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Intermodal dispersion (IMD) in a two-core fiber can cause significant pulse distortion or even pulse splitting.
In this paper, by solving the generalized coupled nonlinear Schrödinger equations, we study the possibility of
suppressing the effects of IMD with Kerr nonlinearity in a two-core fiber. We discover that, in the anomalous
dispersion regime, when the IMD is sufficiently small and the linear coupling between the two cores is sufficiently
strong, an input pulse power larger than the soliton power can prevent the pulse from broadening and splitting.
The maximum IMD that can be balanced by nonlinearity increases with the input power. Our study shows that a
proper balance of the group-velocity dispersion, the IMD, and the nonlinearity in a two-core fiber canmaintain the
integrity of the pulse over a long distance. © 2013 Optical Society of America

OCIS codes: 060.2310, 060.2340, 060.5530, 060.1810, 190.4370.

1. INTRODUCTION
The existence of solitons in a single-mode fiber [1,2] is one of
the most fascinating discoveries in fiber optics. A soliton in its
simplest form is a pulse that propagates along a fiber without
changing its shape. It is the result of balancing the anomalous
group-velocity dispersion (GVD) with the Kerr nonlinearity in
the fiber. The use of soliton pulses for long-distance optical
transmission has created tremendous interest, and the proper-
ties of various optical soliton systems for different applica-
tions have been investigated in great detail (see [3–5] and
references therein). At the same time, there have been exten-
sive studies of various techniques to manipulate solitons in
fibers. Soliton switching in nonlinear two-core fibers, in par-
ticular, has attracted much attention [6–12]. The recent
interest in the use of multicore fibers for increasing the trans-
mission capacity of optical communication systems [13–15],
together with the development of multicore photonic-crystal
fibers for nonlinear applications [16,17], suggests that the
prospect of using nonlinear multicore fibers for optical pulse
processing may become more promising than ever. In this
paper, we analyze pulse propagation in a nonlinear two-core
fiber with the objective of identifying the conditions to main-
tain the integrity of the pulse in the presence of intermodal
dispersion (IMD).

A two-core fiber consisting of two parallel identical
single-mode cores is a bimodal structure, which supports a
symmetric mode and an antisymmetric mode. In the
continuous-wave case, the beating of the two modes gives rise
to the well-known phenomenon of power exchange between
the two cores, which forms the basis of many optical coupling
devices. In the case of pulse propagation, because the two
modes in general have different group velocities, the input
pulse may broaden or even split after propagating a certain
distance and thus lose its identity [18,19]. This effect, known

as IMD [18], can jeopardize the function of the two-core fiber
as an optical switch, though it has been applied to the genera-
tion of high-repetition-rate pulse trains [20]. In the presence of
significant IMD, soliton pulses are subject to distortion and
splitting, just like low-power linear pulses [21]. A recent ana-
lysis shows that IMD can indeed deteriorate the switching
characteristics of ultrashort pulses in nonlinear multicore fi-
bers [22]. Previous studies of soliton switching in nonlinear
two-core fibers [6–12] overlook the physics of IMD and focus
only on the balance of GVD and nonlinearity. In general, how-
ever, IMD exists in a two-core fiber [18]. It is of theoretical and
practical interest to find out whether nonlinearity can balance
both GVD and IMD in a two-core fiber to minimize pulse dis-
tortion and, in particular, to avoid pulse splitting.

There have been few studies on the interaction of IMD and
nonlinearity in an optical fiber. Although the possibility of
overcoming pulse broadening due to IMD by nonlinearity in
a multimode fiber was predicted a long time ago [23–25], no
detailed investigation on the propagation dynamics has ever
been given. A numerical analysis of a birefringent fiber, which
supports two polarized modes, shows the possibility of propa-
gating soliton-like pulses in the fiber by balancing linear
birefringence (actually polarization-mode dispersion) with
nonlinearity [26]. In view of these early studies, it is reason-
able to expect possible balance between IMD and nonlinearity
in a two-core fiber. A two-core fiber, however, allows light to
be transferred between two cores, which is phenomenally dif-
ferent from a multimode fiber or a birefringent fiber, where
light is always confined in one core. It is yet to be confirmed
whether, or to what extent, the IMD in a two-core fiber can be
overcome by nonlinearity to avoid pulse splitting. In this
paper, we address this issue by numerically solving the
generalized coupled nonlinear Schrödinger equations. We dis-
cover that, in the anomalous dispersion regime, nonlinearity
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can suppress the effects of IMD, provided that the IMD is
sufficiently small in comparison with the GVD and, at the
same time, the linear coupling is sufficiently strong. We pre-
sent propagation dynamics to elucidate these conditions.

