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Speckle reduction of endovascular optical
coherence tomography
using a generalized divergence measure
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Endovascular optical coherence tomography (EV-OCT) is an emerging intravascular imaging technique for obser-
ving blood vessel walls. Fluctuating speckle noise, especially during rapid pull-back, can severely degrade the vis-
ibility of morphological structures. Moreover, the speckle pattern varies in different parts of the image due to beam
divergence and is further complicated by interpolation through the coordinate transformation necessary for display-
ing the rotary scanning images, challenging the use of frequency domain analysis. In this study, a computationally
efficient method using a generalized divergence regularization procedure is presented to suppress speckle noise in
EV-OCT images. Results show substantial smoothing of the grainy appearance and enhanced visualization of deeper

structures as demonstrated in porcine carotid arteries.
OCIS codes:

Endovascular optical coherence tomography (EV-OCT)
is an emerging intravascular imaging technique for major
blood vessel wall visualization with ~15 ym resolution
[1]. Numerous studies have demonstrated that EV-OCT
can distinguish among the media, external elastic lamina,
and the adventitia clearly in normal arteries [1]. In addi-
tion, EV-OCT has also been shown to delineate the fi-
brous cap, lipid deposits, and neovascularization in
atherosclerotic plaques [1]. However, due to water ab-
sorption and tissue scattering, the penetration depth of
EV-OCT is limited to ~2 mm. The presence of speckle
noise further complicates visualization as its modulated
appearance can further distort the faint morphological
signals of deeply situated structures (e.g., adventitia).
In between B-mode frames of an EV-OCT pullback image
sequence, the speckle pattern fluctuates dramatically
due to motion artifacts from various sources [2,3].
Common hardware based approaches include frequency
[4] and angular compounding [5]. They are robust ways of
speckle suppression as speckle properties vary across
wavelengths or different illumination angles [6]. However,
since they require additional components, they may not be
applicable to existing commercial EV-OCT systems.
Various studies have been devoted to speckle reduc-
tion using digital image processing techniques. Many
of these are based on integral transforms and the manip-
ulation of the associated coefficients [7-9]. Others rely on
various algebraic iterations [10,11]. Optical beam diver-
gence, nonuniform spatial sampling of the rotary scan-
ning mechanism, and the subsequent interpolation all
contribute to the speckle pattern shape and orientation
variation in different parts of the image. These represent
challenges to coefficient based speckle reduction meth-
ods. Since a typical EV-OCT pullback image sequence
consists of several hundred images, algorithms with
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complex algebraic operations may not be efficient to
tackle the large amounts of data.

In this Letter, we propose a simple, fast converging
iterative algorithm modified from [12]. It is demonstrated
that by regularizing the image during each iteration using
a generalized divergence measure, f-divergence, speckle
suppression and edge preservation can be achieved si-
multaneously. Moreover, one can freely adjust the trade-
off between speckle suppression and edge preservation
by adjusting a single parameter.

p-divergence was used for blind source separation [13]
and is defined as

1
pB-1)
where x equals, in our case, the despeckled image, and
denotes a reference image. In this equation, f is a scalar
parameter to be chosen. The f-divergence has the impor-
tant property, where only when x = u will the divergence
measure vanish. It does not subject the image to error by
generating undefined pixels since there are no reciprocal
or logarithmic terms of x or u for > 1. The measure was
also shown to be robust against outliers [13].

In this study, the pg-divergence algorithm was devel-
oped to first enforce the least-square consistency of
the despeckled image with the measured data, and then
focus on the matching of details between the image and a
reference image u using the fg-divergence regularization
measure. To achieve this, the following inverse problem
was solved:
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Fig. 1. (Color online) (a) Original finger skin image; (b) des-
peckled finger skin image. (*) indicates the stratus corneum, (#)
indicates the dermis, and the red arrows point to the sweat
glands.

where y is the measured image, P is a downscaled point
spread function, and the subscript ¢ indicates the ith pix-
el of the image. By taking the derivative of Eq. (2) with
respect to x, we arrive at the iterative scheme:
A
~(n+1) an % %
x; =3 - e32(P*Px-P*y); + ———
i ; s{( y)ﬁﬂw_l)

2ot -2pte o] @

where P* is the adjoint of P, ¢ is the iteration constant,
and 4 is the regularization constant. The image was nor-
malized at each iteration to limit its bandwidth.

OCT images were obtained using a commercial Light-
lab C7-XR Fourier Domain OCT system (Lightlab Ima-
ging). To demonstrate the speckle suppression effect
of the algorithm, an initial test image of human finger skin
was obtained by pressing two fingertips against the ima-
ging catheter tip. In vivo endovascular OCT imaging of
the porcine carotid arterial wall image was obtained sub-
sequently with eccentric placement of the imaging cathe-
ter to demonstrate the versatility of our algorithm to
suppress speckle at different parts of the image. The
details of animal imaging protocol have been previously
described elsewhere [14]. All animal procedures were
approved by St. Michael's Hospital (Toronto, Ontatio)
Animal Care Committee.

Fig. 2. (Color online) Original porcine carotid artery EV-OCT
image. The red ROI indicates the signal region and the yellow
ROI indicates the noise region used in the metrics calculation.
The green ROI indicates the zoomed region in Fig. 5. The three
blue ROIS are used for ENL calculations.

