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Abstract 

Objective: To evaluate the effect of expansion speed on chronic compressive spinal 

cord injury in the rat. 

Methods: Thirty-six Sprague-Dawley rats were divided into four groups: a control 

group, a group receiving compressor in the C5-6 epidural space with instant 

compression (Group 1), and two other groups receiving water-absorbing polyurethane 

polymer sheets with two expansion speeds, which reached maximum volume in 2 h 

(Group 2: fast expansion) or 24 h (Group 3: slow expansion). A C6 laminectomy was 

performed in the control group. Neurological function, MRI, large motoneuron 

number in the ventral horn, and myelin staining intensity in the posterior funiculus 

were evaluated. 

Results: In the instant compression group, compression was confirmed on 

T2-weighted images by a hypointense signal change in the intramedulla. In the gradual 

compressive injury groups, large motoneuron number (p<0.001), but not myelin 

staining intensity, was significantly decreased in both the fast and slow expansion 

groups compared with the instant compression group. However, there was no 

difference in Basso Beattie Bresnahan score, cord distortion in T2-weighted image, 

large motoneuron numbers, or myelin staining between the fast and slow expansion 

groups.  

Conclusion: Instant spinal cord compression caused acute injury. Gradual expansion 

compression induced reliable pathology and MRI characteristics consistent with 

chronic compressive spinal cord injury. The speed of expansion is not a significant 

problem for establishing a reliable model if the chronic compression is induced by 

gradual expansion. 
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1. Introduction 1 

Cervical spondylotic myelopathy (CSM) is one of the most common spinal cord 2 

disorders affecting the elderly. However, its pathogenesis and prognosis remain 3 

unclear. Because it is difficult to examine these pathological mechanisms clinically, 4 

reliable animal models of chronic compression spinal cord injury are indispensable. 5 

Although a number of animal models of CSM have been developed, including the 6 

use of a balloon catheter [11], screw drilling [4], and dynamic compression [13], 7 

these models have a number of deficits including acute or subacute spinal cord injury 8 

during the modeling process, which can lead to marked pathological differences 9 

compared with the natural history of CSM. Furthermore, some models require 10 

repeated operation [4-6, 11], while the pressure applied to the spinal cord does not 11 

have a linear effect on pathophysiological findings. 12 

A number of alternative models have been developed to more closely reflect 13 

the natural history of CSM. The epidural tumor cell seeding method can cause 14 

chronic spinal cord compression while avoiding these shortcomings, although it can 15 

cause a local inflammatory reaction, direct damage spinal cord by tumor tissue, 16 

systemic side effects, and short survival times [17]. A transgenic twy/twy rat model 17 

was recently reported to induce hypertrophy and ossification of the ligamenta flava, 18 

resulting in chronic spinal cord compression [18]. This model is more similar to the 19 

clinical pathogenesis, although it exhibits low reducibility and the compression 20 

segments are inconsistent with common clinical CSM.  21 

Previous studies have proposed a chronic compressive cervical spinal cord 22 

injury rat model using a water-absorbable polymer that can provide controlled spinal 23 

cord compression [5, 7]; the water-absorbing material in these studies produced a 24 

gradual expansion to maximum volume in 2 h. This model showed a close similarity 25 
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in characteristic features between the progressive neurology deficits and clinical 26 

cervical myelopathy. A more recent study reported a similar model with a slower 27 

volume expansion [3], where the water-absorbing material was further developed by 28 

encasing in a sustained-release membrane to control the expansion speed to produce 29 

a gradual expansion to maximum volume in 24 h. Thus, the aim of the present study 30 

was to determine the effect of different expansion speeds to create progressive spinal 31 

cord compression and to validate the chronic pathology progression. 32 

33 
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2. Materials and methods 34 

2.1 Animal models 35 

All experimental procedures were approved by the Research Ethics Committee of 36 

the authors’ institutes. A total of 36 adult Sprague-Dawley (SD) rats (250–300 g) 37 

were allocated to four groups: control group (n=6) with sham surgery, and another 38 

three groups with implantation of three different compressors, as follows. Based on 39 

the speed of polyurethane polymer sheets, the animals were divided into group 1 40 

(n=6) with instant compression, group 2 (n=12) with gradual compression to the 41 

maximum compression ratio in 2 h, and group 3 (n=12) with gradual compression to 42 

the maximum compression ratio in 24 h. To make the compressor, 3% agarose gel 43 

(Amresco LLC, Solon, OH, USA) was turned into a water-absorbing polymer (14)-3, 44 