2. PULSE PROPAGATION IN A TWO-CORE
FIBER
We consider a lossless fiber that consists of two parallel iden-
tical single-mode cores. The composite two-core structure
supports a symmetric mode and an antisymmetric mode
(the supermodes) and their propagation along the fiber can
be described by the following set of normalized coupled equa-
tions, which include the effects of Kerr nonlinearity [21]:

i
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∂a�
∂Z

� R1
∂a�
∂T

�
� 1

2
∂2a�
∂T2 � ja�j2a�
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∂2a−
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In the above equations, a��Z; T� and a−�Z; T� are the nor-
malized slowly varying amplitude envelopes of the symmetric
and antisymmetric modes, respectively. Z and T are the nor-
malized propagation distance and time coordinate defined for
a frame that moves at the average group velocity of the two
modes. The second terms in Eq. (1) account for the effects of
IMD, where the normalized parameter R1 is a measure of the
deviation from the average group delay for the two modes.
The third terms represent (anomalous) GVD, which is as-
sumed to be the same for both modes. The fourth and fifth
terms represent self-phase modulation and cross-phase mod-
ulation (XPM), respectively, and the last nonlinear terms are
due to the difference of the phase velocities of the two modes,
where R is a measure of the difference of the propagation con-
stants of the two modes. With all the nonlinear terms ignored,
Eq. (1) simply describes two supermodes propagating along
the fiber independently from each other at different group ve-
locities (with the difference proportional to R1). When a pulse
is launched into only one core, both supermodes are equally
excited and eventually separated in time after propagating
over a long enough distance, which thus leads to pulse split-
ting [18]. The value of R1 varies over a wide range, depending
on the fiber parameters and the pulsewidth, and is negative in
normal operating conditions [27]. There exists, however, a
specific operating condition for a conventional two-core fiber
design at which the value of R1 is equal to zero [18].

In practical applications of a two-core fiber, it is customary
to directly calculate the pulse envelopes in the individual
cores. According to the coupled-mode theory, which assumes
weak spatial overlap between the mode fields in the individual
cores, the normalized amplitude envelopes of the two super-
modes can be expressed as the superposition of the normal-
ized amplitude envelopes of the two modes in the individual
cores, denoted as a1�Z; T� and a2�Z; T�, respectively [21]:

a� � 1
2
�a1 � a2� exp�−iRZ�;

a− � 1
2
�a1 − a2� exp�iRZ�: (2)

By substituting Eq. (2) into Eq. (1), we arrive at the follow-
ing generalized coupled nonlinear Schrödinger equations:
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Equation (3) can also be derived directly from the coupled-
mode theory without going through the conversion from
the supermodes [28]. The terms in Eq. (3) that contain R are
the conventional linear coupling terms, which account for the
periodic power transfer between the two cores in the linear,
continuous-wave limit. The modes in the individual cores pro-
pagate at the same group velocity (this is expected since the
two cores are identical); their group velocity is actually equal
to the average group velocity of the two supermodes. The ef-
fects of IMD are turned into additional linear coupling be-
tween the two cores, i.e., the last terms in Eq. (3) that
contain R1. These terms are absent in earlier studies [6–12]
and cannot be eliminated by a transformation of coordinates.
Under the coupled-mode theory, the parameter R1 is under-
stood as a measure of the wavelength dependence of the
coupling coefficient R, so it is also referred to as the coupling-
coefficient dispersion [21,28]. In other words, the IMD in the
supermode theory is equivalent to the coupling-coefficient dis-
persion in the coupled-mode theory; they represent the same
physics. Because of the way the parameters are normalized
[21,28], R1 actually measures the relative significance of the
IMD and the GVD in the fiber. We should also note that there
are no XPM terms in Eq. (3), which is a result of weak spatial
overlap between the mode fields in the two cores, as required
by the coupled-mode theory.

In this study, we assume that the pulse is launched into only
one core:

a1�0; T� �
������
P0

p
sech�T�; a2�0; T� � 0; (4)

where P0 is the normalized peak power. P0 � 1 is the power
required for soliton formation in a single-mode fiber, known
as the soliton power. To solve Eq. (3), we employ the pseudo-
spectral method in the time domain and the fourth-order
Runge–Kutta scheme in the spatial domain with adaptive
step-size control.

