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ABSTRACT 

The tension softening curves (TSCs) of plain concrete with compressive strengths 

varying between 40 and 90 MPa were estimated by performing three-point bending tests 

on pre-notched beams. Crack evolution and full-field deformation in the beams were 

measured using the electronic speckle pattern interferometry technique. The crack 

characteristics, including the crack opening displacement profiles, the width of the 

fracture process zone and the length of the crack, were evaluated. By using a newly 

developed incremental displacement collocation method, the TSCs of plain concrete 

were determined. To facilitate the use of TSCs by commercial finite element packages, 

the estimated TSCs were simplified to bilinear and exponential curves, and the related 

parameters were determined.  
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1. Introduction 

The fracture property of concrete dominates the fracture failure of concrete structures 

and is essential for the design and durability assessment of reinforced concrete (RC) 

structures. It has been studied that concrete shows inelastic fracture behaviour at the tip 

of the crack due to the presence of the fracture process zone (FPZ) [1]. Researchers are 

interested in the characteristics of the FPZ so that the role of the FPZ in the fracture 

behaviour of concrete can be clarified and a constitutive law can be obtained for 

concrete in the post-cracking stage.  

Many efforts have been made in recent decades to characterise the FPZ in concrete in 

terms of the extent of the FPZ [2-6], the formation and propagation of the FPZ [7-9], 

size effect of the FPZ [3, 10] and other properties of the FPZ [11-15]. Despite countless 

research efforts on the FPZ, there are still numerous uncertainties, such as the energy-

consuming mechanism of the FPZ and the crack advance length, which prevent the 

establishment of effective fracture mechanics parameters for concrete [16]. Direct 

observations of the actual crack using a measurement instrument with high reliability 

and precision are necessary to validate the characteristics of the FPZ experimentally 

[17]. This paper provides a direct measurement of the FPZ in concrete by using 

electronic speckle pattern interferometry (ESPI) technique. Crack evolution and full-

field deformation in the beam were measured using the ESPI technique. The crack 

characteristics including the crack opening displacement (COD) profiles, the width of 

the FPZ and the crack length were evaluated. 

Cohesive crack model (CCM) is usually used to simulate the nonlinear fracture 

behaviour of concrete. To employ the CCM, the tension softening curve (TSC) is 

required. A great deal of effort has been made in recent decades to investigate the TSCs 

of concrete [18-20]. Ideally, the TSC can be derived from a direct uniaxial tensile test 
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on the concrete specimen [21-23]. The cohesive stress is calculated from the applied 

load, while the crack opening is measured by displacement transducers. However, 

experimental trials showed that it is very difficult to estimate the TSC of concrete using 

uniaxial tests due to some inherent drawbacks: multiple cracking, asymmetric modes of 

fracture, and sudden failure of the sample [24]. Alternatively, the TSC can be inferred 

from an inverse analysis by minimising the difference between the numerical and 

experimental results using various optimisation algorithms [18, 25, 26]. For most of the 

inverse analyses, the shape of the TSC was found to be linear [27], bilinear [28, 29], tri-

linear or exponential. Other studies have performed trials without using a prescribed 

shape for the TSC, to construct a polylinear softening model [16, 30, 31]. Although 

optimisation algorithms were utilised in the numerical analysis, ill- conditioned 

problems were still critical in the inverse analysis. To increase the accuracy of the 

solution achieved by the inverse analysis, more constraints must be imposed [32].  

In this paper, the newly developed incremental displacement collocation method (IDCM) 

[33] was used to estimate the TSCs of concrete with compressive strengths varying 

from 40 MPa to 90 MPa. The parameters of the TSCs, including the tensile strength ft, 

the characteristic crack opening wc, and the fracture energy TSC
FG , were determined. The 

estimated TSCs were compared with previously reported results. Furthermore, the 

estimated TSCs were approximated as bilinear and exponential curves, and the related 

parameters were determined.  

 

2. Theoretical background 

2.1. The CCM 

The CCM has been widely used to simulate the fracture behaviour of quasi-brittle 

materials. In the CCM, the traction between the crack surfaces follows a cohesive 
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constitutive law, namely a TSC. The TSC is typically represented as a stress-crack 

opening relationship: σ(w), where σ is the cohesive stress and w is the crack opening in 

the cohesive zone (Fig. 1). As the crack opening increases, the cohesive stress decreases 

until it reaches zero. The cohesive stress can be expressed as  

)(wf=σ ,                           cww ≤≤0                    (1) 

where f (w) represents the TSC to be determined, and wc is the characteristic crack 

opening at which the cohesive stress reaches zero. The cohesive stress is assumed to be 

equal to the tensile strength ft when w = 0. 

