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SOME DISTRIBUTIONAL PROPERTIES OF A CLASS OF COUNTING
DISTRIBUTIONS WITH CLAIMS ANALYSIS APPLICATIONS

BY

GORDON E. WILLMOT AND JAE-KYUNG WOO

ABSTRACT

We discuss a class of counting distributions motivated by a problem in discrete
surplus analysis, and special cases of which have applications in stop-loss, dis-
crete Tail value at risk (TVaR) and claim count modelling. Explicit formulas are
developed, and the mixed Poisson case is considered in some detail. Simplifica-
tions occur for some underlying negative binomial and related models, where in
some cases compound geometric distributions arise naturally. Applications to
claim count and aggregate claims models are then given.

KEYWORDS

Mixed Poisson, compound geometric, mixed geometric, negative binomial, log-
arithmic series, completely monotone, shifting and truncation, Dickson–Hipp,
Gerber–Shiu, stop-loss, equilibrium distribution, Panjer recursion.

1. INTRODUCTION TO THE MODEL

Consider a counting random variable N with probability mass function (pmf)
p j = Pr(N = j), j = 0, 1, 2, . . . , and probability generating function (pgf)
P(z) = ∑∞

j=0 p j z
j , |z| < z0. Let t ≥ 0 be such that P(t) < ∞, so that t ≤ z0,

and it is easy to derive the Dickson–Hipp (e.g. Dickson and Hipp, 2001) type
of relationship

P(z) − P(t)
z− t

=
∞∑
j=0

⎛⎝ ∞∑
n= j+1

pntn− j−1

⎞⎠ z j , (1)

where for z = t, (1) is to be interpreted in the limiting sense. Define the discrete
tail probabilities by P j =∑∞

n= j+1 pn, j = 0, 1, . . . , and for t = 1, (1) becomes
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190 G.E. WILLMOT AND J.-K. WOO

(e.g. Feller, 1968, p. 265), {P(z)−1}/(z−1) =∑∞
j=0 P j z j . Thus, for 0 ≤ t < z0,

P1(z; t) =
∞∑
j=0

p j,1(t)z j =
(
1 − t
z− t

)
P(z) − P(t)
1 − P(t)

= P(z) − P(t)(
∞∑
j=0

P j t j
)

(z− t)

, (2)

and

p j,1(t) = 1 − t
1 − P(t)

∞∑
n= j+1

pntn− j−1.

Note that (2) is a pgf, and P1(z; z0) is a pgf if {1 − P(z0)}/{1 − z0} < ∞. In
particular, (2) is a pgf if 0 ≤ t ≤ 1 and E(N) < ∞. We remark that if t = 1,
then (2) is the pgf of the discrete equilibrium distribution of P(z), which has
applications in the evaluation of stop-loss premiums (e.g. Willmot et al., 2005).
Also, when t = 0, (2) is the pgf of the random variable N− 1|N ≥ 1, which will
be discussed in Section 5 as a model for claim counts in the context of aggregate
claims analysis. The more general pgf (2) is motivated by a surplus problem in
the context of discrete Gerber–Shiu analysis (e.g. Pavlova and Willmot, 2004),
and in this paper various results are derived for general t, which unify and extend
results for the important special cases t = 0 and t = 1.

Motivated by (2), we recursively define for k = 0, 1, 2, . . . , the
pgf Pk+1(z; t) = ∑∞

j=0 p j,k+1(t)z j with tail probabilities P j,k+1(t) =∑∞
n= j+1 pn,k+1(t) for j = 0, 1, . . . , by

Pk+1(z; t) = Pk(z; t) − Pk(t; t)(
∞∑
j=0

P j,k(t)t j
)

(z− t)

=
(
1 − t
z− t

)
Pk(z; t) − Pk(t; t)

1 − Pk(t; t) , (3)

beginning with P0(z; t) = P(z).
In Section 2, we derive an explicit formula for p j,k+1(t) in terms of the orig-

inal probabilities {p0, p1, . . .}. In particular, when t = 1, it reduces to the kth-
order equilibrium distribution of the underlying distribution. For t = 0, it is
shown that Pk+1(z; 0) is the pgf of N − (k+ 1)|N ≥ k+ 1, for k = 0, 1, 2, . . ..
Since N|N > k has the same distribution as (k+ 1) + [N− (k+ 1)|N ≥ k+ 1],
Pk+1(z; 0) is of use in connection with the evaluation of “value-at-risk” type risk
measures such as VaR and Tail value at risk (TVaR). This is also of interest for
aggregate claims analysis in the presence of a number of claims deductible. Mix-
ture properties are then considered, and it is also shown that Pk+1(z; t) is amixed
Poisson pgf with a relatively straightforward mixing distribution if Pi (z; t) is
mixed Poisson for some i < k+ 1.

In Section 3, the case where P(z) is a negative binomial pgf is considered,
and in some cases simple expressions for Pk+1(z; t) are available which in turn
involve compound geometric pgfs under some conditions. Further observations
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are made about compound distributions, including compound geometrics and
compound geometric convolutions, in Section 4. Finally, applications involving
claim count data and recursive evaluation of compound distributions in aggre-
gate claims analysis are the subject matter of Section 5.

2. EXPLICIT REPRESENTATIONS

The definition of Pk+1(z; t) in (3) is recursive, and we now give an explicit for-
mula for p j,k+1(t) in terms of the original distribution with pgf P(z).

Theorem 1. For k = 0, 1, 2, . . . , one has

p j,k+1(t) =

∞∑
i=0

(i+k
k

)
pi+ j+k+1ti

∞∑
i=0

(i+k
k

)
Pi+kti

, j = 0, 1, 2, . . . . (4)

Proof. Let a j,k+1(t) = Ck+1(t)p j,k+1(t) for k = 0, 1, 2, . . . , where Ck+1(t) =∏k
i=0{
∑∞

j=0 P j,i (t)t j } for k = 0, 1, 2, . . . . Then with Ak(z; t) = ∑∞
j=0 a j,k(t)z

j ,
(3) implies that for k = 1, 2, . . . ,

Ak+1(z; t) = Ck+1(t)
Pk(z; t) − Pk(t; t)(
∞∑
j=0

P j,k(t)t j
)

(z− t)

= Ck+1(t)

Ck(t)

(
∞∑
j=0

P j,k(t)t j
) Ak(z; t) − Ak(t; t)

z− t
,

i.e.

