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ABSTRACT  

 

Normally, bars and restaurants are the preferred locations for drinking. Therefore, there is concern that the 

roads in bar and restaurant areas could have a higher probability of drink-drivers and alcohol-related road 

crashes. Many studies have been conducted to model the association between drinking locations and the 

prevalence of drink-driving, so that cost-effective enforcement strategies can be developed to combat 

drink-driving. In this study, a cluster analysis approach was applied to model the spatial-temporal 

variation of drink-driving distribution in Hong Kong. Six spatial-temporal clusters of drink-driving 

distribution emerged from the data: (i) bar and restaurant area, weekend-overnight; (ii) bar and restaurant 

area, other timespan; (iii) urban area, weekend-overnight; (iv) urban area, other timespans; (v) rural area, 

weekend-overnight; and (vi) rural area, other timespans. Next, separate zero-inflated regression models 

were established to identify the factors contributing to the prevalence of drink-driving for each of the six 

recognized clusters. The results indicated that drivers in rural areas tend to consume more alcohol than 

those in urban areas, regardless of the time period. In addition, both seasonal variation and vehicle class 

were found to determine the breath alcohol concentration (BrAC) levels among drivers.  

 
Keywords: Drink-driving; Cluster analysis; Zero-inflated regression model; Random breath test 

 

 

1 Introduction 

 

Bar and restaurant areas are the preferred drinking locations, and there is high concern that these areas 

may have a large number of drink-driving offences. In view of this concern, many studies have been 

conducted to measure the association between drinking locations and drink-driving behavior (Gruenewald 

and Ponicki, 1995; Gruenewald and Treno, 2000; Lee et al., 1997; Chen et al., 2010). A study by Baum 

(1999) confirmed that the frequency of drink-driving incidents in Australia’s central business districts 

(CBDs) and tourist resort areas was higher than in other locations. Furthermore, studies of historical crash 

records have affirmed that the local availability of alcoholic drinks can increase an area’s risk of road 

crashes (Scribner et al., 1994; Jewell and Brown, 1995; Gruenewald and Johnson, 2006; Treno et al., 

2007; Taylor et al., 2010). A local Hong Kong study showed that about 10.3% of all road crashes 

involving death were attributed to alcohol (Cameron, 2004). From 2007 to 2011, 162 road crashes were 
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found to be related to drink-driving, of which 32 (20%) were KSI (killed or seriously injured) crashes 

(Transport Department, 2012). Recent studies have revealed the association between drink-driving and 

crash risk (Li et al., 2012) and injury severity (Tsui et al., 2010). Although an understanding of drink-

driving patterns is indispensable to the analysis of alcohol-related crash risks, little research has been 

conducted on drink-driving patterns with respect to geographical area, road class, or temporal distribution.  

 

It is possible to develop cost-effective anti-drink-driving strategies or policies to reduce alcohol-related 

road crashes through identification of areas with high accessibility to selling points of alcohol, and 

examination of associated drink-driving patterns. In Hong Kong, pubs, bars and restaurants with valid 

liquor license to sell or supply liquor for consumption are concentrated in Wanchai (14.3%), and Tsim 

Sha Tsui (18.3%) (Shaded in black colour in Figure 1) (Liquor Licensing Board, 2013). However, 

quantitative studies are lacking on the relationship between drink-driving patterns, geographical areas, 

road types, and selling points of alcohol.  

 

[Insert Figure 1 here] 

 

Some cross-sectional studies have explored possible contributing factors such as age and gender that may 

be correlated to the likelihood of drink-driving (Begg et al., 2003; Peck et al., 2008; Kim et al., 2010; 

Moan and Rise, 2011). In Belgium, a multilevel discrete choice model was established to examine the 

association between drink-driving, driver demographics, and driver perceptions, based on data from a 

roadside survey (Vanlaar, 2005). Further understanding of the relationships between the spatial-temporal 

distribution of drink-driving incidents and contributory factors should be worth exploring. The Hong 

Kong Police Force collects comprehensive drink-driving data, based on round-the-clock random breath 

tests (RBTs) at roadblocks throughout the territories. By taking advantage of this data, it is possible to 

obtain detailed information on drink-driving incidents, including the drivers’ breath alcohol 

concentrations (BrAC), times, and locations. This data resource offers an opportunity for us to model the 

spatial-temporal drink-driving patterns in Hong Kong. 

 

This study established an integrated approach for capturing the spatial-temporal variation of drink-driving 

distributions and the factors contributing to the prevalence of drink-driving. First, the drink-driving data 

were mapped to the respective spatial-temporal units by use of a Geographical Information System (GIS) 

program. Then, cluster analysis was conducted to identify clusters of drink-driving distributions. The 

method and the results of the cluster analysis for the identified spatial-temporal patterns of drink-driving 

distributions are explained in Section 2. In Section 3, zero-inflated regression models help to identify 

factors contributing to the prevalence of drink-driving and of high breath alcohol concentration levels in 

each of the recognized clusters. Finally, we conclude the study by providing recommendations for further 

research in Section 4.  

 

2 Cluster Analysis for Distinguishing Drink-Driving Patterns 

  

2.1 Random Breath Tests (RBTs) and Drink-Driving Distributions  

 

In Hong Kong, the first legal drink-driving limit was introduced in 1995, requiring that a driver’s breath 

alcohol concentration (BrAC) be no higher than 35 μg/100ml. This legal limit was subsequently lowered 

to 22 μg/100ml in 1999. In February 2009, new legislation came into effect that empowered the police to 

conduct random breath tests (RBTs). All RBTs are conducted at roadblocks or checkpoints, at which the 

police may stop any vehicle at any time, even in the absence of evidence or reasonable cause to suspect 

that the driver has consumed alcohol, and all stopped drivers are tested. In this study, information on 

33,472 RBT measurements at the roadblocks, which were evenly distributed throughout the territories, 

around the clock, during the one-year period from February 9, 2009 to February 8, 2010 was obtained. 

