ1 ◦ p)

}
(s)

]
L{Z}(s).

On the other hand, the right-hand side of (3.17) equals

−L{(α−R)Γ}(R) + L{(α− sI)Γ}(sI) =− L{(α−R)Γ}(R) + L{(α−R)Γ}(sI) + L{(R− sI)Γ}(sI)
= L{(R− sI)TR(α−R)Γ}(sI) + L{(R− sI)Γ}(sI)
= (R− sI) [L{TR(α−R)Γ}(s) + L{Γ}(s)] ,
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where Corollary 1 has been applied in the second equality and the last line again follows from the
fact that R and sI commute. With the above two equations, (3.17) reduces to

[
I− 1

c
L{TR(Λ1 ◦ p)

}
(s)

]
L{Z}(s) = L{TR(α−R)Γ}(s) + L{Γ}(s),

or equivalently,

L{Z}(s) =
1

c
L{TR(Λ1 ◦ p)

}
(s)L{Z}(s) + L{Γ}(s) + L{TR(α−R)Γ}(s).

Inversion of Laplace transforms with respect to s yields

Z(u) =
1

c

({TR(Λ1 ◦ p)
} ∗ Z

)
(u) + Γ(u) + TR(α−R)Γ(u),

which is the Markov renewal equation (3.9) under the definitions (3.10) and (3.12). The solution
(3.13) of (3.9) then follows from Çinlar (1969, Section 3a) or Asmussen (2003, Section VII.4).

Remark 2 If the extended cost function l(·, ·) does not depend on its second argument, Z reduces
to H1 and then (3.11) can be conveniently expressed in terms of the Dickson-Hipp operator as

Γ(u) =
1

c

∫ ∞

u

e−α(x−u)l(x) dx =
1

c
Tαl(u),

and hence by Lemma 1 v in (3.10) simplifies to give

v(u) =
1

c
[Tαl(u) + TR(α−R)Tαl(u)] =

1

c
TRl(u).

Therefore, the Markov renewal equation (3.9) becomes

H1(u) =

∫ u

0

f(y)H1(u− y) dy +
1

c
TRl(u), u ≥ 0, (3.19)

which is an extension of Feng (2009b, Theorem 3.1). ¤

Remark 3 Theorem 1 can also be regarded as a generalization of Cheung et al. (2010a, Theorem
2.1) which considered the scalar version of the Gerber-Shiu function Φ in the classical compound
Poisson risk model. It is not difficult to see that their result can be retrieved from ours under the
choice of cost function in Proposition 7. ¤

Remark 4 In what follows we shall demonstrate that the matrix
∫∞
0

f(y) dy (with f defined by

(3.12)) is strictly substochastic. By letting w(·, ·) ≡ 1 in Remark 1, one observes that E(u,i)[e−δτI(τ <
∞)] is a special case of C1,i(u) under $kj(x, y) = I(y < 0). This C1,i is in turn a special case of H1,i

according to Proposition 1(1) (with n = 1) with cost function

l(x) =

∫ ∞

x

(Λ1 ◦ p)(y)1 dy =

∫ ∞

0

(Λ1 ◦ p)(x + y) dy1.
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Hence, by putting u = 0 into (3.19), we arrive at

E0[e−δτI(τ < ∞)] =
1

c
TRl(0) =

1

c

∫ ∞

0

e−Rx

∫ ∞

0

(Λ1 ◦ p)(x + y) dy dx1

=
1

c

∫ ∞

0

∫ ∞

0

e−Rx(Λ1 ◦ p)(x + y) dx dy1 =
1

c

∫ ∞

0

TR(Λ1 ◦ p)(y) dy1

=

∫ ∞

0

f(y) dy1,

where the last line follows from the definition (3.12). Note that each element of the left-hand side,
namely E(0,i)[e−δτI(τ < ∞)], is strictly less than 1 under either δ > 0 or the positive security loading
condition (1.5). Hence, we conclude that