Ak+1(z; t) = Ak(z; t) − Ak(t; t)
z− t

.

Thus, as in (1), for k = 1, 2, . . . ,

a j,k+1(t) =
∞∑

n= j+1

an,k(t)tn− j−1,

and we will now prove by induction on k that for k = 0, 1, 2, . . . ,

a j,k+1(t) = t− j−k−1
∞∑

i= j+k+1

(
i − j − 1

k

)
pi ti . (5)
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For k = 0, (1) and (2) imply that a j,1(t) = C1(t)p j,1(t) = ∑∞
n= j+1 pnt

n− j−1 =
t− j−1∑∞

i= j+1 pi t
i , and (5) holds when k = 0. Assuming that (5) holds for k+ 1

replaced by k, i.e. an,k(t) = t−n−k
∑∞

i=n+k
(i−n−1
k−1

)
pi ti , (1) and (3) yield

∞∑
n= j+1

{
t−n−k

∞∑
i=n+k

(
i − n − 1
k− 1

)
pi ti
}
tn− j−1.

By the inductive hypothesis

a j,k+1(t) =
∞∑

n= j+1

an,k(t)tn− j−1 = t− j−k−1
∞∑

i= j+k+1

pi ti
i−k∑

n= j+1

(
i − n − 1
k− 1

)

= t− j−k−1
∞∑

i= j+k+1

pi ti
i− j−k−1∑
m=0

(
m+ k− 1
k− 1

)

= t− j−k−1
∞∑

i= j+k+1

pi ti
(
i − j − 1

k

)
,

where the substitution m = i − n − k was used on the third line,
and

∑i− j−k−1
m=0 (

m+k−1
k−1 ) = (

i− j−1
k ) is a well-known combinatorial identity (e.g.

Abramowitz and Stegun, 1965, p. 822). Thus, (5) holds for k = 0, 1, 2, . . . , and
it may be restated as

a j,k+1(t) =
∞∑
i=0

(
i + k
k

)
pi+ j+k+1ti .

Thus, p j,k+1(t) = a j,k+1(t)/Ck+1(t), and
∑∞

j=0 p j,k+1(t) = 1 implies that

Ck+1(t) =
∞∑
j=0

a j,k+1(t) =
∞∑
i=0

(
i + k
k

)⎛⎝ ∞∑
j=0

pi+ j+k+1

⎞⎠ ti =
∞∑
i=0

(
i + k
k

)
Pi+kti ,

and the result follows. �
The formula (4) is an explicit, albeit cumbersome expression, but may be

simplified in certain cases. First, if t = 0, (4) reduces to

p j,k+1(0) = p j+k+1

Pk
, j = 0, 1, 2, . . . , (6)
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which is the distribution of N − (k+ 1)|N ≥ k+ 1. Also, if t = 1, (4) implies
that, as a function of j ,

p j,k+1(1) ∝
∞∑
i=0

{
k∏

�=1

(i + �)

}
pi+ j+k+1 =

∞∑
m= j+k+1

{
k∏

�=1

(� +m− j − k− 1)

}
pm,

in agreement with formula (5.10) in Willmot et al. (2005, p. 23).
An alternative approach to the evaluation of P1(z; t), or more generally

Pk(z; t), involves mixture representations. By the fundamental theorem of cal-
culus, (1) may be expressed as

P(z) − P(t)
z− t

=
∫ 1

0
P′ {t + θ(z− t)} dθ. (7)

Equation (7) may be used to express P1(z; t) as a mixture for any pgf P(z).
Noting that (7) holds when z = 1, and re-expressing the argument t + θ(z− t),
(2) may be expressed as

P1(z; t) =
∫ 1
0 P′

(
{θ + t(1 − θ)}

{
t(1−θ)

θ+t(1−θ)
+ θ

θ+t(1−θ)
z
})

dθ∫ 1
0 P

′ {θ + t(1 − θ)} dθ
. (8)

Clearly, P′(γ z)/P′(γ ) = ∑∞
j=0{( j + 1)p j+1γ

j/P′(γ )}z j , which is a pgf. Then
for 0 < q < 1, P′{γ (1 − q + qz)}/P′(γ ) is the pgf of the associated thinned
distribution (e.g. Grandell, 1997, pp. 25–26). Let γ = θ + t(1 − θ) and q =
θ/{θ + t(1− θ)}, and (8) expresses P1(z; t) as a mixture over γ and q of pgfs of
the form P′{γ (1− q + qz)}/P′(γ ), with mixing weights proportional to P′(γ ).

The following example illustrates this mixing approach.

Example 1. (Logarithmic series distribution). Suppose that

P(z) =
ln
(
1 − β

1+β
z
)

ln
(
1 − β

1+β

) =
∞∑
n=1

(
β

1+β

)n
n ln(1 + β)

zn, (9)

where β > 0. Then P′(z) = β(1 + β − βz)−1/ ln(1 + β), and from (7),

P(z) − P(t)
z− t

= β

ln(1 + β)

∫ 1

0
{1 + β(1 − t)(1 − θ) − θβ(z− 1)}−1 dθ.

To put this integral in a more recognizable form, change the variable of integra-
tion from θ to

y = βθ

1 + β(1 − t)(1 − θ)
= βθ

[1 + β(1 − t)] − βθ(1 − t)
. (10)
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Then βθ = y[1+β(1−t)]
1+y(1−t) , implying that

βdθ = 1 + β(1 − t)
[1 + y(1 − t)]2

dy, (11)

and also using (10) results in

1 + β(1 − t)(1 − θ) − θβ(z− 1) = {1 + β(1 − t)}{1 + y(1 − z)}
1 + y(1 − t)

. (12)

Thus, using (11) and (12) yields

P(z) − P(t)
z− t

= 1
ln(1 + β)

∫ β

0
(1 + y− yt)−1 (1 + y− yz)−1 dy.