Each of the 33,472 records refers to a single BrAC measurement of individual driver stopped at the 



3 

 

roadblocks, and information on the driver’s breath alcohol concentration level, time and location of 

measurement, driver gender and vehicle type was recorded. By use of a Geographical Information System 

(GIS), these 33,472 records were mapped onto a spatial-temporal grid with respect to test location (144 

levels), day of the week (7 levels) and time of a day (6 levels), using the Geographical Information 

System (GIS) technique. For each spatial-temporal unit, as shown in Table 1, a profile of breath alcohol 

concentration (BrAC) frequency distribution could be set out. In particular, a single distribution profile of 

spatial-temporal unit k could be denoted by, 

 

  (1) 

 

where K equal to 6,048, and  

 

[Insert Table 1 here] 

 

Not all the 6,048 spatial-temporal unit have measurement because there was no RBT operation in certain 

time periods at particular location, we therefore have 745 drink-driving distribution profiles set out. Table 

2 summarizes the characteristics of the 745 drink-driving distribution profiles.  

 

[Insert Table 2 here] 

 

2.2 Cluster Analysis 

 
Cluster analysis is an exploratory data evaluation technique for grouping individuals into meaningful 

clusters, such that individuals within a cluster are similar in some respects and dissimilar to individuals in 

other clusters. In terms of road safety research, many studies (Sigve and Torbjorn, 2007; Depaire et al., 

2008; Wong and Chung, 2008; Anderson, 2009) have been conducted using cluster analysis to develop 

various crash prediction models. For example, a local Hong Kong study examined the geographical 

distribution of road crashes using the cluster technique (Ng et al., 2002).  

 

Basically, cluster analyses can be classified into three different types: visual techniques, hierarchical 

methods, and non-hierarchical methods. In this study, an hierarchical agglomerative technique using the 

Wald method was used to generate clusters of drink-driving distribution profiles, that we group 

individuals having similar characteristics into a cluster. The agglomerative approach has been one of the 

most common cluster analysis methods. Specifically, the degree of similarity between two individuals can 

be defined by the squared Euclidean distance between their respective centroids, or means (Jarrell, 1994).  

 

 Euclidean distance,  (2) 

 

where xir and xjr refers to the characteristic score of variable r of individual i and j respectively. 

 

To this end, the possible variables in the cluster analysis are the BrAC frequency distribution, district, day 

of the week, and time period. Following the hierarchical agglomerative approach, the 745 drink-driving 

distribution profiles were gradually merged into clusters at different steps or stages, until all individuals 

were assigned to respective clusters. In the initial stage, pairs of individuals that shared the greatest 

similarity were merged first. Similar pairs or individuals were then being merged in subsequent steps, 

based on the same mechanism. Eventually, a dendrogram (tree diagram) could be established to illustrate 

the merging process and the final results of cluster analysis.  
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2.3 Cluster Analysis Results 

 

A cluster analysis on the 745 drink-driving distribution profiles was performed using statistical software 

SPSS 20.0.  

 

The variables entailed in the cluster analysis are BrAC frequency distribution, geographical district (18 

levels as shown in Figure 1), day of the week (7 levels), and time period (6 levels, i.e., 7:00 a.m.–11:00 

a.m. [morning], 11:00 a.m.–3:00 p.m. [afternoon], 3:00 p.m.–7:00 p.m. [evening], 7:00 p.m.–11:00 p.m. 

[night], 11:00 p.m.–3:00 a.m. [midnight] and 3:00 a.m.–7:00 a.m. [dawn]).  

 

In cluster analysis, parsing the dendrogram to determine the number of clusters is a subjective process, 

which is likely to be the most common approach (Baxter, 1994). Based on the dendrogram obtained in 

this study, we therefore proposed to group individuals into six natural clusters: (i) bar and restaurant 

areas
1
, weekend-overnight

2
 (Number of profiles = 172,  Percentage of total = 23.1%); (ii) bar and 

restaurant areas, other timespans (98, 13.2%); (iii) urban areas, weekend-overnight (122, 16.4%); (iv) 

urban areas, other timespans (77, 10.3%); (v) rural areas, weekend-overnight (111, 14.9%); and (vi) rural 

areas, other timespans (165, 22.1%). Chi-square test was used to assess the independence of drink-driving 

distribution profiles between different clusters. As Table 3 shows, the chi-square test statistics for pairs of 

clusters were all greater than the critical value of 32.671 (Degree of freedom = 21, p-level = 0.05). We 

therefore concluded that the six clusters of drink-driving distribution profiles were remarkably 

distinguished from each other at the 5% level. Figure 2 illustrates the cluster tree adopted in this study.  

 

[Insert Table 3 here] 

 

[Insert Figure 2 here] 

 

Results of cluster analysis formed the basis of the development of separated drink-driving prediction 

models in the subsequent section. 

 
3 Zero-inflated Models for Factors Contributing to Drink-driving and High BrAC 

 
3.1 Model framework  

 
Based on the characteristics of the above six clusters set out, separated prediction models were established 

to identify factors contributing to the prevalence of drink-driving and high BrAC levels, including the 

drivers’ characteristics, road types, and vehicle classes involved in each of the different clusters. As driver 

characteristics do affect the BrAC level, the unit of prediction model is individual drivers. 