For the purpose of benchmarking, we first consider a linear
fiber, where the nonlinear terms in Eq. (3) are ignored.
Figure 1 shows the pulse propagation dynamics for three
values of IMD, R1 � 0, −0.5, and −1.0, where R � 20. In the
absence of IMD, as shown in Fig. 1(a) for R1 � 0, the pulse
is coupled between the two cores periodically and the short-
est distance to achieve complete coupling, known as the cou-
pling length, is given by Lc � π∕�2R� [28]. The pulse becomes
broader and broader, as it propagates down the fiber, because
of the GVD. In the presence of IMD, the pulse splits and, at the
same time, broadens by the GVD. The pulse-splitting effect is
characterized by a walk-off distance Lw � 1∕�2jR1j�, at which
the pulse completely splits into two identical pairs of pulses in
the two cores (assuming no pulse broadening) and power ex-
change between the two cores stops [28]. When the IMD is
relatively weak, as shown in Fig. 1(b) for R1 � −0.5, the pulse
significantly broadens before splitting and the combined
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effects of GVD and IMD result in severe pulse distortion. When
the IMD is relatively strong, as shown in Fig. 1(c) for
R1 � −1.0, the pulse splits before the GVD causes significant
broadening. These results show that the GVD and the IMD in a
two-core fiber produce different effects and both tend to de-
stroy the integrity of the pulse. The question is whether it is
possible to balance both GVD and IMD with nonlinearity to
keep the integrity of the pulse over a long distance.

The above examples represent the typical situations where
the walk-off length is much longer than the coupling length.
From the definitions of the normalized parameters [21,28], R
and R1 can be expressed in terms of the dispersion length of

the fiber LD as R � �π∕2��LD∕lc� and jR1j � 0.5�LD∕lw�, where
lc and lw are the actual (nonnormalized) coupling length and
walk-off length of the fiber, respectively. Consequently, R ≫
1 implies that the coupling length is much shorter than the dis-
persion length. In the case R1 � −0.5, the walk-off length is
equal to the dispersion length, while in the case R1 � −1.0,
thewalk-off length becomes shorter than the dispersion length.

3. SUPPRESSION OF PULSE SPLITTING
WITH NONLINEARITY
Early analyses of nonlinear two-core fibers [6–10], which over-
look IMD, confirm the possibility of distortion-free propagation
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Fig. 1. (Color online) Pulse propagation in a linear two-core fiber with R � 20 for (a) R1 � 0, (b) R1 � −0.5, and (c) R1 � −1.0, where Lw � 1 in
(a) and (b), and Lw � 0.5 in (c).
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at P0 � 1, as shown in Fig. 2(a) for R1 � 0 (where R � 20).
With P0 � 1, the pulse-broadening effect due to GVD alone
is completely balanced by nonlinearity, as we can see by com-
paring Figs. 1(a) and 2(a).When the effects of IMDare included
in the analysis, however, the input pulse with P0 � 1 can no
longer propagate without distortion. Even if the IMD is weak,
pulse distortion can be significant, as shown in Fig. 2(b) for
R1 � −0.3. When the IMD is sufficiently strong, pulse splitting
becomes obvious, as shown in Fig. 2(c) for R1 � −1.0. A com-
parison of Figs. 1(c) and 2(c) confirms that, in the presence of
strong IMD, soliton pulses split like low-power pulses.

While P0 � 1 is insufficient to suppress the effects of IMD,
we increase the input power to P0 � 2. Figures 3(a)–3(d)
show the propagation dynamics at P0 � 2 for four values of
IMD, R1 � −0.3, −0.5, −0.9, and −1.2, where R � 20. We find
that the integrity of the input pulse can be maintained when
jR1j is not larger than ∼0.5. The pulse starts to deteriorate at a
larger value of jR1j and clearly splits at R1 � −1.2. These re-
sults suggest the possibility of suppressing the effects of IMD
with nonlinearity, provided that jR1j is not larger than a cer-
tain value. For P0 � 2, the maximum value of jR1j that can be
balanced by nonlinearity is ∼0.5.
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Fig. 2. (Color online) Pulse propagation in a nonlinear two-core fiber withR � 20 at P0 � 1 for (a)R1 � 0, (b)R1 � −0.3, and (c)R1 � −1.0, where
Lw � 1 in (a) and Lw � 1∕�2jR1j� in (b) and (c).
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We continue to increase the input power and find that the
maximum value of jR1j that can be balanced by nonlinearity
increases from ∼0.5 to ∼0.9, as the input power P0 increases
from 2 to 5. Figures 4(a)–4(d) show the propagation dynamics

at P0 � 4 for four values of IMD, R1 � −0.5, −0.7, −1.0, and
−2.0, where R � 20. At P0 � 4, the pulse maintains its integrity
up to jR1j � ∼0.7 and becomes significantly distorted above
this value of jR1j. As the IMD becomes strong enough, the
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Fig. 3. (Color online) Pulse propagation in a nonlinear two-core fiber with R � 20 at P0 � 2 for (a) R1 � −0.3, (b) R1 � −0.5, (c) R1 � −0.9, and
(d) R1 � −1.2, where Lw � 1∕�2jR1j�.
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input pulse eventually splits into four identical pulses, as
shown in Fig. 4(d). Since each of the split pulses carries a
quarter of the input power (i.e., the soliton power), these
pulses are actually soliton pulses, which explains why they

do not suffer from further broadening by the GVD as they
propagate down the fiber.