Again with z = 1, from (2) it follows that

P1(z; t) =
∫ β

0 (1 + y− yt)−1(1 + y− yz)−1dy∫ β

0 (1 + y− yt)−1dy
, (13)

and thus P1(z; t) is the pgf of amixture of geometric pgfs, or equivalently a com-
pletely monotone distribution, in agreement with Steutel and Van Harn (2004,
pp. 68–69). It is then a straightforward matter using (13) to verify by induction
on k that (3) satisfies, for k = 0, 1, 2, . . . ,

Pk+1(z; t) =
∫ β

0 yk(1 + y− yt)−k−1(1 + y− yz)−1dy∫ β

0 yk(1 + y− yt)−k−1dy
. (14)

Thus, (14) implies that for the logarithmic series pgf (9), Pk+1(z; t) is again a
mixture of geometric pgfs. �

The class of mixtures of geometrics is a subclass of the important class of
mixed Poisson distributions, and (4) simplifies in the mixed Poisson case, as will
be clear from the following theorem.Mixed Poisson distributions have pgf of the
form P(z) = ã(1−z),where ã(s) = ∫∞

0 e−sxd A(x) is the Laplace–Stieltjes trans-
form (LST) of the distribution function (df) A(x), x ≥ 0. They are important
in insurance applications for modelling parameter uncertainty and long-tailed
claim count data (e.g. Grandell, 1997; Klugman et al., 2008, Section 6.10), and
it is of interest to know if a distribution is of mixed Poisson form.

Theorem 2. Suppose that

Pi (z; t) = ãi (1 − z; t) =
∫ ∞

0
ex(z−1)dAi (x; t), (15)
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for some i = 0, 1, 2, . . . , where Ai (x; t) = 1− Ai (x; t) is a df for x ≥ 0. Then for
k = i, i + 1, i + 2, . . . ,

Pk+1(z; t) = ãk+1(1 − z; t) =
∫ ∞

0
ex(z−1)ak+1(x; t)dx, (16)

where ak+1(x; t) is a probability density function (pdf) given by

ak+1(x; t) = e−x(t−1)
∫∞
x (y− x)k−i ey(t−1)dAi (y; t)∫∞

0 yk−i ey(t−1)Ai (y; t)dy
, x > 0, (17)

assuming that
∫∞
0 yk−i ey(t−1)Ai (y; t)dy < ∞.

Proof. For t = 1, the result follows fromWillmot et al. (2005), and thus assume
that t �= 1 in what follows. If A(x) = 1− A(x) is a df, then a1,r (x) is a pdf where

a1,r (x) = erx
∫∞
x e−ryd A(y)∫∞

0 e−ryA(y)dy
, (18)

and the LSTs ã1,r (s) = ∫∞
0 e−sxa1,r (x)dx and ã(s) = ∫∞

0 e−sxd A(x) are related
by

ã1,r (s) =
(

r
s − r

)
ã(r) − ã(s)
1 − ã(r)

. (19)

See Lin and Willmot (1999), for example. We will prove the result by induction
on k. For k = i , it follows from (3) and (15) that

Pi+1(z; t) = Pi (z; t) − Pi (t; t)
1 − Pi (t; t)

(
1 − t
z− t

)
= ãi (1 − z; t) − ãi (1 − t; t)

1 − ãi (1 − t; t)
{

1 − t
1 − t − (1 − z)

}
= ãi+1(1 − z; t),

where

ãi+1(s; t) =
{

1 − t
s − (1 − t)

}
ãi (1 − t; t) − ãi (s; t)

1 − ãi (1 − t; t) ,

which is of the form (19) with ã(s) replaced by ãi (s; t) and r by 1− t. Then (18)
becomes (17) in this case, i.e. (16) holds when k = i . Assuming that Pk(z; t) =
ãk(1 − z; t) with ak(y; t) a pdf given by (17), (3) yields again that

Pk+1(z; t) = ãk+1(1 − z; t),
where

ãk+1(s; t) =
{

1 − t
s − (1 − t)

}
ãk(1 − t; t) − ãk(s; t)

1 − ãk(1 − t; t) ,
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implying from (19) that (18) becomes

ak+1(x; t) = e−x(t−1)
∫∞
x ey(t−1)ak(y; t)dy∫∞

0 ey(t−1)Ak(y; t)dy
. (20)

By the inductive hypothesis, using (17) with k replaced by k− 1,

e−x(t−1)
∫ ∞

x
ey(t−1)ak(y; t)dy

=
e−x(t−1)

∫∞
x ey(t−1)

{
e−y(t−1)

∫∞
y (v − y)k−i−1ev(t−1)dAi (v; t)

}
dy∫∞

0 yk−i−1ey(t−1)Ai (y; t)dy

=
e−x(t−1)

∫∞
x

∫∞
y (v − y)k−i−1ev(t−1)dAi (v; t)dy∫∞

0 yk−i−1ey(t−1)Ai (y; t)dy

= e−x(t−1)
∫∞
x ev(t−1)

{∫ v

x (v − y)k−i−1dy
}
dAi (v; t)∫∞

0 yk−i−1ey(t−1)Ai (y; t)dy

= e−x(t−1)
∫∞
x (v − x)k−i ev(t−1)dAi (v; t)

(k− i)
∫∞
0 yk−i−1ey(t−1)Ai (y; t)dy

.

Thus, replacing v by y in the numerator, (20) becomes

ak+1(x; t) = C∗
k+1(t)e

−x(t−1)
∫ ∞

x
(y− x)k−i ey(t−1)dAi (y; t),

when C∗
k+1(t) is a constant. As

∫∞
0 ak+1(x; t)dx = 1, it follows that

{
C∗
k+1(t)

}−1 =
∫ ∞

0
yk−i ey(t−1)Ai (y; t)dy,

and (17) holds for k+ 1. �
We now consider the special case of Theorem 2 when P is a Poisson pgf in

the following example.