 

In the proposed prediction model, the 33,472 RBT records, in each of which comprehensive information 

on BrAC levels and personal characteristics of the concerned drivers were recorded, were used. Table 4 

summarized the characteristics of the 33,472 measurements. The 33,472 measurements were segregated 

into six: Cluster 1 – bar and restaurant areas, weekend-overnight (Number of measurements = 1,034); 

Cluster 2 – bar and restaurant areas, other timespans (8,201); Cluster 3 – urban area, weekend-overnight 

                                                 
1
 Bar and restaurant areas refers to Yau Tsim Mong (Tsim Sha Tsui and Mong Kok District) and 

Wan Chai areas, which represent 25.4% and 14.3% bars and restaurants with valid liquor licence 

in Hong Kong, respectively (Liquor Licensing Board, 2013) 
2
 Weekend refers to Friday and Saturday, and overnight refers to the time periods from 11:00 

p.m. to 07:00 a.m. of the next day 
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(965); Cluster 4 – urban area, other timespans (9,469); Cluster 5 – rural area, weekend-overnight (2,359); 

and Cluster 6 – rural area, other timespans (11,444). 

 

[Insert Table 4 here] 

 

3.2 Zero-inflated (ZI) regression models 

 
3.2.1 Model formulation 
 
In the proposed drink-driving prediction model, the dependent variable was the breath alcohol 

concentration level, and the independent variables were the season of year (spring, summer, fall or winter), 

the road type (major and minor), the driver’s gender, and the vehicle class (taxis, other commercial 

vehicles, or non-commercial vehicles). As the dependent variable, breath alcohol concentration (BrAC), is 

of a positive and continuous nature, we considered three different model forms: (i) lognormal; (ii) gamma; 

and (iii) exponential. To address the problem that zeroes were prevalent in the BrAC data, zero-inflated 

modifications were incorporated into the regression models. 

 

Although the application of zero-inflated models for crash predictions was questioned due to the 

difference in the zero generation process between crash occurrence and manufacture failure (Lambert, 

1992), it could have potential to model BrAC levels (Ghosh et al., 2006; Ospina et al., 2012). Indeed, zero 

BrAC could be generated by two different processes: one is governed by the binary distribution of 

compliance drivers, while another is governed by the continuous distribution of non-compliance drivers 

who have zero BrAC. For instance, the formulation of a proposed zero-inflated continuous model can be 

specified by establishing the following probability function (Ntzoufras, 2009): 

 

  (3) 

 

where  is the probability function of  and  is the modified probability function, with an 

additional parameter  indicating the proportion of additional zeros.  

 

Furthermore, the probability of zeros can be expressed in the following form:  

 

 , (4) 

 

and the probability of y > 0 is given by  

 

 . (5) 

 

3.2.2 Bayesian approach 

 
In this study, the Bayesian method was applied, using the Markov Chain Monte Carlo (MCMC) 

simulation approach to estimate the parameters of the zero-inflated continuous regression models 

(Scollnik, 2002; Gelman, 2004; Ghosh et al., 2006; Ntzoufras, 2009). These calculations were performed 

on the WinBUGS platform. The MCMC parameter estimate technique generates sequences of random 

points, whose distributions should converge to the target posterior distributions.  

 

Based on Bayes’ theorem, the posterior distribution of parameters can be derived by integrating the prior 

distribution and likelihood functions, as follows: 
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 , (6) 

 

where y is the observed outcome and  is the parameter estimate. The marginal distribution of y can be 

specified as follows:  

 

 , (7) 

 

which is a constant with fixed value of y. The posterior distribution can be further expressed as an 

unnormalized posterior distribution by omitting the factor  as follows: 

 

  (8) 

 

3.2.3 Goodness-of-fit 

 

Spiegelhalter et al. (2002) proposed the deviance information criteria (DIC) as a measure of model 

complexity and fit. As with the Akaike or Bayesian information criterion indicators, a lower DIC value 

indicates a better model fit. 

 

 , (8) 

 

where  is the usual deviance evaluated at the posterior means of parameter , and  is the 

posterior mean of deviance, and  is the effective number of parameters. Usual deviance can be defined 

as follows:  

 

 . (9) 

 

3.3 Analysis Results  

 

Possible factors contributing to the prevalence of drink-driving and higher BrAC levels were examined, 

including the season of year (e.g. spring, summer, fall or winter), road type (major road versus minor 

road), driver gender, and vehicle class (taxi, other commercial vehicle, or non-commercial vehicle). The 

characteristics of individual drivers (e.g., driver gender and vehicle class), were also incorporated into the 

probability function for the zero-state. Table 5 illustrates the results of goodness-of-fit analysis for three 

candidate zero-inflated continuous regression models: (i) Zero-inflated lognormal (ZILogNorm); (ii) 

Zero-inflated gamma (ZIGamma); and (iii) Zero-inflated exponential (ZIExpon), as applied to the six 

concerned models. The number of iteration for posterior estimates was 100,000, and the corresponding 

DIC values are presented in Table 5.  

 

[Insert Table 5 here] 

 

The results of parameter estimates were generated for each cluster, based on the zero-inflated regression 

model having the lowest DIC value. These results are presented in Table 6..  

 

[Insert Table 6 here] 
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3.3.1 Overall pattern 

 

As shown in Table 5, the zero-inflated exponential (ZIExpon) regression model exhibited the best fit with 

the observed breath alcohol concentration data (DIC = 15,026.2). Predicted distributions of breath alcohol 

concentrations and respective root mean square errors (RMSE) are also presented in the Table 6. For 

instance, less than 3% (the proportion of BrAC positive drivers are 2.67%) of the tested drivers were 

found positive, and their average breath alcohol concentration was 0.097 μg/100ml. 