6-anhydro-a-L-galactopyranosyl-(1 3)-β-D-galactopyranan, which was dried for 8 h 45 

in a low temperature vacuum dryer (Nanjing Hong Gang sheng Machinery 46 

Technology Co. Ltd, Nanjing, China). Each compression sheet was cut to a standard 47 

size of 1 × 3 × 1 mm. This sheet can absorb liquid in the spinal canal to expand its 48 

volume seven-fold in 2 h. To create a progressive compression to expand the 49 

maximum volume in 24 h, a sustained-release membrane was coated on the surface 50 

of the implant sheet [3]. The sustained-release membrane was made of polyurethane, 51 

which was synthesized in the laboratory by isocyanates and polyols (Guangzhou 52 

Fischer Chemical Co., Ltd., Guangzhou, China). Next, the polyurethanes were 53 

coated on the surface of the implant sheet, and a laser beam was used to create a 54 

definite number of microholes to control the expansion speed. A total of 255 55 

microholes of 0.05 mm diameter were created on each surface of the compression 56 

sheet. This compression material did not show any inflammatory reaction or tissue 57 

granulation after implantation in previous studies [3]. 58 

http://fischer.en.alibaba.com/
http://fischer.en.alibaba.com/
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After the animals were successfully anesthetized with 10% ketamine by 59 

intraperitoneal injection (1 mL/kg), the C5-C6 lamina was exposed, the ligamentum 60 

flavum and partial lamina were removed to access the epidural space, and the 61 

compression sheet was implanted into the C5-C6 epidural space on the posterolateral 62 

side to induce a compression to the cord. After complete hemostasis, the incision 63 

was closed by layers, and the animals were given intramuscular injection of 64 

penicillin for infection prevention. After surgery, the animals were housed 65 

individually in cages and allowed free access to food and water. In the present study, 66 

it was difficult for the rats to survive for more than 24 h after surgical instant 67 

compression injury for group 1. In group 1, the instant compressor produced 68 

compression immediately after the surgery. In group 2, the fast expansion produced 69 

the maximum compression ratio at 2 h after surgery. In group 3, the slow expansion 70 

produced the maximum compression ratio at 24 h after surgery. MRI was performed 71 

on all rats to verify compression on the cord at 24 h after achieving maximum 72 

compression. The rats in the gradual compression groups received a second scan at 1 73 

week after achieving maximum compression. Motor function was assessed at 24 h 74 

after achieving maximum compression, followed by daily assessment until sacrifice. 75 

The histological and histochemical changes were evaluated after sacrifice.  76 

2.2 Magnetic resonance imaging (MRI) 77 

MRI were obtained using a 1.5 T imaging system (Philips Medical Systems, 78 

Netherland B.V., DA Best, The Netherlands). For scanning, each animal was placed 79 

in the ventral recumbent position after general anesthesia. Images of the spinal 80 

region were acquired in the transverse and sagittal planes. T1-weighted images 81 

(500/22 [TR/TE]; section thickness: 2 mm, section gap: 0.1 mm, resolution ratio: 82 

0.27 × 0.27 × 2.0 mm
3
) and T2-weighted images (3000/90 [TR/TE]; section 83 
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thickness: 2 mm, section gap: 0.1 mm, resolution ratio: 0.27 × 0.27 × 2.0 mm
3
) were 84 

obtained at 24 h after achieving maximum compression. 85 

2.3 Behavior analysis 86 

Severity of paralysis due to spinal cord compression was evaluated in terms of motor 87 

function by using the Basso Beattie Bresnahan (BBB) score [16]. For the control 88 

group and group 1, the BBB scores were evaluated at 24 h after surgery. For groups 89 

2 and 3, the BBB scores were evaluated at 24 h and 1 week after achieving 90 

maximum compression, respectively. The evaluation was performed using a 91 

double-blind method, and the average scores in each group were calculated.  92 

2.4 Histological and histochemical evaluations  93 

After BBB evaluation and MRI, rats in the instant compression group were 94 

sacrificed at 24 h after surgery, while rats in the gradual compression groups were 95 

sacrificed at 24 h and 1 week after achieving maximum compression, respectively. 96 

Animals were euthanized with an overdose of 40 mg/kg of intravenous sodium 97 

pentobarbital, and the rats were perfused with 50 mL heparin-saline through the 98 

ascending aorta, followed by 300 mL formalin-picric solution (4% formaldehyde, 99 