 

2.2. The IDCM 

The IDCM [33] combines the ESPI technique and the finite element method (FEM) to 

calculate the TSC of quasi-brittle materials. A three-point bending test was performed 

on pre-notched beams. Full-field displacement of the beams was measured using the 

ESPI technique. From the ESPI results, precise displacements such as the mid-span 

deflection δ, the crack mouth opening displacement (CMOD), the notch tip opening 

displacement (NTOD) and the COD profile were determined. The COD profile was 

used to predict the cohesive stress in the FPZ. By assigning the cohesive stress into the 

interfacial elements in the FPZ, FEM can be used to determine the numerical responses 

of the specimens.  

The IDCM allows the TSC to be estimated in a stepwise manner. At each loading step, 

only one of the cohesive stresses (e.g., σi in Fig. 2a) that form the TSC needs to be 

evaluated (i.e., the one that gives the correct structural response to the current load, as 

predicted by the FEM). The other cohesive stresses on the TSC, such as ft and σ1 to σi-1, 

would have been determined in the previous loading steps. The cohesive stresses in the 
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FPZ can be determined from the assumed TSC and the measured COD profile (Fig. 2b). 

The correct cohesive stress is identified by matching the experimental displacements 

from the ESPI technique to the numerical displacements from the finite element analysis 

at a set of collocation points along the FPZ. The parameters estimated by the IDCM 

include the piecewise-linear relationship of the TSC, the critical crack opening 

displacement wc and Young’s modulus E of the concrete. 

Compared with other available methods, the IDCM provides several advantages in 

improving the accuracy of the solutions. First, the TSC is determined based on a 

piecewise-linear approximation without a prior assumption on the TSC shape. Thus, 

more realistic TSC shape can be obtained. Second, both global and local responses of 

the specimen are considered in the displacement collocation, thereby reducing the extent 

of ill-posed conditions. Third, the estimated TSC satisfies the displacement 

requirements at all loading states. For one single loading state, it is not difficult to find a 

TSC to satisfy the displacement requirements; however, the real TSC reflects the 

evolution of the crack and should satisfy the displacement requirements at all loading 

states. 

A flow chart of the process for determining the TSC using the IDCM is presented in Fig. 

3.  The procedures are briefly described below. 

(1) Extraction of the experimental displacements 

The experimental displacements, including δ, CMOD, NTOD and the COD profile, are 

used for numerical analysis.  

(2) Estimation of E  

Using the FEM, the Young’s modulus E can be determined by matching the calculated 

and measured displacements in the linear elastic deformation stage. At the early loading 
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stages, the E value generally controls the numerical responses of the specimen because 

the FPZ is relatively short.  

(3) Determination of the length of the FPZ 

In the COD profile, the positions of the front of the crack and the rear end of the 

cohesive crack (e.g., the initial notch tip) are identified; thus, the length of the FPZ can 

be determined. In the FPZ, cohesive stresses will be assigned to the interfacial elements 

along the crack line. 

(4) Calculation of the cohesive stress σ in the FPZ 

From the COD profile, the crack opening w(y) can be determined at various interfacial 

nodes in the FPZ of the FEM data set. The y axis is defined along the crack line with the 

origin at the notch mouth. As shown in Fig. 2a, at the ith loading step, all of the nodal 

points on the TSC in the previous i-1th loading steps would have been defined; only the 

last step (wi, σi) needs to be determined using the IDCM. The cohesive stresses at all the 

interfacial nodes with w less than or equal to wi-1 can then be established. Because the 

TSC must be a decreasing function, the unknown stress σi should satisfy the following 

requirement:  

1−≤ ii σσ                                                         (2)                                                        

where σi-1 is the cohesive stress determined at the i-1th loading step. For 1=i , σ0 is 

equal to ft, which can be determined by the splitting tension test. 

Using linear interpolation, the nodal cohesive stress σ(y) at the jth segment of the TSC 

can be expressed in terms of the crack opening: 
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where w(y) is the crack opening of the node considered; (wj-1, σj-1) and (wj, σj) are the 

end coordinates of the jth line segment; (w(y), σ(y)) is a point on the line segment; and j 

= 1, 2,…i. By assigning a certain trial value for σi that satisfies Equation (2), and using 

Equation (3), all of the nodal stresses along the FPZ can be obtained. 

(5) Inputting the nodal stress σ(y) into the FEM and to compute the displacements at the 

collocation points 

The nodal cohesive stress σi is accepted only when two additional requirements, 

displacement and stress, are satisfied as follows. 

The displacement requirement is  

    | dn – de | < Tolerance                                         (4) 

where dn and de represent the calculated and measured displacements, respectively, in 

terms of δ, CMOD and NTOD (Fig. 2b).  

For the stress requirement, the calculated stresses in the relevant domain should not be 

greater than ft, and the numerical stress profile in the FPZ should be a smooth curve. 

Prior to the formation of a fully developed FPZ, all nodal cohesive stresses should be 

greater than zero. 

(6) Proceeding to the next loading step and repeating procedures (3) to (5) until the 

crack opening at the initial notch tip reaches wc and 0=iσ .  