Example 2. (Poisson distribution). Suppose that

P(z) = P0(z; t) = eβ(z−1),

and by Theorem 2 with i = 0 where A0(x; t) = 0 for z < β and A0(x; t) = 1 for
z ≥ β, Pk+1(z) for k = 0, 1, 2, . . . , is a mixed Poisson pgf. Therefore, from (17)
it follows that

ak+1(x; t) = (β − x)kex(1−t)∫ β

0 (β − y)key(1−t)dy
, 0 < x < β,
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which is the uniform pdf with a parameter β when k = 0 and t = 1, i.e.
a1(x; 1) = 1/β for 0 < x < β. Also, using (17) with k replaced by k− 1 yields

Pk(z; t) =
∫ β

0 ex(z−1)(β − x)k−1ex(1−t)dx∫ β

0 (β − x)k−1ex(1−t)dx
=
∫ β

0 exz(β − x)k−1e−xtdx∫ β

0 (β − x)k−1ex(1−t)dx
,

and in turn, by equating the coefficient of zn yields

pn,k(t) =
∫ β

0 xn(β − x)k−1e−xtdx

n!
∫ β

0 (β − x)k−1ex(1−t)dx
, n = 0, 1, 2, . . . .

A change in the variable of integration from x to y = 1 − x/β in the integrals
in the numerator and denominator results in

pn,k(t) =
(

βne−β

n!

) ∫ 1
0 y

k−1(1 − y)neβtydy∫ 1
0 y

k−1eβ(t−1)ydx
, n = 0, 1, 2, . . . .

In terms of the confluent hypergeometric function

M(a, b, z) = �(b)
�(b − a)�(a)

∫ 1

0
ya−1(1 − y)b−a−1ezydy,

(e.g. Abramowitz and Stegun, 1965, p. 505), it follows that

pn,k(t) =
βne−β

n! M(k, n + k+ 1, βt)(n+k
n

)
M[k, k+ 1, β(t − 1)]

,

for t �= 1, and for t = 1, M(k, k+ 1, 0) = 1. �
Theorem 2 implies that if P(z) = P0(z; t) is a mixed Poisson pgf, then

Pk+1(z; t) is a mixed Poisson pgf for k = 0, 1, 2, . . . . But the following example
shows that fairly generally Pk+1(z; t) can be of mixed Poisson form even if P(z)
is not of mixed Poisson form.

Example 3. Suppose that

P(z) = α + (1 − α)
φ {β(1 − z)} − φ(β)

1 − φ(β)
(21)

is a pgf for 0 ≤ α < 1, 0 < β < β∞ where β∞ ≤ ∞, and φ(x) is a known func-
tion. This pgf is discussed in detail by Willmot (2013), where it is demonstrated
that if φ(x) = 1+ ln(1+x) then P(z) is the zero-modified logarithmic series pgf
(9) but P(z) is not of mixed Poisson form. Similarly, if φ(x) = (1 + x)σ where
0 < σ < 1 then P(z) is a zero-modified extended truncated negative binomial
(ETNB) pgf, but again P(z) is not a mixed Poisson pgf.
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If (21) holds, then P′(z) = β(1 − α)φ′{β(1 − z)}/{φ(β) − 1}, and from (7),

P(z) − P(t)
z− t

= β(1 − α)

φ(β) − 1

∫ 1

0
φ′ {β(1 − t) + θβ(t − z)} dθ

= β(1 − α)

φ(β) − 1

∫ 1

0
φ′{[1 + β(1 − t)(1 − θ)] − θβ(z− 1) − 1}dθ.

With x = βθ/{1+ β(1− t)(1− θ)} as in (10), then using (11) and (12) results in

P(z) − P(t)
z− t

= 1 − α

φ(β) − 1

∫ β

0
φ′
{

(1 + β − βt)(1 + x− xz)
1 + x− xt

− 1
}

(1 + β − βt)
(1 + x− xt)2

dx. (22)

Thus with z = 1, (2) becomes

P1(z; t) =
∫ β

0 φ′ {(β − x)(1 − t) + x(1 − z)} dx∫ β

0 φ′ {(β − x)(1 − t)} dx
. (23)

We note that from Grandell (1997, p. 26) (23) is a mixed Poisson pgf iff
P1{1− 1

q (1− z); t} is a pgf for all 0 < q < 1. It is not hard to see using (23) that

P1

{
1 − 1

q
(1 − z); t

}
=
∫ β/q
0 φ′

{(
β

q − x
)

(1 − {1 − q(1 − t)}) + x(1 − z)
}
dx∫ β/q

0 φ′
{(

β

q − x
)

(1 − {1 − q(1 − t)})
}
dx

,

which is of the same form as (23), but with β replaced by β/q and t by 1−q(1−t).
This is a pgf for q arbitrarily close to 0 as long as β∞ = ∞.

To identify the mixing distribution for 0 ≤ t ≤ 1, note that from Equa-
tion (2.4) of Willmot (2013), one must have (assuming the mean P′(1) =
β(1 − α)φ′(0)/{φ(β) − 1} is finite) for s ≥ 0 that φ′(s) = φ′(0)̃u(s) where
ũ(s) = ∫∞

0 e−sydU(y), and U(y) is a df for y ≥ 0. Then,

φ′(μ + xs)
φ′(μ)

=
∫∞
0 e−(μ+xs)ydU(y)∫∞

0 e−μydU(y)

is the LST of an Esscher transformed version of U(y), and with μ =
(β − x)(1− t), (23) implies that the mixing LST P1(1− s; t) is a mixture over μ

of LSTs of the form φ′(μ + xs)/φ′(μ), with mixing weights proportional to μ.
For particular choices of φ(x), the representation (22) typically allows for

identification of the mixing distribution for t > 1 as well. For the ETNB distri-
bution with φ(x) = (1 + x)σ where 0 < σ < 1, (21) is not a mixed Poisson pgf,
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but (22) becomes

P(z) − P(t)
z− t

= σ(1 − α)(1 + β − βt)σ

(1 + β)σ − 1

∫ β

0

(1 + x− xz)σ−1

(1 + x− xt)σ+1
dx.

Thus, (2) becomes

P1(z; t) =
∫ β

0 (1 + x− xt)−σ−1 (1 + x− xz)σ−1 dx∫ β

0 (1 + x− xt)−σ−1 dx
, (24)

which is a mixture of the negative binomial pgfs (1 + x− xz)σ−1 for any t such
that 0 < t < 1 + β−1. Clearly, (24) is a mixed Poisson pgf, and by Theorem 2
with i = 1, Pk+1(z; t) is then a mixed Poisson pgf for k = 0, 1, 2, . . . .