0.4% picric acid in 0.16 mol/L phosphate buffer, pH 7.4). Unabridged cervical spinal 100 

cords were carefully harvested and fixed with 4% phosphate buffer liquid in 101 

formaldehyde solution for another 72 h, and the cords were embedded in paraffin. 102 

Transverse and sagittal sections (8 m) were then stained with hematoxylin-eosin 103 

(H&E) and luxol fast blue (LFB). 104 

2.5 Statistical analysis 105 

All histology images were obtained by light microscopy. The quantity of the anterior 106 

horn motor neurons and LFB staining intensity of the spinal cord were analyzed and 107 

compared by IPP software (Image Pro Plus 6.0, Media Cybernetics, Rockville, MD, 108 
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USA). Differences between the groups were compared using variance analysis 109 

(SPSS 13; IBM Co., Chicago, IL, USA). A value of p<0.05 was considered 110 

statistically significant.  111 

112 
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3. Results 113 

3.1 MRI results 114 

The spinal cord was compressed, swollen, and displaced at 24 h post compression, 115 

without a difference in visual inspection of the compression ratio between the three 116 

groups (Fig. 1A-D). In the instant compression group, MR results showed a low 117 

signal intensity on T1-weighted images and high signal intensity on T2-weighted 118 

images suggestive of intramedullary hemorrhage (Fig. 1B1-2). In the gradual 119 

compression groups, MR results showed compression of the dorsal side of the spinal 120 

cord on T2-weighted images, but no evidence of spinal cord edema or hemorrhage 121 

(Fig. 1C1-2). At 1 week after surgery, the compression ratio of the cord remained 122 

consistent, without evidence of spinal cord edema, hemorrhage, or myelomalacia 123 

(Fig. 1D1-2).  124 

3.2 BBB score 125 

In the instant compression group, paralysis appeared after surgery, with an instant 126 

drop in the BBB to 10±1.4 at 4 h and to 6.0±1.8 at 24 h (Table 1). By contrast, BBB 127 

scores in the gradual compression groups showed a small decrease after surgery, and 128 

then plateaued at approximately 17 from 2 days to 1 week after insertion (Table 1). 129 

In the gradual compression groups, the front and rear limbs of the animals moved in 130 

coordination, with the tails hanging constantly. There was a significant difference in 131 

BBB scores in the gradual compression groups compared with the instant 132 

compression group, but no difference between the fast and slow compression groups.  133 

2.3 H&E staining 134 

Subdural and intramedullary hemorrhage and edema were observed at 24 h after 135 

compression in the instant compression group, especially in the posterior horn; large 136 

motoneurons characterized by a spindle-shape, posterior funiculus neural fiber tract 137 
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edema, and rupture were observed in sagittal slices, which were not found in the 138 

gradual compression groups. In the instant compression group, the lesion sites 139 

showed subdural hematoma, spinal cord central canal deformation, intramedullary 140 

hemorrhage focus liquefaction, and a significant decrease in neuron counts compared 141 

with the control group (Table 1); some neurons showed an elongated spindle-shape, 142 

cytoplasm loss, and karyoplast dissolution. Posterior funiculus fibers of the white 143 

matter were damaged, characterized by acute demyelination (Fig. 2).  144 

In the gradual compression groups, the polyurethane material showed 145 

expansion in the cross section, and the C5-6 spinal cord was compressed and swollen. 146 

In contrast to the instant compression group, there was no evidence of subdural or 147 

intramedullary hemorrhage in the gradual compression groups at 24 h after surgery, 148 

although spinal cord central canal expansion and deformation were observed. 149 

Furthermore, there was no evidence of tissue edema, venous congestion, reduced 150 

number of neurons, or spindle-shaped neurons at 24 h after surgery (Table 1). At 1 151 

week after surgery in the gradual compression groups, the number of motor neurons 152 

in the anterior horn was significantly reduced, the visual cortical cells showed 153 

cytoplasmic reduction and nuclear pyknosis, the number of neuronal synapses was 154 

decreased, fewer corneal nerve bundles were observed, and there were scattered 155 

areas of lower density of myelin sheath (Fig. 2). 156 

 157 

2.4 LFB staining 158 

In the instant compression group, the arrangement of neural fibers was disordered, 159 

there was axonal degeneration, and the density of myelin staining was reduced. In 160 