 

3. Experimental works and results 

3.1. Mix proportions and specimen dimensions 

Five batches of concrete samples with compressive strengths varying from 40 MPa to 

90 MPa were cast. The mix proportions of concrete are shown in Table 1. Portland 
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Cement CEM I 52.5N [34] was used. The maximum size of the aggregate was 10 mm. 

For each batch, 4-5 pre-notched beams were prepared for three-point bending tests. The 

beam dimension was 710 × 150 × 80 mm. The span of the beam was 600 mm. The pre-

notch depth was 45 mm, and the thickness of the notch was 3 mm.  

 In addition to the pre-notched beams, three cubes were cast with each batch. The 

dimension of each cube was 150 × 150 × 150 mm. After being cast and cured, the 

specimens were placed in air (temperature: 20 ± 2 °C; relative humidity: 75 - 85%) until 

the date of testing. The pre-notched beams were cast for three-point bending tests 

according to RILEM recommendations [35, 36]. Following the Hong Kong 

Construction Standard [37], the cubes were tested to determine the cube compressive 

strength fcu.  

To eliminate the variation of the material properties due to the differences in the 

samples, cylinders were cored from the fractured segments of the pre-notched beams 

after conducting the three-point bending test. The cylinder specimen had a dimension of 

100 × 80 mm in diameter and depth, respectively. The cylinder specimens were tested 

using the splitting tension test [38] to determine the indirect tensile strength, ft. The 

material properties of concrete with different strengths are listed in Table 1. 

 

3.2. Experimental setup of three-point bending test 

Using an MTS and bend fixture, three-point bending tests were carried out on the 28th 

day after casting the specimens. The experimental setup is presented in Fig. 4a. 

Displacement control with a loading rate of 0.01 mm/min of the jack displacement was 

used, and the jack was moved upward to apply load on the beam. The mid-span 

deflection and crack mouth opening displacement (CMOD) were measured by LVDTs 

and a clip gauge, respectively. By using a very stiff servo-controlled testing machine, 
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the growth of the main crack was well controlled, and the complete load-deflection and 

load-CMOD curves were recorded by a data logger. Schema of the experimental setup 

is shown in Fig. 4b. To measure the mid-span deflection without support disturbances, 

an additional frame was located on the top of the beam to act as a reference datum of 

LVDTs (see Fig. 4c).  

A 3D ESPI system (Q300 produced by Dantec-Ettemeyer) was used to measure the 

surface deformation at the mid-span of the beams. In this study, the measured area was 

approximately 200 (horizontal) × 170 (vertical) mm2. The measurement sensitivity of 

the ESPI system depends on the illumination arm, object distance and laser wavelength. 

With a longer illumination arm, shorter object distance and laser wavelength, the 

measurement sensitivity will be higher. With the present test setup, the system is 

capable of obtaining a displacement resolution of 0.2 µm.  

At each loading state, the speckle pattern on the measured surface was captured by the 

ESPI sensor. The post-processing software ISTRA [39] was used to convert ESPI raw 

data to in-plane displacement distributions. 

 

3.3. Observations of rupture planes  

The rupture planes of the specimens with various strengths are shown in Fig. 5. In the 

planes of rupture, it can be observed that cement and aggregate exhibit different colours. 

For normal-strength concrete (NSC), few aggregates are broken, and the crack 

propagates through the cement matrix or along the transition zone of the cement and 

aggregate. The plane of rupture shows a uniform colour, termed as an intergranular 

fracture mode. For high-strength concrete (HSC) ( 60≥cuf MPa), the crack continues 

through the aggregate and is termed as a transgranular fracture mode. With more 
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aggregate surface, the colour of the rupture plane seems diverse and non-uniform. The 

higher the compressive strength is, the more the aggregate fractures. 

It can be deduced that the crack initiates from the weaker zone. For NSC, the cement 

matrix has a lower strength relative to the strength of the aggregates, so the crack 

mainly occurs in the cement matrix or in the transition zone between the cement and the 

aggregates. For HSC, the strength of the cement matrix is comparable to or even higher 

than that of the aggregates; therefore, the crack propagates through the aggregates. The 

results are consistent with the findings by Elices et al. [18], who indicated that the 

dominant fracture mode was intergranular for concrete with weak interfaces whereas the 

dominant mode was transgranular for concrete with strong interfaces. 

 

3.4. Experimental load-displacement curves 

Complete load-deflection and load-CMOD curves of the pre-notched beams are 

presented in Fig. 6, including the specimen groups C40, C50, C60, C80 and C90. Due to 

the heterogeneity of concrete and the diversity of individual specimens, the load-

displacement curves of the specimens in the same group might be different. To show the 

representative results, only the results of three specimens with consistent responses are 

presented for each group. 