Also, we remark that in the logarithmic series case with φ(x) = 1+ ln(1+x),
(13) follows directly from (22). �

3. NEGATIVE BINOMIAL AND RELATED DISTRIBUTIONS

In this section, we consider the evaluation of pgfs of the type (3) when the under-
lying distribution is of negative binomial form, or a closely related distribution.
While themixture approach of Example 2 applies to the negative binomial,more
convenient forms for some applications may be derived.

To begin, define the negative binomial pgf

Q(z; r) =
∞∑
j=0

q j (r)z j = (1 + β − βz)−r , (25)

where

q j (r) =
(
r + j − 1

j

)(
1

1 + β

)r (
β

1 + β

) j

; j = 0, 1, 2, . . . ,

with parameters β > 0 and r > 0. In the special case when r = 1, 2, 3, . . . , the
Pascal distribution results, and it is convenient notationally to note the depen-
dence on r explicitly. Then define for k = 0, 1, 2, . . . , the pgf

Qk+1(z; t, r) =
∞∑
j=0

q j,k+1(t, r)z j =
∞∑
j=0

⎧⎪⎪⎨⎪⎪⎩
∞∑
i=0

(i+k
k

)
qi+ j+k+1(r)ti

∞∑
i=0

(i+k
k

)
Qi+k(r)ti

⎫⎪⎪⎬⎪⎪⎭ z j , (26)

where Qn(r) = ∑∞
j=n+1 q j (r), and (26) is motivated by (4). We have the follow-

ing simple expression for r, a positive integer.
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Theorem 3. For r = 1, 2, 3, . . . , and k = 0, 1, 2, . . . ,

Qk+1(z; t, r) =
r∑

n=1

wn,k+1(t, r)Q(z; n) (27)

and

q j,k+1(t, r) =
r∑

n=1

wn,k+1(t, r)q j (n), j = 0, 1, 2, . . . , (28)

where

wn,k+1(t, r) =
(k+r−n

k

)
(1 + β − βt)n

r∑
i=1

(k+r−i
k

)
(1 + β − βt)i

, n = 1, 2, . . . , r. (29)

Proof.Note that (25) is the mixed Poisson pgf Q(z, r) = ẽr (1−z), where ẽr (s) =
(1 + βs)−r = ∫∞

0 e−sxer (x)dx with

er (x) = β−r xr−1e−x/β

(r − 1)!
, x > 0, (30)

the Erlang−r pdf. Thus, by Theorem 2, Qk+1(z; t, r) = ãk+1(1 − z; t), where

ak+1(x; t) = C(t)e−x(t−1)
∫ ∞

x
(y− x)key(t−1)er (y)dy

= C(t)
∫ ∞

0
yke−y(1−t)er (x+ y)dy.

But (30) satisfies er (x+ y) = β
∑r

n=1 en(x)er+1−n(y) (e.g. Willmot, 2007, equa-
tion 3.26), and thus

ak+1(x; t) = C(t)
∫ ∞

0
yke−y(1−t)

{
β

r∑
n=1

en(x)er+1−n(y)

}
dy

= βC(t)
r∑

n=1

{∫ ∞

0
yke−y(1−t)er+1−n(y)dy

}
en(x).

Also, from (30) with r replaced by r + 1 − n,

∫ ∞

0
yke−y(1−t)er+1−n(y)dy =

∫ ∞

0

β−(r+1−n)yr+k−ne−y
(
1−t+ 1

β

)
(r − n)!

dy

= (r + k− n)!
(r − n)!

βn−r−1
(
1 − t + 1

β

)n−r−k−1

.
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Thus,

ak+1(x; t) = C(t)βk+1(k!)

(1 + β − βt)r+k+1

r∑
n=1

(
r + k− n

k

)
(1 + β − βt)n en(x).

As C(t) is determined by
∫∞
0 ak+1(x; t)dx = 1, it follows that

ak+1(x; t) =
r∑

n=1

wn,k+1(t, r)en(x), (31)

where wn,k+1(t, r) is given by (29). Then (27) follows from Qk+1(z; t, r) =
ãk+1(1 − z; t), and equating coefficients of z j gives (28). �

When t = 0, (6) and (28) yield the mixture representation

q j+k+1(r)

Qk(r)
=

r∑
n=1

wn,k+1(0; r)q j (n), (32)

where wn,k+1(0, r) is given by (29) with t = 0. Also, when t = 1,
∑r

i=1(
k+r−i
k ) =∑r−1

m=0(
k+m
k ) = (

k+r
k+1 ), implying that (29) reduces to wn,k+1(1, r) = (

k+r−n
k )/

(
k+r
k+1 ), in agreement with Willmot et al. (2005, p. 17).
The representation (27) or its special case (32) is convenient for recursive

computational procedures for the associated compound distribution if r is not
too large, as compound negative binomial distributions are straightforward to
compute (e.g. Klugman et al., 2008, Chapter 6). Also, the mixing pdf (31) for
the mixed Poisson representation for Qk+1(z; t, r) is a finite mixture of Erlangs
(e.g. Willmot and Woo, 2007).

We now consider other values of r , i.e. excluding positive integers. First note
that for any pgf P(z), a simple geometric series argument yields

n−1∑
j=0

{P(t)}n−1− j {P(z)} j = {P(z)}n − {P(t)}n
P(z) − P(t)

,

which for z = 1 implies that

n−1∑
j=0

{P(t)}n−1− j = 1 − {P(t)}n
1 − P(t)

.
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Therefore, using (2),

(
1 − t
z− t

) {P(z)}n − {P(t)}n
1 − {P(t)}n = P1(z; t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n−1∑
j=0

{P(t)}n−1− j {P(z)} j

n−1∑
i=0

{P(t)}n−1−i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= P1(z; t)

⎛⎝w0(t) +
n−1∑
j=1

w j (t){P(z)} j
⎞⎠ , (33)

where

w j (t) = {P(t)}− j

n−1∑
i=0

{P(t)}−i
, j = 0, 1, 2, . . . , n − 1.