∫∞
0

f(y) dy1 < 1, implying that the matrix
∫∞
0

f(y) dy
is strictly substochastic. Therefore, the Markov renewal equation (3.9) can be viewed as a matrix
form of a defective renewal equation, which also arises in the ruin theory literature (see e.g. Ahn
and Badescu (2007) and Cheung and Landriault (2009b)). In addition, the solution is known to be
unique as well (see e.g. Miyazawa (2002)). We refer interested readers to e.g. Wu (1999), Miyazawa
(2002) and Li and Luo (2005) for two-sided bounds and asymptotics for the solution of a matrix
defective renewal equation. ¤

4 Examples and applications

4.1 Solution to Φ

As an example, we derive the solution of Φ using Theorem 1. From Proposition 7, Φ·j is a special
case of Z with cost function (3.5), and therefore Γ in (3.11) reduces to

Γ(u) =
1

c

∫ ∞

u

e−α(x−u)

∫ ∞

x

w(x, y − x, u)(Λ1 ◦ p(y))·j dy dx = β·j(u),

according to the definition (2.19), i.e. Γ is simply the j-th column of β. This implies that Φ·j satisfies
the Markov renewal equation (3.9) with v(u) = β·j(u) + TR(α−R)β·j(u). Piecing together all the
column vectors, we have that Φ satisfies

Φ(u) =

∫ u

0

f(y)Φ(u− y) dy + v∗(u), u ≥ 0,

where
v∗(u) := β(u) + TR(α−R)β(u), u ≥ 0. (4.1)

Parallel to (3.13), the solution of Φ is given by

Φ(u) = v∗(u) +

∫ u

0

g(u− y)v∗(y) dy, u ≥ 0. (4.2)

In the same manner as in Cheung et al. (2010a, Theorem 2.2), we can express the above solution
in the form of (2.18) with the function χ explicitly identified. Substitution of (4.1) into (4.2) gives

Φ(u) = β(u) + TR(α−R)β(u) +

∫ u

0

g(u− y)β(y) dy +

∫ u

0

g(u− y)TR(α−R)β(y) dy.
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While the second term in the above equation can be represented as

TR(α−R)β(u) =

∫ ∞

u

e−R(y−u)(α−R)β(y) dy,

the last integral equals, by changing the order of integrations,∫ u

0

g(u− y)TR(α−R)β(y) dy =

∫ u

0

g(u− y)

∫ ∞

y

e−R(z−y)(α−R)β(z) dz dy

=

∫ u

0

(∫ z

0

g(u− y)e−R(z−y) dy

)
(α−R)β(z) dz +

∫ ∞

u

(∫ u

0

g(u− y)e−R(z−y) dy

)
(α−R)β(z) dz.

With the above two equations, the solution (4.2) can be written in the form (2.18) with χ given by

χ(u, z) =

{
g(u− z) +

(∫ z

0
g(u− y)e−R(z−y) dy

)
(α−R), z < u.[

e−R(z−u) +
(∫ u

0
g(u− y)e−R(z−y) dy

)]
(α−R), z ≥ u.

(4.3)

The above representation for χ is an extension of Cheung et al. (2010a, Equation (18)) and com-
plements Cheung and Landriault (2009b, Equation (4.24)). We remark that one may also directly
derive χ with χ·j being a solution of (3.19) using Proposition 4. This will lead to the same result as
in (4.3) and the details are omitted here.

4.2 Minimum surplus before ruin

Here we aim at using the results in previous sections to study the Gerber-Shiu function which
further involves the minimum surplus level before ruin U τ− = inf0≤s<τ Us in the penalty function.
We consider Φmin(u) whose (i, j)-th element is given by

φmin,ij(u) := E(u,i)[e−δτwmin(Uτ− , |Uτ |, U τ− , RNτ−1)I(τ < ∞, Jτ = j)], u ≥ 0,

where wmin(·, ·, ·, ·) is now a four-variable penalty function. Note that the minimum U τ− is placed in
the third argument just to be consistent with other papers in the literature (Cheung and Landriault
(2009b), Cheung et al. (2010b) and Woo (2010, 2012)).