From the curves, it can be seen that at the early loading stages, e.g., P/Pmax < 1/3, the 

specimens are nearly in linear elastic deformation. Nonlinear deformation is not 

observable in the initial segment of curves. The end of this segment is considered to be 

the initiation of fracture [40]. The load-deformation relationship in the linear segment 

will be used to estimate the Young’s modulus of concrete in further numerical analysis. 
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The average fracture energy GF can be obtained by the work-of-fracture method 

according to RILEM TC 50-FMC [35]. It is calculated from the entire load-deflection 

curve by 

( )tab
A

GF
0

0

−
=                                                            (2) 

where A0 is the area under the measured load-deflection curve, b and t are the depth and 

thickness of the beam, respectively, and a0 is the initial notch depth. The fracture energy 

values of the various specimen groups are shown in Table 2.  

 

3.5. Observations of the crack evolution  

The high-precision ESPI camera allowed a vivid observation of the crack propagation in 

concrete. Fig. 7 shows a typical crack path in the pre-notched concrete beam (C90-1). 

With a pre-notched beam, the main crack propagated from the initial notch tip. Due to 

the heterogeneity of concrete, microcracks and bifurcations occurred along the growth 

path of the main crack. As shown in the figure, x and y represent the coordinates in the 

horizontal and vertical directions, respectively. The origin of the coordinates is at the 

centre of the notch mouth. The initial notch tip was at x0 = 0 and y0 = 45 mm. 

To produce the crack evolution in the specimen, four critical loading stages were taken 

into account, as described in Fig. 8. Fringe maps of the measured surface at the four 

loading stages are shown in Fig. 9. The fringes represent contours of the displacement in 

the x direction. All the points on one fringe have the same displacement and the 

difference in displacements between two adjacent fringes is about 2 μm. The fringe 

patterns reveal the details of crack evolution in the FPZ. A crack can be identified from 

the discontinuity of the fringes, while the crack tip is recognised as the region with a 

rapid change of fringes. 



 12 

As shown in Fig. 9, at the critical loading stage (1), the crack initiates and bifurcates 

from the initial notch tip. The bifurcations of the crack are also named as secondary 

cracks. The orientations of the secondary cracks relative to the sides of the notch tip are 

nearly symmetric to and at approximately 40° to the notch plane. It can be deduced that 

the maximum principal stress close to the crack tip is not similar to that of the main 

crack, which can be interpreted by the influence of the T-stress. It has been shown that 

when T-stress in front of a Mode I crack is positive, the straight crack path is unstable 

and deviates from its original growth direction [41]. Similar phenomena were observed 

by Guinea et al. [42]. They suggested that the maximum principal stress close to the 

crack tip was parallel to the crack rather than normal to it and that the secondary cracks 

should develop approximately normal to the main crack. Both Guinea’s results and the 

present results indicate that the secondary cracks opened a small amount to relax the 

local stress and then closed again as the main crack propagated. 

Although secondary cracks are observable in the test and secondary diffuse cracking is 

required in the theoretical model, the effect of secondary cracking on the overall 

response of the specimen is small (on the order of a few percent in the load-deflection 

curve) [43].  

The FPZ is a damage zone in which fracture toughening mechanisms, such as 

microcracking, crack deflection, aggregate bridging, crack branching, etc., exist and the 

energy is dissipated. The width of FPZ is the thickness of the damage zone containing 

all the aforementioned cracking activities, thus the width of the FPZ can be determined 

from the region containing all the cracks, i.e. discontinuities of fringe patterns. The size 

of the FPZ is believed to depend on the resolution of the visualisation method [44]. 

From the fringe maps at the critical loading stages (1) to (3), it can be seen that the 

width of the FPZ is approximately 33 mm, which is 3.3 times the maximum aggregate 
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size in these concrete samples. The experimental observation in this study is consistent 

with previous findings that the FPZ width is approximately 35 mm [6] and that the 

width of the crack band at the crack front equals approximately 3 times the maximum 

aggregate size [5, 45]. At the loading stage (4), the main crack propagates extensively 

and the uncracked ligament becomes very thin (approximately 10 mm). The secondary 

cracks closed at this loading stage, and the width of the fracture process zone is 

approximately 10 mm.  

The width of the FPZ is important in determining the COD profile. To calculate the 

COD profile, relative horizontal displacements are required along two cross sections 

beside the crack. To take into account the effects of all mechanisms in the FPZ, the 

cross sections should be beyond the FPZ. 

 

3.6. COD profiles and crack lengths of C90-1 

The COD profiles at the four loading stages are analysed and presented in Fig. 10. 

From the experimental curves, it can be observed that the COD profile does not vary 

linearly as previously assumed [1]. Hence, nonlinear assumptions are more appropriate 

for modelling the COD profile, especially in the FPZ. It can provide a reference for the 

calculations referring to the crack opening.  