 

Table 6 illustrates the results of the zero-inflated exponential regression model of overall breath alcohol 

concentrations. For the regression state, both seasonal variation and vehicle class were found significantly 

correlated to BrAC at the 5% significance level. BrAC levels in the spring (coefficient = 29.530), summer 

(13.670) and autumn (9.018) were all higher than levels found in the winter at the 1% significance level. 

Also, the BrAC levels of taxi drivers (-2.796) were lower than those of other vehicle drivers at the 1% 

significance level. However, no evidence could be established for an association between BrAC levels 

and other factors, including road type and driver gender. For the zero-state, the probabilities of zero BrAC 

among taxi drivers (1.558) and other commercial vehicle drivers (1.091) were both found to be higher 

than among non-commercial vehicle drivers at the 1% significance level. This implies that occupational 

drivers (both taxi and other commercial vehicle drivers), generally have a lower tendency to drive after 

drinking.  

 

To evaluate the possible effects of spatial and temporal factors on overall BrAC levels, we have 

incorporated the six cluster types in the regression equation. As also shown in Table 6, BrAC levels in 

Cluster 1 (bar and restaurant area, weekend-overnight, -1.045) and Cluster 3 (urban area, weekend-

overnight, -0.570) were lower than that of other clusters, both at the 1% level of significance. Besides, 

BrAC levels in Cluster 2 (bar and restaurant area, other timespans, 0.399) and Cluster 4 (urban area, other 

timespans, 0.252) were higher than that of other clusters, at the 5% level of significance. 

 

3.3.2 Cluster 1 – Bar and restaurant area, weekend-overnight 

 

As shown in Table 5, the zero-inflated gamma (ZIGamma) regression model (DIC = 767.8) was superior 

to other models for the association measure of BrAC levels in Cluster 1. In this model, the estimated 

mean BrAC of drink-drivers was 18.460 μg/100ml (refer to Table 6). This measure was remarkably 

higher than the overall Hong Kong average.  

 

The seasonal variation and vehicle class were both found significantly correlated to BrAC in the 

regression state at the 5% significance level. The BrAC levels in spring (1.910) and summer (0.904) were 

noticeably higher than those measured in winter. The BrAC level for taxi drivers (-1.861) was in 

particular lower than that for other vehicle drivers. For the zero-state, the probability of zero BrAC among 

taxi drivers in bar and restaurant areas (2.477) was much higher than that of other vehicle drivers, at the 

5% significance level.   

 

3.3.3 Cluster 2 – Bar and restaurant area, other timespans 

 

The BrAC distribution of Cluster 2 was similar to that of the overall situation in Hong Kong. As shown in 

Table 5, the zero-inflated exponential (ZIExpon) regression model was superior (DIC = 2,817.5) for this 

cluster. Also, only a small proportion (2.11%) of tested drivers were found to be driving after drinking, 

and their mean estimated BrAC was 0.132 μg/100ml (refer to Table 6).  
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Again, seasonal variation and vehicle type were found significantly correlated to BrAC in the regression 

state, both at the 5% significance level. Compared with the winter period, the BrAC levels in other 

seasons, spring (24.900), summer (20.690), and autumn (6.505), were all substantially higher, at the 5% 

significance level. For taxi drivers who drink and drive, the predicted BrAC was lower (-3.025) than that 

of other vehicle drivers, at the 5% significant level. However, the likelihood of zero BrAC among both 

commercial vehicle (0.840) and taxi (1.028) drivers was noticeably higher than that of non-commercial 

vehicle drivers, at the 5% significance level. This result is comparable to that of overall probabilities in 

Hong Kong. 

 

3.3.4 Cluster 3 – Urban area, weekend-overnight 

 

In this cluster, the zero-inflated gamma (ZIGamma) regression model (DIC = 548.2) outperformed all 

other models. As illustrated in Table 6, the BrAC distribution of Cluster 3 was similar to that of Cluster 1 

(bar and restaurant areas, weekend-overnight). The proportion of positive BrAC measurements in Cluster 

3 (3.38%) was slightly lower than that of Cluster 1 (5.00%). The mean estimated BrAC was 19.810 

μg/100ml, which was comparable to that of Cluster 1.   

 

Furthermore, seasonal variation was found significantly correlated to the BrAC of drink-drivers, at the 5% 

significance level. The mean BrAC level of drivers in spring (1.212) and summer (1.451) was noticeably 

higher than that measured in winter at the 5% significance level. No evidence could be established for an 

association between the mean BrAC level and other factors, including road type, gender or vehicle class. 

No other factor was found significantly correlated to the prevalence of drink-driving in this cluster.  

 

3.3.5 Cluster 4– Urban area, other timespans 

 

For Cluster 4, the zero-inflated lognormal (ZILogNorm) regression model was found to be the best fit, 

with the observed BrAC distribution (of DIC = 2,742.4). As shown in Table 6, the proportion of positive 

BrAC levels for this cluster was the lowest (1.65%) among the six clusters, and the mean estimated BrAC 

was 1.849 μg/100ml.  

 

Through their model forms can be differentiated, the contributory factors to mean BrAC levels and the 

likelihood of positive BrAC were similar in Clusters 2 and 4 (other timespans for both bar and restaurant 

areas and urban areas). For instance, in Cluster 4 both seasonal variation and vehicle class were found as 

contributing to the mean BrAC level at the 5% significance level. Likewise, the BrAC levels in summer 

(1.031) and autumn (0.968) were higher than in the winter at the 1% significance level. Furthermore, the 

mean BrAC of taxi drivers was lower (-0.877) than that of other vehicle drivers at the 5% significance 

level. For the zero-state, vehicle class was a deterministic factor, and the likelihood of positive BrAC 

among both commercial vehicle (0.989) and taxi (1.041) drivers was higher than that for non-commercial 

vehicle drivers, at the 5% and 1% significance levels respectively.  