The left-hand side of (33) is (2) when P(z) is replaced by {P(z)}n, and the right-
hand side expresses this as a mixture, with weights w j (t), of pgfs of the form
P1(z; t){P(z)} j . Thus, if r is any positive rational number, say r = n/m where n
and m are positive integers (we exclude the case m = 1 in light of Theorem 3),
substitution of Q(z; 1

m ) from (25) for P(z) in (33) yields

Q1

(
z; t, n

m

)
= Q1

(
z; t, 1

m

)⎧⎨⎩w0(t) +
n−1∑
j=1

w j (t) (1 + β − βz)−
j
m

⎫⎬⎭ , (34)

where w j (t) ∝ (1 + β − βt) j/m, and
∑0

j=1 = 0 in (34) when n = 1. Therefore,
(34) allows for identification of Q1(z; t, r) for rational r as a mixture (as the
rational numbers are dense in the real numbers, this is sufficient in principle for
the analysis of Q1(z; t, r) for any r > 0 by the continuity theorem for pgfs). It
remains to consider Q1(z; t, 1

m ) for m = 2, 3, . . . .
One has

m∑
j=1

(
1 + β − βz
1 + β − βt

) j
m

=
1 − 1+β−βz

1+β−βt(
1+β−βz
1+β−βt

)− 1
m − 1

= β(z− t) {1 + β − βt}−1− 1
m

(1 + β − βz)−
1
m − (1 + β − βt)−

1
m

.
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That is,

(1 + β − βz)−
1
m − (1 + β − βt)−

1
m

z− t

= β

(1 + β − βt)1+
1
m

⎧⎨⎩
m∑
j=1

(
1 + β − βz
1 + β − βt

) j
m

⎫⎬⎭
−1

. (35)

For z = 1, (35) yields

1 − (1 + β − βt)−
1
m

1 − t
= β

(1 + β − βt)1+
1
m

⎧⎨⎩
m∑
j=1

(1 + β − βt)−
j
m

⎫⎬⎭
−1

, (36)

and division of (35) by (36) yields

Q1

(
z; t, 1

m

)
=

m∑
j=1

(1 + β − βt)−
j
m

m∑
j=1

(1 + β − βt)−
j
m (1 + β − βz)

j
m

, (37)

which holds for m = 1 as well as m = 2, 3, . . . . To put (37) in a recognizable
form, we note that

G(z; r) = (1 + β − βz)−r − (1 + β)−r

1 − (1 + β)−r
(38)

is the pgf of an ETNB distribution if β > 0 and r > −1, r �= 0 (e.g. Klugman
et al., 2008, Section 6.7), and G(z; −1) = z, is also a pgf. The following theorem
expresses Q1(z; t, 1

m ) as a compound geometric distribution.

Theorem 4. For m = 1, 2, 3, . . . , Q1(z; t, 1
m ) may be expressed in compound

geometric form as

Q1

(
z; t, 1

m

)
=
[
1 − β

(
t,

1
m

){
F
(
z; t, 1

m

)
− 1
}]−1

, (39)

where

β

(
t,

1
m

)
=

m∑
i=1

{
(1 + β)

i
m − 1

}
(1 + β − βt)−

i
m

m∑
j=1

(1 + β − βt)−
j
m

, (40)

F
(
z; t, 1

m

)
=

m∑
j=1

w j,1

(
t,

1
m

)
G
(
z; − j

m

)
, (41)
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and

w j,1

(
t,

1
m

)
=

{
(1 + β)

j
m − 1

}
(1 + β − βt)−

j
m

m∑
i=1

{
(1 + β)

i
m − 1

}
(1 + β − βt)−

i
m

, j = 1, 2, . . . ,m. (42)

Proof. One has, using (38) and (42),

m∑
j=1

(1 + β − βt)−
j
m (1 + β − βz)

j
m

=
m∑
j=1

(1 + β − βt)−
j
m +

m∑
j=1

(1 + β − βz)
j
m − (1 + β)

j
m + (1 + β)

j
m − 1

(1 + β − βt)
j
m

=
m∑
j=1

(1 + β − βt)−
j
m −

m∑
j=1

(1 + β)
j
m − 1

(1 + β − βt)
j
m

{
G
(
z; − j

m

)
− 1
}

=
m∑
j=1

(1 + β − βt)−
j
m −

{
m∑
i=1

(1 + β)
i
m − 1

(1 + β − βt)
i
m

}
m∑
j=1

w j,1

(
t,

1
m

)

×
{
G
(
z; − j

m

)
− 1
}

,

and division by
∑m

j=1 (1 + β − βt)−
j
m yields the reciprocal of (39) with the help

of (40) and (41). �
Therefore, (39) expresses Q1(z; t, 1

m ) in compound geometric form, which
for m not too large is convenient for the recursive computation of the asso-
ciated aggregate distribution using repeated applications of Panjer’s recursion
(e.g. Klugman et al., 2008, Section 6.8) as both the ETNB and the geometric
are members of the so-called (a, b, 1) class.

Note that from (38),

1 − G(z; r) = 1 − (1 + β − βz)−r

1 − (1 + β)−r
,
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and thus (
1 − t
z− t

)
G(z; r) − G(t; r)

1 − G(t; r)

=
(
1 − t
z− t

) {1 − G(t; r)} − {1 − G(z; r)}
1 − G(t; r)

=
(
1 − t
z− t

)
(1 + β − βz)−r − (1 + β − βt)−r

1 − (1 + β − βt)−r
.

That is, in an obvious notation, G1(z; t, r) = Q1(z; t, r), i.e.

Q1(z; t, r) =
(
1 − t
z− t

)
(1 + β − βz)−r − (1 + β − βt)−r

1 − (1 + β − βt)−r
(43)

is a pgf not only for r > 0 but also for −1 < r < 0, as Q1(z; t, r) also results
with G(z; r) as the original distribution.