From the COD profiles, the crack length can be determined. The crack front is identified 

at the position where the crack opening w reduces to zero. Due to fluctuations in the 

experimental data and the measurement precision of ESPI sensor, w < 2 μm is used for 

the identification of the location of the cohesive crack front. The initial notch tip (y0 = 

45 mm) is regarded as the rear end of the cohesive crack. 

As shown in Fig. 10, at the pre-peak load level of 60% of the peak load, the crack 

opening at the initial notch tip, which is termed NTOD, is approximately 6 µm. The 
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crack length is approximately 7 mm. At the peak load, the NTOD is approximately 30 

µm with a crack length of approximately 44 mm. At the post-peak load level of 60% of 

the peak load, the NTOD is approximately 100 µm, and the crack length is 

approximately 75 mm. At the post-peak load level of 30% of the peak load, the NTOD 

reaches approximately 185 µm, and the crack length reaches approximately 89 mm.  

When an FPZ is fully developed, the crack opening for a cohesive crack and length of 

the FPZ reach the maximum values. Because the crack rear end will move forward as 

well, it is difficult to determine the state of a fully-developed TSC based only on the 

experimental results.  

 

4. Numerical simulation and results 

4.1. Description of the numerical model  

The three-point bending test was simulated using the FEM. Due to the symmetry of the 

specimen, only half of the beam was analysed. The specimen configuration and finite 

element meshes are illustrated in Fig. 11. A total of 450 9-node hybrid elements [46] 

were used in the analysis. The bulk material was assumed to behave in a linear elastic 

manner. Poisson’s ratio of plain concrete was shown to vary within 0.15-0.25. Because 

Poisson’s ratio had little influence on the numerical response in the finite element 

analysis, a Poisson's ratio of 0.2 was assumed for the concrete in this study.  

As an example, Specimen C90-1 was utilized during the pre-peak load at 94% of the 

peak load (Fig. 11). The beam section along the crack can be divided into three zones: 

the real crack zone ( 450 −=y  mm), the cohesive crack zone ( 7545 −=y  mm) and the 

linear elastic zone ( 15075 −=y  mm). The calculated cohesive stress σ(y) was added to 

the cohesive zone to simulate the nonlinear fracture response of the beam. By 
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minimising the discrepancy between the numerical displacements and the experimental 

displacements at the collocation points, the cohesive stress was determined. 

 

4.2. The TSCs of concrete 

The TSCs of concrete with compressive strength varying from 40 MPa to 90 MPa are 

presented in Fig. 12. The results of this study were compared with the bilinear CEB-FIP 

model [47]. From the figures, it can be observed that the initial segments of the TSCs 

are consistent with the model of CEB-FIP. For normal strength concrete C40, the tails 

of the estimated TSCs are much shorter than those of the CEB-FIP model. For high 

strength concrete C90 (e.g. C90), the estimated TSC is close to the CEB-FIP model. 

The parameters used to describe the TSCs are tabulated in Table 2. As the compressive 

strength increases, the Young’s modulus E estimated by the IDCM has an increasing 

trend, with one exception: C60 concrete has a slightly lower E value than C50. The 

tensile strength ft increases with the increase of compressive strengths, showing the 

same trend as the computational results found by Slowik et al. [48].  However, the 

characteristic crack opening wc does not show an increasing trend, and C60 concrete has 

a maximum wc of approximately 240 µm. Previous studies [29, 49-51] have indicated 

that the wc of different types of concrete varied within 120-350 µm, which agrees with 

the present results. 

The estimated TSCs of all concrete strengths are presented in Fig. 13. The results of the 

present study were compared with the TSC obtained by Kitsutaka [50] using polylinear 

approximation analysis. Our results were also compared with the results of de Oliveira e 

Sousa and Gettu [49] using inverse analysis on the assumption that the shape of the TSC 

was sloped-constant and bilinear. From these comparisons, it can be shown that the 
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present results provide reasonable estimations for concrete TSCs. TSCs obtained using 

different methods are quite consistent in the middle part of the TSC; the main 

differences lie in the tensile strength and in the tail of the TSC.  

To compare the shapes of the estimated TSCs of various concrete strengths, graphs of 

normalised stress σ/ft versus normalised crack opening w/wc are presented in Fig. 14. By 

comparison, good agreement was observed between the present results and the 

exponential curve proposed by Cornelissen et al. [52].  

 

4.3. Verifications of the estimated TSCs 

Previous studies [29, 41, 42] indicate that the specific fracture energy of concrete can be 

used as a size-independent material property if the span-to-depth ratio and notch-to-

depth ratio of the beam are certain. In addition, the fracture energy can be obtained from 

a fully developed tension softening curve. With a fully developed TSC, the fracture 

energy can be derived from the integral 

dwGTSC
F ∫= cw

0
σ                                                         (5) 

By comparing the fracture energies obtained from TSC and the load-displacement curve, 

the accuracy of the tension softening curve can be verified.  