the gradual compression groups, the structure of the spinal cord was normal at 24 h 161 

after surgery, and myelin staining and the nerve fibers of the posterior funiculus 162 
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maintained their integrity. At 1 week after surgery in the gradual compression groups, 163 

there was evidence of deformation of the posterior horn and the posterior funiculus, 164 

the anterior horn was mildly deformed, the number of decussating fibers in the gray 165 

matter were reduced, vacuolar degeneration was observed around axons, and there 166 

was a significant decrease in the thickness and blue staining density of the myelin 167 

sheath (Fig. 3). However, there was no difference in LFB staining between the fast 168 

and slow compression groups.  169 

170 
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3 Discussion 171 

Development of appropriate experimental chronic spinal cord injury animal models 172 

is crucial for investigating the pathophysiological mechanisms of CSM [10]. In 173 

previous studies, chronic compression spinal cord injury rat models were developed 174 

using a modified water absorption polyurethane material with different expansion 175 

speeds [3, 5, 15]. In the present study, we examined whether the speed of expansion 176 

was important in the development of a chronic spinal cord injury by comparing the 177 

results from spinal cord compression models with instant compression (e.g., acute 178 

spinal cord injury [1]) and gradual compression with two different expansion speeds. 179 

Different properties of pressure-induction materials can produce different patterns of 180 

spinal cord injury [3, 5, 15]. For example, instant compression produces a direct 181 

compression on the spinal cord, with evidence of acute histological spinal cord 182 

injury [15]. In the present study, we found that instant compression caused 183 

hemorrhage and edema around the central canal and the gray matter, myelomalacia, 184 

neuron death, and nerve fiber damage. 185 

By using a water-absorbing polymer, the expansion of the compressor can 186 

produce gradual compression on the spinal cord, leading to an efficient model of 187 

chronic compression spinal cord injury. In the present study, the spinal cord showed 188 

slight pathological edema after 24 h of compression, while H&E staining and MRI 189 

showed no evidence of intramedullary hemorrhage or abnormal neural function. The 190 

polyurethane tablets expanded slowly to their maximum volume by 24 h after 191 

insertion, inducing obvious spinal cord compression, venous congestion, and central 192 

canal expansion deformation, but no intramedullary hemorrhage. No abnormalities 193 

were observed in the epidural space or the subarachnoid and intramedullary regions 194 

by visual observation of MRI. With continuous compression of the spinal cord and 195 
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venous congestion, there was aggravation of spinal cord edema and ischemia, and a 196 

decrease in the vertebral canal volume. At 1 week after surgery, there was reduced 197 

spinal cord edema, but evidence of intramedullary vacuolization, marked neuronal 198 

loss, obvious demyelination of nerve fibers, and lack of limb coordination. These 199 

pathological changes are very similar to the early stage of CSM [2, 9, 12]. The 200 

abnormal MRI signal changes and the pathology and neuronal dysfunction 201 

characteristic of acute spinal cord injury were not found in the chronic compression 202 

group. The polyurethane implants form a continuous compression that leads to 203 

neuronal loss and demyelination, similar to chronic compressive spinal cord injury 204 

[6, 8], which results in reduced spinal cord neural function.  205 

In agreement with previous findings, the chronic rat model using 206 

water-absorbing polymer exhibits the following characteristics: (a) the operation is 207 

simple and avoids an anterior approach operation or other trauma that can damage 208 

the animal, and the survival and success rates of the model are high [3, 5]; (b) the 209 

compression sites range from the C5-C6 levels, which is the common compression 210 

segment in clinical CSM [7]; (c) the model can be adapted to monitor neural 211 

function and electrophysiological and radiological evaluation in vivo [3]; and (d) the 212 

chronic progressive spinal cord compression process is performed by modification of 213 

a water absorption polyurethane material [3, 5], and the slow expansion generates a 214 

linear pressure and maintains a stable volume for a long time after saturation, 215 

consistent with the natural history of CSM [14]. Therefore, this model may be useful 216 

for studying CSM pathogenesis and early intervention therapies. 217 

Our results showed that the cervical cord presented acute injury after instant 218 

compression without gradual expansion. However, there were no differences in 219 

neurological deterioration in rats after chronic compression using fast expansion or 220 
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slow expansion methods. Production of a water-absorbing polymer with fast 221 

expansion (i.e., to the maximum volume in 2 h) was relatively easier than the 222 

polymer with a slower expansion speed (i.e., maximum volume in 24 h). The later 223 

compressor required a sustained-release membrane coating on the surface of the fast 224 

compressor to control the water transmission through the membrane. In addition, the 225 

insertion of the polymer requires careful surgical placement to avoid damage to the 226 

surface membrane.  227 

There are some limitations to the present study. The main purpose of the 228 

present study was to confirm the effect of expansion speed on the chronic model. 229 