To analyze Φmin, for the moment we focus on the Gerber-Shiu function Φ with representation
given by Proposition 5. First, it will be useful to rewrite the contribution by ruin occurring upon
the first claim (2.19) as

β(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u)h1(x, y|u) dx dy, u ≥ 0, (4.4)

where

h1(x, y|u) :=
1

c
e(−δI+Λ0)(x−u

c )(Λ1 ◦ p(x + y)), x > u; y > 0, (4.5)

is the discounted density of (Uτ− , |Uτ |) at (x, y) given U0 = u for ruin on the first claim (implying
τ = (x− u)/c and RNτ−1 = u). Substitution of (4.4) into (2.18) yields

Φ(u) =

∫ ∞

0

∫ ∞

u

w(x, y, u)h1(x, y|u) dx dy +

∫ ∞

0

χ(u, z)

∫ ∞

0

∫ ∞

z

w(x, y, z)h1(x, y|z) dx dy dz

=

∫ ∞

0

∫ ∞

u

w(x, y, u)h1(x, y|u) dx dy +

∫ ∞

0

∫ ∞

0

∫ ∞

z

w(x, y, z)h2(x, y, z|u) dx dy dz, u ≥ 0,
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where
h2(x, y, z|u) := χ(u, z)h1(x, y|z), x > z ≥ 0; y > 0,

clearly represents the discounted density of (Uτ− , |Uτ |, RNτ−1) at (x, y, z) given U0 = u for ruin on
claims subsequent to the first. Using the fact that χ(0, z) = e−Rz(α−R) (by putting u = 0 in (4.3))
along with (4.5), it is straightforward to verify by applying Lemma 1 that

∫ ∞

0

h1(x, y|0) dx +

∫ ∞

0

∫ ∞

z

χ(0, z)h1(x, y|z) dx dz = f(y),

where f is defined by (3.12). Hence f(y) is the so-called ‘ladder height’ matrix, i.e. its (i, j)-th
element [f(y)]ij represents the density of the amount of first drop (at y) of the process U below its
initial level together with the event that J is in state j immediately after the drop, given that J0 = i.

Now, we can analyze Φmin(u) by conditioning on the first drop of U below the initial level U0 = u
and keeping track of the environmental states of J . As in Cheung and Landriault (2009b, Equations
(2.6) and (2.7)), this results in the matrix defective renewal equation

Φmin(u) =

∫ u

0

f(y)Φmin(u− y) dy + vmin(u), u ≥ 0,

where

vmin(u) :=

∫ ∞

u

∫ ∞

0

wmin(x + u, y − u, u, u)h1(x, y|0) dx dy

+

∫ ∞

u

∫ ∞

0

∫ ∞

z

wmin(x + u, y − u, u, z + u)h2(x, y, z|0) dx dz dy, u ≥ 0.

Note that all components of the matrix defective renewal equation are already known. Its solution
is thus given by (4.2) with v∗ replaced by vmin.

4.3 Matrix scale function and maximum surplus before ruin

This subsection demonstrates that some of our intermediate results are indeed useful for analyzing
the ‘scale function’ pertaining to the MArP risk model, which in turn allows for the analysis of the
maximum surplus before ruin. To this end, we define the first passage time τ ∗b := inf{t ≥ 0 : Ut = b}
and the Laplace transform

ηij(u; b) := E(u,i)[e−δτ∗b I(τ ∗b < τ, Jτ∗b = j)], 0 ≤ u ≤ b.

It is known (see e.g. Cheung and Landriault (2010, Equations (9) and (11))) that η(u; b) :=
[ηij(u; b)]mi,j=1 admits the representation

η(u; b) = Q(u)[Q(b)]−1, 0 ≤ u ≤ b,

where the matrix function Q is characterized by its Laplace transform as

L{Q}(s) =

[(
s− δ

c

)
I +

1

c
Λ0 +

1

c
L{Λ1 ◦ p}(s)

]−1

, u ≥ 0.
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Note that Q can be regarded as a matrix version of the so-called scale function in the literature
of Lévy processes. However, an expression for Q has not been given by Cheung and Landriault
(2010). It turns out that this is possible with the use of matrix Dickson-Hipp operators. Simple
manipulations followed by the use of (3.18) lead to

L{Q}(s) =−
[
(α− sI)− 1

c
L{Λ1 ◦ p}(sI)

]−1

=

{
(sI−R)

[
I− 1

c
L{TR(Λ1 ◦ p)

}
(s)

]}−1

=

[
I− 1

c
L{TR(Λ1 ◦ p)

}
(s)

]−1

(sI−R)−1 = [I− L{f}(s)]−1(sI−R)−1,

which implies, upon rearrangements,

L{Q}(s) = L{f}(s)L{Q}(s) + (sI−R)−1.