The fracture energies determined from the P-δ curve and the TSC are shown in Table 2. 

With differences of less than 10%, a satisfactory agreement can be observed between 

the two energies. Generally, the fracture energies calculated from the P-δ curve are 

higher than those derived from the TSC, which can be explained by the different 

mechanisms of energy consumption. The fracture energy derived from the P-δ curve is 

based on the assumption that energy absorption takes place only in the FPZ, and all the 

deformations outside the FPZ are purely elastic [1]. However, a small proportion of the 
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energy might be consumed by friction and the formation of microcracks outside the FPZ; 

thus, the fracture energy could be overestimated when it is derived from the P-δ curve.  

Taking C90-2 as an example, the displacements of the beam at various loading steps 

were calculated using the material properties obtained from C90-1 to validate the 

present results. As shown in Fig. 15, excellent agreement is observed between the 

numerical load-displacement curves and the experimental load-displacement curves 

over the entire loading process. The results demonstrate that the global responses of the 

beam specimens are not sensitive to small variations in fracture and material properties 

of concrete. 

 

4.4. Parametric analysis of the TSCs 

To facilitate future simulations of concrete fractures using commercial finite element 

packages, the TSCs identified in the current study were simplified to bilinear [53] and 

exponential [54] curves using regression analysis, as shown in Fig. 16. The basic 

parameters used to define the TSC, including the total fracture energy GF and the 

critical crack opening displacement wc, were obtained using inverse analysis. The 

tensile strength was obtained from the splitting tension test. In addition to these 

parameters, parameters are determined for each individual curve. 

(1) Bilinear curve 

As shown in Fig. 16a, the critical parameter for a bilinear curve is the location of the 

kink point (w1, f1).  

(2) Exponential curve  

As shown in Fig. 16b, the exponential curve was derived empirically by Hordijk [54]. 

The function is expressed as 
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where c1, c2 and c3 are the parameters of the exponential curves to be determined for 

concrete.  

A complete set of parameters for defining the bilinear and exponential curves are listed 

in Table 3. To compare the modelling effect of the idealised curves, the root-mean-

square deviation (RMSD) was evaluated, as presented in Table 3. For concrete with 

compressive strength fcu ≤ 60 MPa, the bilinear curve can model the TSCs fairly 

accurately, while for C80 and C90 concrete, the RMSD of bilinear fitting is statistically 

significant. For bilinear fitting, the stress ratio f1/ft at the kink point varies within 0.21-

0.28. Exponential curves can provide satisfactory approximations for the TSCs of all 

concrete strengths.  

To ease the estimation of the fracture properties of concrete, the parameters for defining 

an exponential TSC were related to the compressive strength fcu, as shown in Fig. 17. 

Empirical equations for c1, c2 and c3 were expressed in terms of fcu that ranges from 40 

MPa to 90 MPa. 

)0165.0exp(965.21 cufc =                                                      (8) 

)0304.0exp(431.02 cufc =                                                      (9) 

)0053.0exp(486.43 cufc =                                                   (10) 

From the empirical formulas, the parameters of the exponential TSC seem only rely on 

the compressive strength. However, it should be noted that the tensile properties of 

concrete are dependent on the physical properties of the material, e.g. aggregate size, 
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and the size of the tested specimen. With comparable aggregate size and specimen size, 

current empirical formulas are feasible to estimate the TSC from the compressive 

strength even for concrete with compressive strengths outside the range of 40-90 MPa. 

 

4.5. The crack length and length of the FPZ 

The cohesive stress distribution of the FPZ depends on the length of the FPZ, so the 

length is an important factor in the CCM [55]. Due to the rarity of experimental data on 

the FPZ and the crack length, the establishment of the effective fracture mechanics 

parameter for concrete is hindered [16]. The present study allows an estimation of the 

length of the FPZ based on both experimental observations and numerical analyses. 

From the COD profiles, the crack front yt was identified at the position where the crack 

opening w was reduced to zero. The initial notch tip (y0 = 45 mm) was considered the 

end of the cohesive crack. The length of the FPZ, lFPZ, was determined by  

0yyl tFPZ −=                                                       (11) 

When a fully developed FPZ was formed, the end of the crack would move forward 

from the initial notch tip at y0 = 45 mm; thus, it was necessary to identify the new end of 

the crack to estimate the length of the FPZ.  

The relationships between the applied load and the length of the FPZ were analysed for 

various specimen groups. To compare the applied loads on specimens with different 

compressive strengths, the normalised load P/Pmax was used. P/Pmax versus lFPZ 

curves are shown in Fig. 18. It can be seen that the curves of the specimens with 

different concrete strengths have similar shapes. As shown in the figure, the curves can 

generally be divided into three phases.  
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(1) In phase I, P/Pmax ≤ 0.3, lFPZ was relatively small, indicating that the crack tip had 

propagated slightly and that the beam was approximately in a linear deformation stage. 