The larger experiments are required to confirm the reduction in numbers of neurons, 230 

glial scar formation, and demyelination in our chronic compressive spinal cord 231 

injury model. In addition, longitudinal studies of the temporal pattern longer than 1 232 

week are required to investigate the long-term pathological changes after 233 

compressive spinal cord injury. 234 

In conclusion, we confirmed the pathology changes, imaging characteristics, 235 

and neurological dysfunction of our chronic compressive spinal cord injury model. 236 

Instant compression produced acute spinal cord injury without chronic neurology 237 

degeneration. By contrast, a reliable chronic compressive spinal cord injury model 238 

was created using a gradually expanding compressor that approached its maximum 239 

compression at 2 h or later. Our model may be useful for the design of future studies 240 

examining the pathological mechanisms of CSM. 241 

 242 

243 
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Fig1 T1、T2-weighted images of cervical spinal cord in normal rats(A1,A2); 24h post acute 

compression intramedullary medium-high signal intensity and edema in the Surrounding tissues, 

as well as low signal polyurethane tablet in the dorsal side of spinal cord(B1,B2); no spinal cord 

hemorrhage on T1(C1) or T2(C2)-weighted images at 24h post chronic compression;spinal cord 

was steadily compressed, uneven signals were caught at the compression sites, no hemorrhage was 

found at 1w post chronic compression(D1,D2). 

Fig1



 
 

Fig 2.The histology features of each group by HE stain.  

(A)Normal Cord. (B)Subdural andintramedullary hemorrhage as well as edema, especially in the 

posterior horn(long arrow); large motoneurons were characterized by a spindle-shape(short arrow), 

posterior funiculus neural fiber tract edema(☆) for Group 1. (C)Central canal expansion 

deformation(long arrow), venous congestion(short arrow), and neurons number reduction(☆) can 

be seen at 24h without intramedullary hemorrhage or edema for Group 2. (D)Anterior horn motor 

neuron number and synapse decrease(★)，nerve fiber layer and myelin sheath were sparse with 

vacuolated cord，reduced cytoplasm, atrophied nucleus and glial scar formation(☆) at 1w after 

surgery for Group 2. (E) The histology features of Group 3 were same as (C) at 24h. (F)The 

histology features of Group 3 were same as (D) at 1w. 

 

Fig2



 

Fig 3. The histochemical features by Luxol fast blue (LFB) stain.  

(A) Normal Cord. (B) Group1: significant deformation, structural disorder in posterior funiculus, 

and some nerve fibers fracture;myelin destruction(☆). (C) Group 2: vacuolation of myelin , sparse 

blue stain, and more nerve fibers fracture were observed at 24h after surgery(☆). (D) Group 2: 1W 

after chronic compression blue stained myelin reduced significantly, myelin destruction, axonal 

degeneration while the vacuolization increased(☆). (E) The neuropathological features of Group 3 

were same as (C) at 24h. (F)The neuropathological features of Group 3 were same as (D) at 1w. 

 

Fig3



Table 1 Quantity of the motor neurons of anterior horn of spinal cord, LFB staining intensity and the 

BBB score  

 

Group  Control Group 1 Group 2 Group 3 

time 24h 24h 24h 1w 24h 1w 

motor 

neurons 

21.0±2.4 3.5±1.3
 b,c

 16.±1.8
 a

 3.3±1.0d 15.6±1.3
 a

 3.2±1.2 d 

Staining 

intensity 

90±4 80±4 77±3
 
 24±2

 a,d
 78±3 23±3

 a,d
 

BBB score 21±0.7 6.0±1.8
 b,c

 15.7±0.8
a
 17.1±1.3

 
 15.5±0.9

 a
 16.9±1.1 

 

a. Significant difference in comparison with group 1, P<0.05;  b. Significant difference in comparison with 

group 2, P<0.05; c. Significant difference in comparison with group 3, P<0.05 

d.  Significant difference in comparison between 24 Hours and 1 week after surgery 

 

 

Table1