By inverting the Laplace transforms with respect to s, we arrive at the Markov renewal equation

Q(u) =

∫ u

0

f(y)Q(u− y) dy + eRu, u ≥ 0,

which has solution

Q(u) = eRu +

∫ u

0

g(u− y)eRy dy, u ≥ 0.

This is a generalization of Cheung and Landriault (2010, Equation (36)) and also the matrix version
of Feng and Shimizu (2013a, Equation (4.2)).

With an expression for Q determined, a direct consequence will be another generalization of
Gerber-Shiu function further involving the maximum surplus before ruin U τ− = sup0≤s<τ Us, namely
Φmax(u), which has (i, j)-th element

φmax,ij(u) := E(u,i)[e−δτw(Uτ− , |Uτ |)w∗(U τ−)I(τ < ∞, Jτ = j)], u ≥ 0.

From Cheung and Landriault (2010, Equation (19)), one has that

Φmax(u) =

∫ ∞

u

w∗(z)
d

dz
[−η(u; z)ΦCL(z)] dz =

∫ ∞

u

w∗(z)
d

dz

{−Q(u)[Q(z)]−1ΦCL(z)
}

dz, u ≥ 0,

where ΦCL(u) := [φCL,ij(u)]mi,j=1 is the matrix of classical Gerber-Shiu functions defined in Remark
1.
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A Appendix: The Lundberg’s equation and the matrix R

This Appendix aims at studying the matrix R which satisfies (3.7) in connection to (3.8) using similar
ideas as in Ren (2007) (see also Albrecher and Boxma (2005)). For convenience, let

A(s) :=

(
s− δ

c

)
I +

1

c
Λ0 +

1

c
L{Λ1 ◦ p}(s).

Then (3.8) can be represented as
det[A(ξ)] = 0,

which has m roots {ρi}m
i=1 with non-negative real parts (e.g. Badescu (2008)) and these roots are

assumed to be distinct. This implies that for each fixed i = 1, 2, . . . , m, there is a non-trivial solution
θi := (θi1, θi2, . . . , θim)> to the equation

[A(ρi)]
>θi = 0.

Equivalently, we may say that θ>i is the left eigenvector of A(ρi) corresponding to the eigenvalue 0,
so that for i = 1, 2, . . . , m,

0 = θ>i A(ρi) = θ>i

[(
ρi − δ

c

)
I +

1

c
Λ0 +

1

c
L{Λ1 ◦ p}(ρi)

]

= ρiθ
>
i +

1

c
θ>i (Λ0 − δI) +

1

c

∫ ∞

0

e−ρixθ>i (Λ1 ◦ p(x)) dx.

Combining the above equations for all i, we arrive at

0 = %Θ +
1

c
Θ(Λ0 − δI) +

1

c

∫ ∞

0

e−%xΘ(Λ1 ◦ p(x)) dx,

where % := diag{ρ1, ρ2, . . . , ρm} and Θ := [θij]
m
i,j=1 = (θ1,θ2, . . . , θm)>. Pre-multiplying the above

equation by Θ−1 leads to

0 = Θ−1%Θ +
1

c
(Λ0 − δI) +

1

c

∫ ∞

0

Θ−1e−%xΘ(Λ1 ◦ p(x)) dx. (A.1)

Let R := Θ−1%Θ. Then we have the well-known property regarding matrix exponentials that
eRy = Θ−1e%yΘ and hence e%y = ΘeRyΘ−1. Thus, (A.1) can be rewritten as

0 = R +
1

c
(Λ0 − δI) +

1

c

∫ ∞

0

e−Rx(Λ1 ◦ p(x)) dx,

which is equivalent to (3.7). In other words, R satisfying (3.7) can be evaluated by R = Θ−1%Θ.
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