These results coincide with most findings in the literature, which found that the concrete 

material is in elastic deformation when the load is smaller than one third of the peak 

load.  

(2) In phase II, lFPZ propagated quickly. At the peak load, lFPZ was approximately 38-42 

mm. In relation to the propagation of the FPZ, the load decreased gradually.  

(3) In phase III, when the FPZ was fully developed, the load dropped to approximately 

0.3 of the peak load. The crack opening was more apparent than the propagation of the 

crack, so the length of the FPZ decreased. A similar phenomenon was observed by 

Zhang and Wu [3], who indicated that the saturated FPZ moved ahead and shrank as the 

crack extended; thus, the length of the FPZ decreased after saturation. The maximum 

length of the fully developed FPZ was approximately 90 mm, which is in excellent 

agreement with the results of Hadjab et al., who used acoustic emission [6] and 

scanning electron microscopy [56]. However, the length of the FPZ may be dependent 

on size and geometry [3] and may also be influenced by aggregate characteristics [15].  

 

5. Conclusions 

In this study, fracturing phenomena of concrete specimens under three-point bend were 

examined using the ESPI technique. The experimental results were presented. The TSCs 

of plain concrete with compressive strengths varying from 40 MPa to 90 MPa were 

determined using the IDCM. The following conclusions can be drawn: 

(1) The fracture modes for NSC and HSC were different. In NSC, the crack mainly 

propagated across the cement matrix or along the interface between the cement and 

aggregates; thus, the dominant fracture mode was intergranular. In HSC, the strength of 
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the cement paste was comparable to or even higher than that of the aggregates; thus, the 

crack propagated through the aggregates, and the dominant fracture mode was 

transgranular.  

(2) In crack evolution, microcracks and crack bifurcations were observed. Due to the 

influence of the T-stress, the material close to the crack tip was in a bi-axial stress state 

and secondary crack occurred. The secondary crack was found to have an angle of 40° 

to the notch plane. The width of the fracture process zone was approximately 33 mm, 

while the crack length reached approximately 90 mm. 

(3) By analysing the crack length in concrete at different loading states, the fracture 

mechanism of the FPZ was analysed. There were three phases: in phase I, the specimen 

was in linear elastic deformation and fracture toughening was slight; in phase II, 

fracture mechanisms were mainly in the forms of microcracks and bifurcations; in phase 

III, only the main crack consumed the energy; thus, the bridging mechanism was 

dominant. At the peak load, the crack length was approximately 40 mm. The maximum 

length of the FPZ was found to be approximately 90 mm. 

(4) The characteristic crack opening wc for various concrete strengths varied within 165-

240 µm. C60 concrete had the maximum wc of approximately 240 µm. 

(5) By approximating the estimated TSCs as bilinear and exponential curves, it is found 

that the bilinear curve can accurately model the TSCs of only normal strength concrete, 

while the exponential curve is appropriate to model the TSCs of all concrete strengths.  
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Table 1 Mix proportions and mechanical properties of concrete. 

Series Water 
(kg/m3) 

Cement 
(kg/m3) w/c 

Fine 
aggregate 
(kg/m3) 

Coarse 
aggregate 
(kg/m3) 

Super 
plasticiser 

(g/m3) 
fcu (MPa) ft (MPa) 

C40 200 279 0.72 1025 838 0 39.7 2.5 
C50 193 332 0.58 905 905 432 49.1 2.9 
C60 196 423 0.46 867 866 3802 62.2 3.3 
C80 173 482 0.36 867 866 6263 80.5 4.5 
C90 160 501 0.32 867 866 8516 86.7 5.4 

 
Table 2 Experimental and numerical results. 

Series 
Number 

of 
samples 

δc 
(mm) 

Pc 
(N) 

CMOD
c (mm) 

NTODc 
(mm) 

GF
P-δ 

(N/m) 
GF

TSC 

(N/m) 
wc 

(μm) 
E 

(GPa) 

C40 

C40-1 0.077 2805 0.051 0.025 95 94.9 220 21 
C40-2 0.088 2920 0.058 0.026 95.8 92.3 192 21 
C40-3 0.089 3048 0.062 0.025 104.5 102 230 21.5 
Mean 0.085 2924 0.057 0.025 98.4 96.4 214.0 21.2 

Std dev. 0.007 122 0.006 0.001 5.3 5.0 19.7 0.3 

C50 

C50-1 0.096 3763 0.058 0.021 123.6 118.8 178 23.5 
C50-2 0.090 3793 0.067 0.027 122.4 122.2 185 24 
C50-3 0.093 3908 0.068 0.026 128.7 119.3 190 24 
Mean 0.093 3821 0.064 0.025 124.9 120.1 184.3 23.8 