It is not hard to see from (43) that for 0 < r < 1,

Q1(z; t, −r) = (1 + β − βz)r Q1(z; t, r), (44)

and thus from (44) with r = 1/m and (37) ,

Q1

(
z; t, − 1

m

)
=

m−1∑
j=0

(1 + β − βt)−
j
m

m−1∑
j=0

(1 + β − βt)−
j
m (1 + β − βz)

j
m

, (45)

for m = 2, 3, . . . . Then, we have the following corollary to Theorem 4.

Corollary 1. For m = 2, 3, . . . , Q1(z; t, − 1
m ) may be expressed in compound ge-

ometric form as

Q1

(
z; t, − 1

m

)
=
[
1 − β

(
t, − 1

m

){
F
(
z; t, − 1

m

)
− 1
}]−1

, (46)

where

β

(
t, − 1

m

)
=

m−1∑
i=1

{
(1 + β)

i
m − 1

}
(1 + β − βt)−

i
m

m−1∑
j=0

(1 + β − βt)−
j
m

,

F
(
z; t, − 1

m

)
=

m−1∑
j=1

w j,1

(
t, − 1

m

)
G
(
z; − j

m

)
,



206 G.E. WILLMOT AND J.-K. WOO

and

w j,1

(
t, − 1

m

)
=

{
(1 + β)

j
m − 1

}
(1 + β − βt)−

j
m

m−1∑
i=1

{
(1 + β)

i
m − 1

}
(1 + β − βt)−

i
m

, j = 1, 2, . . . ,m−1.

Proof. In a manner which is identical to that in the proof of Theorem 4, one has

m−1∑
j=0

(1 + β − βt)−
j
m (1 + β − βz)

j
m

=
m−1∑
j=0

(1 + β − βt)−
j
m −

m−1∑
j=1

(1 + β)
j
m − 1

(1 + β − βt)
j
m

{
G
(
z; − j

m

)
− 1
}

,

and the result follows as in the proof of Theorem 4 using (45). �
Again, (46) is well-suited for the application of Panjer-type recursive tech-

niques.

4. COMPOUND AND RELATED DISTRIBUTIONS

The compound geometric representation technique of the previous section is
applicable to other situations as well. For the Sibuya distribution (e.g. Klugman
et al., 2008, p. 124) with pgf 1−(1−z)α with 0 < α < 1 for example, the “shifted”
version with α = 1/m with m = 2, 3, . . . , has compound geometric pgf

1
z

{
1 − (1 − z)

1
m

}
=
⎡⎣1 − (m− 1)

⎧⎨⎩
m−1∑
j=1

1 − (1 − z)
j
m

m− 1
− 1

⎫⎬⎭
⎤⎦−1

,

as is easily shown. Similarly, the lost games distribution (e.g. Johnson et al.,
2005, p. 504) has pgf

z j
{
1 −√1 − 4q(1 − q)z

2qz

}a
,

where a > 0, 0 < q < 1/2, and j = 0, 1, 2, . . . . If one reparameterizes by
letting q = {1 − (1 + β)−

1
2 }/2, it is not difficult to show that

1 −√1 − 4q(1 − q)z
2qz

= 1
z

{√
1 + β − βz−√1 + β

1 −√1 + β

}
,
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which is Q1(z; 0, − 1
2 ) from (43). Thus, the lost games distribution is a compound

negative binomial distribution from (46) with negative binomial parameters r =
a and β = β(0, − 1

2 ), shifted to the right by j .
For k > 1, the pgf Qk(z; t, r) for k > 1 seems to be more difficult to analyze

when r is not a positive integer. First, if P(z) = R{K(z)}, then from (2), it follows
that

P1(z; t) =
(
1 − t
z− t

)
R{K(z)} − R{K(t)}

1 − R{K(t)}

=
{

1 − K(t)
K(z) − K(t)

R{K(z)} − R{K(t)}
1 − R{K(t)}

} {
1 − t
z− t

K(z) − K(t)
1 − K(t)

}
.

Thus, with R1(z; t) = ( 1−tz−t
) R(z)−R(t)

1−R(t) and similarly for K1(z; t), one has the con-
volution representation

P1(z; t) = R1 {K(z); K(t)} K1(z; t), (47)

where the parameter t is replaced by K(t) in the compound pgf
R1{K(z); K(t)}. The special case of (47) when t = 1 is given by Willmot et al.
(2005).

The following theorem deals with the compound geometric case.

Theorem 5. Suppose that P(z) = P0(z; t) = {1 + β − βK(z)}−1, then Pk(z; t)
for k = 1, 2, . . . , defined by (3) has a compound geometric convolution repre-
sentation

Pk(z; t) =
⎧⎨⎩

k∑
j=1

w j,k(t)Kj (z; t)
⎫⎬⎭ P(z), (48)

where {w j,k(t); j = 1, 2, . . . , k} is a discrete probability measure.

Proof.For the compound geometric distributionwith R(z) = (1+β−βz)−1, it is
clear that Rk(z; t) = R(z) for k = 0, 1, 2, . . . , and all t. Thus for the compound
geometric, (47) reduces to

P1(z; t) = P(z)K1(z; t). (49)
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From (49) when P(z) = {1 + β − βK(z)}−1, one has

P1(z; t) − P1(t; t)
z− t

= {1 + β − βK(z)}−1 K1(z; t) − {1 + β − βK(t)}−1 K1(t; t)
z− t

= {1 + β − βK(t)} K1(z; t) − K1(t; t) {1 + β − βK(z)}
z− t

P(t)P(z)

=
[
{1 + β − βK(t)} K1(z; t) − K1(t; t)

z− t
+ βK1(t; t)K(z) − K(t)

z− t

]
P(t)P(z)

=
{
K1(z; t) − K1(t; t)

z− t
+ βP(t)K1(t; t)K(z) − K(t)

z− t

}
P(z).

With z = 1, this implies that

1 − P1(t; t)
1 − t

= 1 − K1(t; t)
1 − t

+ βP(t)K1(t; t)1 − K(t)
1 − t

.

Thus, P2(z; t) may be expressed as(
1 − t
z− t

)
P1(z; t) − P1(t; t)

1 − P1(t; t) =
K1(z;t)−K1(t;t)

z−t + βP(t)K1(t; t) K(z)−K(t)
z−t

1−K1(t;t)
1−t + βP(t)K1(t; t) 1−K(t)

1−t
P(z).