 

3.3.6 Cluster 5 – Rural area, weekend-overnight 

 

Not surprisingly, the BrAC distributions in Clusters 3 and 5 (the weekend-overnight period in urban and 

in rural areas) were similar. For instance, the zero-inflated gamma (ZIGamma) regression model best fit 

with the observed BrAC distribution in Cluster 5 (DIC = 2,186.5). However, both the proportion of drink-

drivers (6.06%) and the mean BrAC (20.850 μg/100ml) in Cluster 5 were the highest among all of the six 

clusters. Obviously, there is cause for great concern over the prevalence of drink-driving during the 

weekend-overnight period in rural areas.  
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Again, seasonal variation was found deterministic to the mean BrAC level, at the 1% significance level. 

The mean BrAC in winter was lower than that in the spring (1.574), summer (0.912) and autumn (0.819). 

For the zero-state, no evidence could be established for an association between the likelihood of drink-

driving and the other potentially contributing factors considered.  

 

3.3.7 Cluster 6 – Rural area, other timespans 

 

The zero-inflated exponential (ZIExpon) regression model fit well with the BrAC distribution in Cluster 6 

(DIC = 6,019.7). As illustrated in Table 6, some 3.29% of the tested drivers were found to have positive 

BrAC, and their mean BrAC level was 0.088 μg/100ml.  

 

Again, seasonal variation was related to BrAC, at the 1% significance level. For instance, the mean BrAC 

levels in spring (29.990), summer (9.369), and autumn (10.740) were all higher than levels found in the 

winter at the 1% significance level. Nevertheless, no evidence could be established for the association 

between BrAC and other factors, including road type, gender or vehicle class. For the zero-state, 

occupational drivers, including commercial vehicle (1.202) and taxi (2.082) drivers, had a lower 

likelihood of positive BrAC than non-commercial vehicle drivers in Cluster 6 at the 1% significance level.  

 

4 Discussion 

 

4.1 Contributory Factors to the Prevalence of Drink-driving  

 

Generally, the zero-inflated exponential (ZIExpon) regression model fit well with the observed BrAC data 

for overall RBT records, in which 2.82% of all tested drivers were found to have positive BrAC. Seasonal 

variation and vehicle class were found significantly correlated with the BrAC of drink-drivers. According 

to traditional wisdom, alcohol consumption tends to be higher in Hong Kong’s festive seasons, e.g., 

Christmas to New Year’s day (December-January) and Chinese New Year (January or February). 

However, the results of this study reveal that, surprisingly, the BrAC of drink-drivers in the winter festive 

period (December-February) was lower than in all other seasons, regardless of district or time period. 

This pattern may be attributed to the more frequent publicity campaign activities and targeted 

enforcement actions against drink-driving immediately before and during the festive season. Evidence has 

been established that such targeted enforcement and publicity campaign activities, including use of 

electronic media, are effective in discouraging drink-driving, and thus alcohol-related road crashes can 

possibly be reduced (Elder et al., 2004; Tay, 2005). The study’s results also demonstrated that 

occupational drivers, including taxi and commercial vehicle drivers, have a lower likelihood of drink-

driving. Even if convicted of drinking while driving, the BrAC levels of occupational drivers were found 

noticeably lower than the levels of convicted non-commercial vehicle drivers. In Israel, occupational 

drivers were found to be more law-abiding than non-commercial vehicle drivers (Rosenbloom et al., 

2009), but in Thailand and Nigeria, occupational drivers were found to be remarkably less law-abiding, 

especially in driving while impaired by alcohol (Ingsathit et al., 2009; Balogun et al., 2012). However, 

diagnostic analyses on the propensity of convicted driving behavior of occupational drivers are limited. It 

should be worthwhile for future research to explore the relationship between the likelihood of drink-

driving and other possibly contributing factors among occupational drivers. 

 

Investigators of driver behavior have long considered gender a deterministic factor, and have generally 

found that male drivers are more aggressive, less cautious (Glendon and Cernecca, 2003; Vanlaar, 2005; 

Fernandes et al., 2010), and more likely to be convicted of drink-driving (Kim et al., 2010) than female 

drivers. However, no evidence could be found for an association between driver gender and the likelihood 

of drink-driving in the results of this study, or in some of the other diagnostic analyses of driver behavior 
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(Kuntsche et al., 2010). It is possible that the sample size of female drivers (5.5% in this study) might 

have been too small for efficient quantitative analysis. 

 

4.2 Variations in Drink-driving Patterns by Geographical Area 

 

One of the primary objectives of this study was to understand the variations in drink-driving patterns by 

geographical area, e.g., rural, urban, or bar and restaurant areas. Understanding such patterns is essential 

for the development of effective and appropriate anti-drink-driving measures, which if implemented can 

enhance road safety performance in the problematic areas recognized. Therefore, separate prediction 

models for BrAC levels and the prevalence of drink-driving were developed for different clusters by 

geographical area and time period. BrAC levels of convicted drivers tended to be higher during weekend-

overnight periods, regardless of geographical area. For these periods, zero-inflated gamma (ZIGamma) 

models had the best predictive performance. In contrast, the zero-inflated lognormal (ZILogNorm) or 

zero-inflated exponential (ZIExpon) alternatives showed better predictive performance for BrAC levels of 

convicted drivers in other timespans, regardless of geographical area. This implies that the BrAC 

distributions in the weekend-overnight periods are more likely to be dispersed. The predicted mean BrAC 

levels in weekend-overnight periods (ranging from 18 μg/100ml to 21 μg/100ml) were close to the 

prescribed legal limit (22μg/100ml), but those in all other timespans were far lower (ranging from 0 

μg/100ml to 2 μg/100ml). The above findings are consistent with findings from Switzerland and Northern 

Ireland (Vanlaar, 2005; Evans et al., 2006; Kuntsche et al., 2010). 