Std dev. 0.003 77 0.006 0.003 3.3 1.8 6.0 0.3 

C60 

C60-1 0.110 3994 0.068 0.031 141.9 128.1 251 22.5 
C60-2 0.114 3751 0.073 0.027 133.4 132.2 240 22 
C60-3 0.093 3998 0.061 0.032 130.3 128.6 224 24.5 
Mean 0.106 3914 0.067 0.030 135.2 129.6 238.3 23.0 

Std dev. 0.011 141 0.006 0.003 6.0 2.2 13.6 1.3 

C80 

C80-1 0.083 4481 0.056 0.018 133.4 133.2 186 28 
C80-2 0.097 3887 0.065 0.023 115.6 115.5 186 29 
C80-3 0.086 4553 0.052 0.025 124.3 123.8 194 30 
Mean 0.089 4307 0.058 0.022 124.4 124.2 188.7 29.0 

Std dev. 0.007 366 0.007 0.004 8.9 8.9 4.6 1.0 

C90 

C90-1 0.088 4230 0.058 0.026 108 107.8 166 30.5 
C90-2 0.088 4524 0.062 0.031 115.4 115.1 149 31 
C90-3 0.110 4016 0.072 0.031 121.1 120.8 180 28 
Mean 0.095 4257 0.064 0.029 114.8 114.6 165.0 29.8 

Std dev. 0.013 255 0.007 0.003 6.6 6.5 15.5 1.6 

Notes: Pc, δc, CMODc and NTODc are the load, deflection, CMOD and NTOD at the peak, respectively.  
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Table 3 Parameters of the idealised TSC curves. 

Series 
Fracture parameters Bilinear curve Exponential curve 
GF 

(N/m) 
wc 

(μm) 
ft 

(MPa) 
w1 

(μm) 
f1 

(MPa) w1/wc f1/ft RMSD c1 c2 c3 RMSD 
C40 96.4 214.0 2.5 22.9 0.7 0.11 0.28 0.075 1.5 6.0 5.6 0.201 
C50 120.1 184.3 2.9 42.0 0.7 0.23 0.23 0.089 1.8 6.5 5.8 0.047 
C60 129.6 238.3 3.3 33.0 0.7 0.14 0.21 0.137 2.9 7.9 6.1 0.108 
C80 124.2 188.7 4.5 20.3 1.0 0.11 0.22 0.262 5.0 11 6.8 0.146 
C90 114.6 165.0 5.4 12.0 1.2 0.07 0.22 0.258 6.0 13 7.2 0.187 

 

    

Fig. 1. A cohesive constitutive law. 

 

Fig. 2. The principle of the IDCM: (a) incremental construction of the TSC; (b) 

displacement collocation for trial stress estimations. 

 

σ 

ft 

σ1 

σ2 
σi-1 

σi 

w1 w2 wi-1 wi 

… 

w 

Trial cohesive Stress 
to be determined 

δ (CMOD) 

P 

1 
2 i-1 

i Exp. 

Numerical 

Good 
approx. 

Exp. 

Good 
approx
 

Fitting of P-δ or P-CMOD Fitting of COD-ith Step 

(a) (b) 

σ 

w wc 

ft 

f(w) 



 30 

 

Fig. 3. Flowchart showing the IDCM for TSC evaluation. 
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Fig. 4. Experimental setup of three-point bending test: (a) loading and measuring system; 

(b) schema of front view; (c) schema of rear view. 
 

 

     
 

Fig. 5. Planes of rupture of the specimens. 
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Fig. 6. Experimental load-deflection/CMOD curves for the C40-C90 concrete. 

 

        

Fig. 7. (a) Crack evolution captured by ESPI sensor; (b) equivalence of the FPZ. 
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Fig. 8. Four loading stages to be analysed. 
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Fig. 9. Fringes at the four loading stages (white boundary represents the FPZ). 

1 2 

3 4 

10 mm 10 mm 

10 mm 10 mm 

x 

y 

40° 



 35 

0

20

40

60

80

100

120

140

-150 -120 -90 -60 -30 0 30 60 90 120 150

COD (µm)

y 
(m

m
)

60% pre-peak

Peak

60% post-peak

30% post-peak

 

Fig. 10. COD profiles at various loading stages. 
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Fig. 11. Specimen configuration and FE meshes (unit: mm). 
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Fig. 12. Comparisons of the estimated TSCs and CEB-FIP model [47]. 
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Fig. 13. Comparison of results of this study and previous results. 
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Fig. 14. Comparison of the normalised TSC with the exponential curve proposed by 

Cornelissen et al. [52]. 
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Fig. 15. Comparisons of numerical and experimental load-CMOD curves. 
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Fig. 16. Approximations of the estimated TSCs: (a) bilinear fitting; (b) exponential 

fitting. 
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Fig. 17. Relationship between the parameters (c1, c2 and c3) of the exponential curves 

and fcu. 
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Fig. 18. Relationship between the normalised load and the length of the FPZ. 
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