That is,

P2(z; t) = [w2,2(t)K2(z; t) + {1 − w2,2(t)
}
K1(z; t)

]
P(z), (50)

where

w2,2(t) =
1−K1(t;t)

1−t
1−K1(t;t)

1−t + βP(t)K1(t; t) 1−K(t)
1−t

.

Then the result inductively follows. �
The relation (48) may be used to analyze Qk(z; t, − 1

m ) or Qk(z; t, 1
m ) due to

the compound geometric nature of Qk(z; t, − 1
m ) and Qk(z; t, 1

m ), but the details
are awkward even for small k and m. As an example, it follows from Corollary
1 that one may write

Q2

(
z; t, − 1

m

)
=
⎧⎨⎩
m−1∑
j=1

w j,2

(
t, − 1

m

)
Q1

(
z; t, − j

m

)⎫⎬⎭ Q1

(
z; t, − 1

m

)
,

which implies for m = 2 that one must have Q2(z; t, − 1
2 ) = {Q1(z; t, − 1

2 )}2.
Analysis of Qk(z; t, r) for r = ±1/2 may be carried out as in Willmot (2013,
Section 4).
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5. INSURANCE APPLICATIONS

The special cases when t = 0 and t = 1 are useful in aggregate loss analysis.
The discrete equilibrium distributions which result when t = 1 are useful for
stop-loss analysis, as discussed in Willmot et al. (2005).

When t = 0, it follows from (6) that

Pj,k+1(z) =

∞∑
j=k+1

p j z j−k−1

Pk

is the pgf of N − (k + 1)|N > k, which is of interest with a number of claims
deductible. In the negative binomial case, the mixture representation (27) with
t = 0 implies that Qk+1{H(z); 0, r} is a convenient model for aggregate claims
analysis if r is a positive integer. From (43),

Q1(z; 0, r) = (1 + β − βz)−r − (1 + β)−r

z{1 − (1 + β)−r } , (51)

a valid pgf for r > −1, and in fact is a good candidate as a model for claim
counts in its own right. Also, recursive computational techniques are avail-
able for the associated compound distribution with pgf Q1{H(z); 0, r} for many
choices of r , as discussed in Section 3.

To illustrate the use of these distributions in claim count model fitting and
aggregate claims analysis, we consider the class with pgf (51).

For parameter estimation, we note that (51) may be expressed as

Q1(z; 0, r) =
V
(

β

1+β
z
)

V
(

β

1+β

) , (52)

where V(z) = {(1 − z)−r − 1}/z. Thus, Q1(z; 0, r) is the pgf of a generalized
power-series distribution, implying that for an independent and identically dis-
tributed sample, the maximum likelihood estimate (mle) of the mean is the sam-
ple mean X (e.g. Ord, 1972, pp. 117–118). It is clear from (51) that the mean
μ = ∂

∂z Q1(z; 0, r)|z=1 is

μ = rβ

1 − (1 + β)−r
− 1. (53)

Hence, the mle of β satisfies (for r known)

X+ 1 = r β̂

1 − (1 + β̂
)−r . (54)

Thus, if r = −1/2, β̂ = 4X(X+ 1) or if r = 1/2, β̂ = 1
2 (4X+ 3 −

√
8X+ 9).
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TABLE 1

CLAIM COUNT MODEL FITTING — TRÖBLIGER DATA.

Fitted number of drivers
No. of

j drivers r = 1/2 r = 2 r = 3

0 20,592 20,657 20,574 20,552
1 2,651 2,530 2,670 2,707
2 297 345 308 297
3 41 49 33 30
4 7 7 4 3
5 0 1 0 0
6 1 0 0 0
7+ 0 0 0 0

β̂ 0.1952 0.0947 0.0705
χ2 13.976 4.436 8.996
DF 3 2 2

To illustrate the count data fitting with a pgf (51) for r = ±1/m or r = m
where m = 2, 3, . . . , and the corresponding mle of β̂ calculated with the
sample mean as given above, consider the following data set of the number
of claims/year ( j ) for automobile insurance given by Tröbliger (1961) (e.g.
Klugman et al., 2008, Example 15.31). The sample mean X is 0.14422, and thus
the mle of β is calculated using (54) for each r . Then, the fitted pmfs with a pgf
(51) for each pair of parameters (r, β̂) are obtained. In turn, the fitted number of
drivers (the fitted pmfs multiplied by the total number of drivers 23,589) is pro-
vided in Table 1. Some rounding errors may exist.With three degrees of freedom
(DF), the critical value at 5% is 7.814 and at a 1% significant level is 11.345.With
DF = 2, the critical value at 5% significant level is 5.991, and at a 1% significant
level is 9.210. Therefore, the model with r = 2 is a good fit at 5% significant
level, and the one with r = 3 is an adequate fit at a 1% significant level.

For aggregate claims analysis, note that from (46),

Q1

{
H(z); 0, −1

2

}
=
[
1 − β

(
0, −1

2

)(
G
{
H(z); −1

2

}
− 1
)]−1

. (55)

Thus, for the compound distribution with pgf (55), one can first compute the
compound ETNB distribution with pgf G{H(z); − 1

2 } using a Panjer-type re-
cursion (e.g. Klugman et al., 2008, p. 129), and then use a second compound
geometric recursion to compute the distribution with pgf (55) with parameter
β(0, −1/2) = {√1 + β −1}/{√1 + β +1}. Similarly, for r = 1/2, from (39) and
(40) one has

Q1

{
H(z); 0, 1

2

}
=
[
1 − β

(
0,

1
2

)(
G
{
H(z); −1

2

}
− 1
)]−1

, (56)
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where β(0, 1/2) = ∑2
i=1{1 − (1 + β)−i/2}/∑2

j=1(1 + β)− j/2. Finally, for r = 2
one finds from (27) and (28)

Q1{H(z); 0, 2} = w1,1(0, 2)Q{H(z); 1} + w2,1(0, 2)Q{H(z); 2}, (57)

where mixing weights are given by wn,1(0, 2) = (1 + β)n/{∑2
i=1(1 + β)i } for

n = 1, 2.
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