 

However, this study’s results also indicate that drivers in rural areas, especially during the weekend-

overnight period, tend to have higher BrAC levels than those in bar and restaurant areas during the same 

time periods, even through the intensity of alcohol selling points in the bar and restaurant areas could be 

higher. This finding seems to contradict the findings of previous studies that suggested the incidence of 

drink-driving is positively correlated with the availability of alcohol (Gruenewald and Ponicki, 1995; 

Gruenewald and Treno, 2000; Treno et al., 2007; Schonlau et al., 2008).  Jackson and Owens (2011) had 

revealed that reduction in walking distance to public transport stations can reduce the prevalence of drink-

driving in the United States. Different from the U.S. and other countries, all areas (even rural areas) in 

Hong Kong  are well connected by public transport, with very high ridership (over 90% of person trips 

are by public transport) (Transport Department, 2013). Despite of this, the findings of current study 

revealed that the prevalence of drink driving in rural areas were higher than that in urban areas. This 

implies that focusing on the accessibility to public transport is not always the most cost effective approach 

to combat drink-driving. Besides, at least one transfer might be required for bus routes connecting rural 

areas, this may discourage drivers from switching to  public transport even if the public transport stations 

are highly accessible. . If this is the case, then better approaches like “dial-a-driver” would be essential to 

metropolitans like Hong Kong. Hence, drink-drivers would be encouraged to switch to alterative transport 

modes, instead of driving by themselves after drink.  

 

Conclusively, the results of this study have implications for the transport authorities and for police. These 

findings should lead to the development of targeted enforcement and campaign activities in rural areas, in 

which the average BrAC level of convicted drivers was 12.9%, or 2.39 μg/100ml higher than that in other 

areas. The authorities should also be especially vigilant during the weekend-overnight period.  

 

5 Conclusion  

 

Alcohol-related road crashes and injuries can be viewed as a result of deficiencies in traffic control 

strategies and in enforcement measures against drink-driving (Holder et al., 2000). To combat drink-

driving behavior and alcohol-related road crashes, effective and appropriate remedial measures based on 

the results of this study can be developed from two perspectives. First, the data showed that the 

occurrence of illegal BrAC levels and the effects of factors contributing to the prevalence of drink-driving 
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varied with respect to geographical area and time period. Targeted enforcement measures should therefore 

be imposed in the weekend-overnight periods for a stronger deterrent effect against drink-driving. Also, 

both the transport authorities and the police should pay greater attention, not only to the bar and restaurant 

areas, but also to the rural areas in which the BrAC levels of drink-drivers are higher. Second, the results 

demonstrated that the BrAC levels of drink-drivers in the festive season were lower than those in other 

periods of the year. This could be favorably attributed to the success of driver safety campaigns and 

publicity, e.g., through electronic media, in the festive season. Undoubtedly, better driver education and 

publicity can be effective in enhancing public awareness concerning road accident risks, and thus 

reducing the likelihood of drink-driving in other seasons as well. 

 

This study has a number of limitations. Generally, factors such as socioeconomics and driving 

experiences, e.g., income, trip purpose and driving offense record, could be deterministic to the 

prevalence of drink-driving and the BrAC levels of convicted drivers. Data on these factors, however, 

were not available for this study. The data on some other potentially contributing factors, including 

vehicle class and gender, were examined. Occupational drivers were found to have a lower likelihood of 

drink-driving than non-commercial vehicle drivers. If the relevant information on trip characteristics and 

driving experience becomes available for future attitudinal surveys, it would be worthwhile exploring the 

relationship between aggressive driving and the BrAC levels of convicted drivers, and the prevalence of 

drink-driving among novice drivers. Furthermore, results of association measure could be subject to the 

influences of differences in the levels of testing between geographical areas and time periods. The 

deterrent effects of RBT could be different due to the variation in the levels of testing. Last but not least, 

drink drivers could have avoided the RBT if some RBT sites are easy to avoid. Therefore, the results 

could be conservative. No information is however available to explicitly reveal their influences on the 

association. 
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Table 1 Notation of the BrAC Frequency Distribution Profiles 

Spatial-

temporal 

unit 

BrAC Level (μg/100ml) Total 

0 0<x<=5 5<x<=10 … x>95 

1 n11 n12 n13 … n1 21 n1 

2 n21 n22 n23 … n2 21 n2 

…       

k nk1 nk2 nk3 … nk 21 nk 

k+ 1 nk+1 1 nk+1 2 nk+1 3 … nk+1 21 nk+1 

…       

K nK1 nK2 nK3 … nK 21 nK 
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Table 2 Summary the 745 Drink-driving Distribution 

Factor Attribute Frequency Percent (%) 