We also find that, for the nonlinearity to balance the GVD
and the IMD, the value of the linear coupling coefficient

−10
0

10

0
2

4
6

0

1

2

Z/L
W

T

|a
1|2 /P

0

−10
0

10

0
2

4
6

0

1

2

Z/L
W

T

|a
2|2 /P

0

(a)

−10
0

10

0
2

4
6

0

1

2

Z/L
W

T

|a
1|2 /P

0

−10
0

10

0
2

4
6

0

1

2

Z/L
W

T

|a
2|2 /P

0

(b)

−10
0

10

0
2

4
6

0

1

2

Z/L
W

T

|a
1|2 /P

0

−10
0

10

0
2

4
6

0

1

2

Z/L
W

T

|a
2|2 /P

0

(c)

−10
0

10

0
2

4
6

0

1

2

Z/L
W

T

|a
1|2 /P

0

−10
0

10

0
2

4
6

0

1

2

Z/L
W

T

|a
2|2 /P

0

(d)
Fig. 4. (Color online) Pulse propagation in a nonlinear two-core fiber with R � 20 at P0 � 4 for (a) R1 � −0.5, (b) R1 � −0.7, (c) R1 � −1.0, and
(d) R1 � −2.0, where Lw � 1∕�2jR1j�.
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R must be much larger than 1 (R ≫ 1), or the coupling length
must be much shorter than the walk-off length (Lc ≪ Lw).
This condition is satisfied in the examples given in
Figs. 2–4, where R � 20. Figures 5(a)–5(c) show the propaga-
tion dynamics at P0 � 4 for a fiber with R1 � −0.3 at R � 2, 6,
and 20, respectively. When R is small, as shown in Figs. 5(a)
and 5(b), the input pulse splits quickly into two pulses with
unequal amplitudes. When R is large, no such splitting takes
place and the input pulse maintains its integrity, as shown
in Fig. 5(c).

Our numerical results also suggest the existence of a
threshold input power for the suppression of pulse splitting

at a given value of R1. For example, the threshold input
powers for R1 � −0.5 and −0.7 are P0 ∼ 2 and 4, respectively.
The analytical formula for the estimation of the threshold
power to overcome the IMD in a multimode fiber [23], which
assumes a predominant IMD over GVD, is not applicable to
our situation where IMD is relatively weak. We can make a
more relevant comparison with the study of a nonlinear bire-
fringent fiber [26], where coupled equations similar to Eq. (1)
are solved numerically for soliton-like pulse propagation.
Assuming both polarized modes are equally excited, the
threshold input power required for compensating the
polarization-mode dispersion with a normalized value of 1.0
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Fig. 5. (Color online) Pulse propagation in a nonlinear two-core fiber with R1 � −0.3 at P0 � 4 for (a) R � 2, (b) R � 6, and (c) R � 20, where
Lw � 1∕�2jR1j� � 1.67.
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(which plays a role similar to R1 in a two-core fiber) is P0 ∼ 4,
which is comparable to our finding.

We have limited our study to a relatively low input power
(up to several times of the soliton power) to justify the
omission of high-order nonlinear effects in our equations.
To compensate for stronger IMD, it is necessary to use higher
input power, which, however, might dictate the inclusion of
other nonlinear effects. The propagation dynamics at higher
power are expected to be more complicated and will need
further investigation.

4. CONCLUSION
It is possible to prevent a pulse launched into a two-core fiber
from broadening and splitting by balancing the (anomalous)
GVD and the IMD with the Kerr nonlinearity in the fiber. The
peak power of the pulse required must be larger than the so-
liton power. There exists a maximum amount of IMD that can
be balanced (generally jR1j < 1 for an input peak power up to
a few times of the soliton power), which increases with the
peak power. The linear coupling between the two cores must
also be sufficiently strong (R ≫ 1). These conditions corre-
spond to the situation of launching a pulse with a width of
0.1–1 ps at a center wavelength of ∼1.5 μm into a conventional
two-core silica fiber that has a core-to-core separation 6–10
times that of the core radius [27]. For a conventional two-core
fiber, the relationship between R1 and R is very much fixed
[18,27] and the nonlinearity available is similar to that of a
conventional single-mode fiber. On the other hand, photonic-
crystal two-core fibers could offer much stronger nonlinearity
and allow more flexible choices of the values of R1 and R,
and, therefore, should provide a convenient platform for
experimental demonstration of the effects discussed in this
study.
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