Fig. 3. Despeckled porcine carotid artery EV-OCT image.

In the algorithm, ¢ was chosen to be 0.75 and 1 was set
to 0.6 determined interactively by the OCT operator. The
reference image u was generated by passing the unpro-
cessed image to a 12 x 12 median filter and then filtered
by a 5 x 5 averaging filter. Median filters have been used
before for speckle suppression [15], while averaging fil-
ters can effectively remove additive noise, since speckle
in the EV-OCT image after logarithmic compression be-
comes additive. The algorithm was set to run for 40 itera-
tions as the result started to converge to ~0.002 mean
square difference from u.

Figure 1(a) shows the original finger skin image, and
Fig. 1(b) demonstrates the despeckled finger skin image
processed with our proposed algorithm. Most of the fea-
tures were preserved in the despeckled image due to the
robustness of f-divergence against outliers, while the
grainy appearance was mostly smoothed. Figures 2 and
3 show the original and despeckled ( = 3) carotid arterial
wall image, respectively. After speckle suppression, the
grainy appearance of the tissue was clearly removed.

To quantitatively evaluate the performance of the algo-
rithm on real endovascular images, a number of metrics
were calculated for a region of interest (ROI) encompass-
ing high signal regions (media) and low signal regions
(adventitia) versus a noise background as depicted
in Fig. 2. The signal-to-noise ratio (SNR) was defined
as SNR = 20 log(xyi/01in), Where xy;, is the maximum
intensity in the ROI in linear scale. oy, is the standard
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Fig. 4. (Color online) (a) Enlarged view of the red ROI in the
original porcine arterial wall image; (b) enlarged view of the red
signal ROI in the despeckled image processed by I-divergence al-
gorithm; (c) enlarged view of the red signal ROI in the despeckled
image processed by our proposed algorithm. The arrows indicate
structures that are much less visible in the unprocessed image.



Fig.5. (Color online) (a) Enlarged view of the green ROl in the
original image; (b) enlarged view of the green signal ROI in the
despeckled image processed by I-divergence algorithm; (c) en-
larged view of the green signal ROI in the despeckled image
processed by our proposed algorithm. The red arrow indicates
the clearer visualization of the external elastic lamina.

deviation of the noise region in linear scale. The contrast-
to-noise ratio (CNR) was defined as CNR = 10 log
[(x — Y (62 — 62)*%], where u and ¢ are the mean and
standard deviation and subscripts x and b denote the
ROI and noise region, respectively. The equivalent num-
ber of looks (ENL) was defined as ENL = ;2/62 and is
averaged between three ROIs depicted in Fig. 2. An edge
preservation parameter is defined previously [8]. Briefly,
the larger the parameter, the more edges are preserved.
Figures 4(a), 4(b), and 4(c) show the enlarged views of
the ROIs without processing, processed by [12] and pro-
cessed by our proposed algorithm, respectively. As noted
by the arrows in Fig. 4(c), visually these structures are
very difficult to be discerned in Fig. 4(a). Figure 5 shows
a region far from the catheter without and with speckle
suppression. The result demonstrates that our algorithm
can better delineate features, despite the fact that they
are located further from the imaging catheter where a di-
verging optical beam provides less SNR. This also de-
monstrates our technique is robust against variations
in speckle orientation.

Table 1 shows the results when g = 1.5, 3, and 4. In all
cases, the SNR, CNR, and ENL all showed improvement
compared to the original image. The result obtained by a
12 x 12 median filter was also listed. It produces very
good SNR, but edges were poorly preserved. To further
show how f affects the speckle suppression effect, CNR
and edge preservation were plotted against # in Fig. 6.
When g is less than 3, the CNR is higher but the edge pre-
servation drops, and vice versa when f is larger than 3.
Thus, § acts as an adjustable parameter that controls the
trade-off between speckle suppression and edge preser-
vation. Such trade-off adjustment is needed when one
wants to see different features. For example, when one
wants to evaluate large area atherosclerotic plaques, S
should be set lower than 3 to apply stronger speckle sup-
pression so as to clearly delineate different parts of the
plaque. However, when one wants to seek neovascular-
ization, g should be set higher than 3 in order to preserve
the vessel edges.

Table 1. Metrics Comparison Between the Original

Image and Processed Images Using Different § Values
Edge

SNR (dB) CNR (dB) ENL Preservation
Original 38.67 2.83 183 N/A
Median (12 x 12)  45.72 3.91 1211 0.01
p=15 45.64 3.92 1241 0.28
p=3 39.83 3.61 1098 0.54
p=4 39.71 3.12 864 0.68
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Fig. 6. (Color online) Trade-off between CNR and edge
preservation by adjustment of f.

We note that one of the shortcomings is the lack of
“gold standard” reference image u, which is not unique
to our technique. Furthermore, the algorithm was run
on an Intel Corei5 computer implemented in MATLAB.
Speckle suppression for a 969 x 969 image took ~7 sec-
onds. Future implementation in C++ and/or GPU parallel
processing may be required to perform real-time EV-OCT
speckle reduction.

In summary, we proposed and demonstrated an effec-
tive speckle suppression method for EV-OCT images
while preserving edge information. Furthermore, to our
knowledge, we demonstrated for the first time how
speckle reduction can potentially benefit EV-OCT by en-
hancing visibility of endovascular morphological struc-
tures with a computational method.
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