District Bar & Restaurant areas 189 25.4 
 - Yau Tsim Mong 125 16.8 

 - Wan Chai 64 8.6 

 Urban areas 220 29.5 

 - Kowloon City 38 5.1 

 - Kwun Tong 87 11.7 

 - Sham Shui Po 13 1.7 

 - Wong Tai Sin 6 0.8 

 - Central and Western 21 2.8 

 - Eastern 29 3.9 

 - Southern 26 3.5 

 Rural areas 336 45.1 

 - Islands 7 1.0 

 - Kwai Tsing 65 8.7 

 - North 13 1.7 

 - Sai Kung 60 8.1 

 - Shatin 22 3.0 

 - Tai Po 46 6.2 

 - Tsuen Wan 48 6.4 

 - Tuen Mun 10 1.3 

 - Yuen Lonh 65 8.7 

Day of week Weekdays & Sunday 493 66.2 
 - Monday 106 14.2 

 - Tuesday 87 11.7 

 - Wednesday 70 9.4 

 - Thursday 66 8.9 

 - Sunday 164 22.0 

 Weekends 252 33.8 

 - Friday 107 14.4 

 - Saturday 145 19.4 

Time period Daytime & Nighttime 523 70.2 
 - 7:00 a.m.–11:00 a.m. 111 14.9 

 - 11:00 a.m.–3:00 p.m. 118 15.8 

 - 3:00 p.m.–7:00 p.m. 97 13.1 

 - 7:00 p.m.–11:00 p.m. 197 26.4 

 Overnight 222 29.8 

 - 11:00 p.m.–3:00 a.m. 152 20.4 

 - 3:00 a.m.–7:00 a.m.  70 9.4 

Number of observations = 745. 
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Table 3 Chi-square test of independence between different clusters 

 Chi-square test statistic, χ
2 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

Cluster 1 - - - - - - 

Cluster 2 89.742** - - - - - 

Cluster 3 85.724** 42.266** - - - - 

Cluster 4 90.226** 33.217* 39.468** - - - 

Cluster 5 86.708** 311.593** 541.004** 203.902** - - 

Cluster 6  83.452** 219.414** 403.168** 184.399** 88.344** - 

* Statistically significant at 5% level 

** Statistically significant at 1% level 

 

Table 4 Summary of the 33,472 RBT Measurements 

Factor Attribute Frequency Percent (%) 

District Bar & restaurant area 9,235 27.6 
 - Yau Tsim Mong 6,521 19.5 

 - Wan Chai 2,714 8.1 

 Urban area 10,434 31.2 

 - Kowloon City 1,254 3.7 

 - Kwun Tong 5,114 15.3 

 - Sham Shui Po 393 1.2 

 - Wong Tai Sin 129 0.4 

 - Central and Western 769 2.3 

 - Eastern 1,807 5.4 

 - Southern 968 2.9 

 Rural area 13,803 41.2 

 - Islands 146 0.4 

 - Kwai Tsing 1,827 5.4 

 - North 559 1.7 

 - Sai Kung 2,359 7.0 

 - Shatin 530 1.6 

 - Tai Po 2,467 7.4 

 - Tsuen Wan 2,805 8.4 

 - Tuen Mun 434 1.3 

 - Yuen Lonh 2,676 8.0 

Day of week Weekdays & Sunday 21,848 65.3 
 - Monday 4,964 14.8 

 - Tuesday 3,293 9.8 

 - Wednesday 2,495 7.5 

 - Thursday 2,437 7.3 

 - Sunday 8,659 25.9 

 Weekends 11,627 34.7 

 - Friday 4,563 13.6 

 - Saturday 7,064 21.1 

Time period Daytime & Nighttime 22,206 66.3 
 - 7:00 a.m.–11:00 a.m. 5,901 17.6 

 - 11:00 a.m.–3:00 p.m. 4,118 12.3 
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 - 3:00 p.m.–7:00 p.m. 4,033 12.0 

 - 7:00 p.m.–11:00 p.m. 8,154 24.4 

 Overnight 11,266 33.7 

 - 11:00 p.m.–3:00 a.m. 8,534 25.5 

 - 3:00 a.m.–7:00 a.m.  2,732 8.2 

Month  Spring 7,723 23.0 
 - March 2,320 6.9 

 - April 2,410 7.2 

 - May 2,993 8.9 

 Summer 6,892 20.6 

 - June 2,302 6.9 

 - July 2,064 6.2 

 - August 2,526 7.5 

 Fall 8,683 26.0 

 - September 2,510 7.5 

 - October 3,272 9.8 

 - November 2,901 8.7 

 Winter 10,174 30.4 

 - December 3,532 10.6 

 - January 4,253 12.7 

 - February 2,389 7.1 

Road type Minor  12,278 36.7 

 Major 21,194 63.3 

Gender Male 31,641 94.5 

 Female 1,831 5.5 

Vehicle class Non-commercial vehicles 25,370 75.8 
 - Motor cycle 1,185 3.5 

 - Private car 18,536 55.4 

 - LGV 5,589 16.7 

 - Government 23 0.1 

 - Others 37 0.1 

 Other commercial vehicles 2,383 7.1 

 - MGV 1,043 3.1 

 - HGV 63 0.2 

 - Public light bus 777 2.3 

 - Public bus 489 1.5 

 - Tram 11 0.0 

 Taxi 5,719 17.1 

Number of observations = 33,472. 
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Table 5  DIC values of different zero-inflated regression models for different clusters 

 Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

  Bar & 

restaurant area, 

weekend-

overnight 

Bar & 

restaurant area, 

other timespans 

Urban area, 

weekend-

overnight 

Urban area, 

other timespans 
Rural area, 

weekend-

overnight 

Rural area, 

other timespans 

ZILogNorm 15,096.8 770.6 2,827.2 548.4 2,742.4 2,186.5 6040.9 
ZIGamma 15,228.5 767.8 2,867.6 548.2 2,775.3 2,186.5 6099.7 
ZIExpon 15,026.2 772.1 2,817.5 N.A.* 2,745.0 2,190.8 6019.7 
Sample size 33,472 1,034 8,201 965 9,469 2,359 11,444 
Notes:  ZILogNorm – Zero-inflated Lognormal Regression Model 

 ZIGamma – Zero-inflated Gamma Regression Model 

 ZIExpon – Zero-inflated Exponential Regression Model 

* The respective Bayesian model could not converge. 
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Table 6 Parameter estimates of zero-inflated regression models for different clusters 

 Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

  Bar & restaurant 

area, weekend-

overnight 

Bar & restaurant 

area, other 

timespans 

Urban area, 

weekend-

overnight 

Urban area, 

other timespans 
Rural area, 

weekend-

overnight 

Rural area, other 

timespans 

Model  ZIExpon ZIGamma ZIExpon ZIGamma ZILogNorm ZIGamma ZIExpon 

Regression-state        
Constant 3.608** 1.858** 3.376 2.397** 0.669 2.599** 6.398** 
Season        

- Spring  29.530** 1.910** 24.900** 1.212* 0.711 1.574** 29.990** 

- Summer 13.670** 0.904* 20.690* 1.451* 1.031* 0.912** 9.369** 

- Autumn 9.018** 0.526 6.505** 0.682 0.968** 0.819** 10.740** 

- Winter (Control)       
Road type        

- Major -0.167 0.031 0.268 0.022 0.438 -0.175 0.201 

- Minor (Control)       
Gender        

- Male 1.425 0.336 2.171 -0.235 0.232 -0.337 -0.679 

- Female (Control)       
Vehicle class        

- Commercial -1.758 -0.134 2.447 -0.443 -0.215 0.012 0.120 

- Taxi -2.796** -1.861** -3.025* 0.235 -0.877* -0.143 2.252 

- Non-commercial (Control)       
Cluster        

- Cluster 1 -1.045** N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 2 0.399** N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 3 -0.570** N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 4 0.252* N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 5 -0.069 N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 6 (Control) N.A. N.A. N.A. N.A. N.A. N.A. 
Zero-state        
Constant 3.565** 2.485** 3.571** 3.368** 3.670** 3.267** 3.654** 
Gender        

- Male -0.187 -0.242 -0.015 -0.458 0.238 -0.596 -0.415 

- Female (Control)       
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Vehicle class        

- Commercial 1.091** 81.930 0.840* 1.700 0.989* 80.120 1.202** 

- Taxi 1.558** 2.477** 1.028** 82.010 1.041** 81.070 2.082** 

- Non-commercial (Control)       
Cluster        

- Cluster 1 0.887 N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 2 -0.268 N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 3 2.410 N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 4 0.870 N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 5 1.533 N.A. N.A. N.A. N.A. N.A. N.A. 

- Cluster 6 (Control) N.A. N.A. N.A. N.A. N.A. N.A. 
Parameters        

- a N.A.  1.886 N.A.  1.233 N.A.  1.843 N.A.  

- b N.A. 0.102 N.A. 0.062 N.A. 0.088 N.A. 

Predicted mean BrAC 

(μg/100ml)
# 

0.097 18.460 0.132 19.810 1.849 20.850 0.088 

Estimated proportions 

oftested drivers 

       

- BrAC = 0 μg/100ml 97.33% 95.00% 97.89% 96.62% 98.35% 93.94% 96.71% 
- 0 <BrAC ≤5 1.02% 0.56% 1.02% 0.60% 0.73% 0.58% 1.17% 

- 5 <BrAC ≤10 0.63% 0.96% 0.53% 0.60% 0.31% 1.02% 0.75% 

- 10 <BrAC ≤15 0.39% 0.92% 0.27% 0.50% 0.17% 1.02% 0.48% 

- 15 <BrAC ≤20 0.24% 0.75% 0.14% 0.40% 0.10% 0.87% 0.31% 

- 20 <BrAC ≤25 0.15% 0.56% 0.07% 0.31% 0.07% 0.69% 0.20% 

- 25 <BrAC ≤30 0.09% 0.40% 0.04% 0.24% 0.05% 0.53% 0.13% 

- 30 <BrAC ≤35 0.06% 0.28% 0.02% 0.18% 0.04% 0.39% 0.08% 

- 35 <BrAC ≤40 0.03% 0.19% 0.01% 0.14% 0.03% 0.28% 0.05% 

- 40 <BrAC ≤45 0.02% 0.13% 0.01% 0.10% 0.02% 0.20% 0.03% 

- 45 <BrAC ≤50 0.01% 0.09% 0.00% 0.08% 0.02% 0.14% 0.02% 

- 50 <BrAC ≤55 0.01% 0.06% 0.00% 0.06% 0.02% 0.10% 0.01% 

- 55 <BrAC ≤60 0.01% 0.04% 0.00% 0.04% 0.01% 0.07% 0.01% 

- 60 <BrAC ≤65 0.00% 0.02% 0.00% 0.03% 0.01% 0.05% 0.01% 

- 65 <BrAC ≤70 0.00% 0.02% 0.00% 0.02% 0.01% 0.03% 0.00% 

- 70 <BrAC ≤75 0.00% 0.01% 0.00% 0.02% 0.01% 0.02% 0.00% 

- 75 <BrAC ≤80 0.00% 0.01% 0.00% 0.01% 0.01% 0.02% 0.00% 
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- 80 <BrAC ≤85 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 

- 85 <BrAC ≤90 0.00% 0.00% 0.00% 0.01% 0.01% 0.01% 0.00% 

- 90 <BrAC ≤95 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00% 

- 95 <BrAC ≤100 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

RMSE 10.392 13.456 7.678 17.847 1.221 15.362 11.376 

No. of observations 33,472 1,034 8,201 965 9,469 2,359 11,444 
Notes: RMSE – Root mean square error 

* p < 0.05.   ** p < 0.01.  

# The predicted mean BrAC are estimated based on the regression equation of corresponding zero-inflated model. 
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 Figure 1 Geographical Regions in Hong Kong 
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Figure 2 Tree obtained from cluster analysis after pruning  
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