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Abstract

One of the central issues in credit risk measurement and management is modeling

and predicting correlated defaults. In this paper we introduce a novel model to in-

vestigate the relationship between correlated defaults of different industrial sectors

and business cycles as well as the impacts of business cycles on modeling and pre-

dicting correlated defaults using the Probabilistic Boolean Network (PBN). The key

idea of the PBN is to decompose a transition probability matrix describing corre-

lated defaults of different sectors into several BN matrices which contain information

about business cycles. An efficient estimation method based on entropy approach

is used to estimate the model parameters. Using real default data, we build a PBN

for explaining the default structure and make reasonably good prediction of joint

defaults in different sectors.
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1 Introduction

Modeling default risk is an important topic for credit risk measurement and manage-

ment. Basically there are two major approaches to modeling default risk, namely, (i)

the structural firm value approach pioneered by Black and Scholes (1973) [1] and Merton

(1974) [23] and (ii) the reduced-form intensity-based approach introduced by Jarrow and

Turnbull (1995) [12] and Madan and Unal (1998) [22]. The key idea of the structural

firm value approach is to model explicitly the relationship between the asset value of a

firm and the default of the firm. In particular, a default occurs if the asset value of the

firm falls below a default barrier level. Consequently, under the structural firm value ap-

proach, default events are endogenous. Indeed, the KMV model developed by Moodys is

a practical version of the Merton structural firm value model. One of the major shortcom-

ings of structural firm value models is that the firm’s assets are not traded or observable.

Due to some empirical shortcomings of structural firm value models, Jarrow and Turnhull

(1995) [12] introduced a reduced-form intensity-based model, where defaults are modeled

by Poisson random processes and are exogenous events.

One of the central issues for credit risk measurement and management is the modeling

and predicting correlated defaults. Different approaches have been proposed in the litera-

ture to model correlated defaults. One of the major approaches is based on copulas which

are important tools in statistics, in particular in survival analysis, to model dependence

of several random quantities. Li [14] and Embrechts [11] pioneered the use of copulas for

modeling dependent credit risk. Other models for dependent defaults include the mixture

model approach, in particular the Poisson mixture model in CreditRisk+ [7], Binomial

Expansion Techniques [29], the infectious default models [8, 9], the multivariate Markov

chain approach of Siu et al. (2005) [28] and Markov switching models [5, 6]. Besides,

reduced-form intensity-based models have also been used to model dependent defaults.

There are two major approaches along this direction, namely, the top-down approach and

the bottom-up approach. The distinction between the two approaches is in the way that

the default intensities are specified. The top-down approach models directly the aggregate

default intensity of a credit portfolio, and a random thinning procedure is then used to

specify individual default intensities. The bottom-up approach focuses on modeling indi-

vidual default intensities. The intensity density of the credit portfolio is then determined

by aggregating individual default intensities. For an excellent overview on both top-down

and bottom-up approaches for portfolio credit risk modeling, interested readers may re-

fer to Giesecke (2008) [16]. Duffie et al. (2009) [10] introduced a frailty-based intensity

approach for modeling portfolio credit risk, which is a kind of bottom-up intensity-based

approach. A related conditionally diversifiable default risk model was considered in Jar-

row, Lando and Yu (2005) [13]. These models seem focused on modeling correlated
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defaults of firms or corporations in an industrial sectors. Relatively little attention has

been paid to model correlated defaults among different industrial sectors.

It has been pointed out in Moody’s reports on historical default rates of corporate bond

issuers that the number of defaults, the number of credit rating downgrades and credit

spreads are strongly correlated with the business cycle. Hackbarth, Miao and Morellec

(2006) [17] established a modeling framework for analyzing the effect of macroeconomic

conditions on credit risk and dynamic capital structures of corporations. The basic idea

was based on the observation that firms may adopt their default and financing policies

according to different phases of the business cycles when cash flows depend on current

economic conditions.

A recent paper by Miao and Wang (2010) [24] developed an equilibrium approach

to investigating the relationship between credit risk and business cycles. However, it

seems that some of the existing literature mainly focus on modeling the impact of the

business cycle on individual credit entities. The modeling of the impact of the business

cycle on the joint defaults of corporations from different industrial sectors seems receiving

relatively less attention. Intuitively, when the economy is in recession, it is likely that the

profitabilities of firms in several industrial sectors decline, and they may default together

in extreme scenarios. On the other hand, when the economy is booming, it is less likely

that firms jointly default. Furthermore, the use of information about the relationship

between joint defaults and the business cycle in predicting future joint defaults seems not

fully explored yet.

In this paper, we introduce a novel model to investigate the relationship between

correlated defaults of different industrial sectors and business cycles as well as the impacts

of business cycles on modeling and predicting correlated defaults. The proposed model

is built using the Probabilistic Boolean Network (PBN) [2, 3, 4]. Here we model the

probabilistic behavior of joint defaults of corporations in different industrial sectors by a

transition probability matrix. For example, suppose we have four industrial sectors. If

there is a default in an industrial sector, we call the default state equal to “1”; otherwise,

we call the default state equal to “0”. Consequently, each sector has two default states,

namely, “0” and “1”, and the default states of the four sectors can then be described by

a Markov chain with 24 state. In this case, the transition probability matrix of the chain

is a 24 × 24-matrix. The key idea of the PBN is to decompose a transition probability

matrix describing correlated, or joint, defaults of different sectors into a weighted average

of several deterministic Boolean Network (BN) matrices which contain information about

business cycles. Indeed, given an initial state, the BN will eventually enter into a cycle of

state(s), called attractor cycle or limit cycle. We believe that if the concept of the business

cycle is being taken seriously, it may be well-described by a limit cycle. Based on this
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belief, we attempt to explain the probabilistic behavior of joint defaults of corporations in

different industrial sectors by various patterns of the business cycle described by different

BN matrices. A weight is assigned to each of the BN matrices which describes how

likely the probabilistic behavior of joint defaults among different sectors is explained by a

particular BN matrix, or a particular pattern of the business cycle. Since the BN matrices

are basically transition matrices of deterministic Markov chains, (i.e. with probability one

of a particular transition), the only parameters in our proposed model appear to be the

weights in the linear combination of the BN matrices. An efficient estimation method

based on entropy is used to estimate these model parameters. Using real default data,

we build a PBN for explaining the default structure and make reasonably good prediction

of joint defaults in different sectors. To our best knowledge, this seems to be the first

paper attempting to apply the PBN for credit default prediction.

The paper is organized as follows. The next section describes the basic concepts of

BNs and PBNs. Section 3 presents a construction for a PBN and an algorithm for its

estimation. Section 4 provides a real-data example for the proposed model. The final

section gives concluding remarks.

2 Boolean Networks and Probabilistic Boolean Net-

works

Boolean Networks (BNs) were first introduced by Kauffman [18, 19, 20, 21]. In a BN,

the vertices have two states represented as 1 and 0. The target vertex is determined by

several genes called its input genes via a Boolean function. If the input vertices and also

the corresponding Boolean functions are given, then a BN is defined. We note that a

BN is essentially a deterministic model. Given an initial state, the BN will eventually

enter into a cycle of state(s) called its attractor cycle. The idea of extending the concept

of a BN (a deterministic model) to a PBN (a probabilistic model) is as follows. For

each vertex, there can be more than one Boolean function and corresponding selection

probabilities are assigned to the Boolean functions. The dynamics (transitions) of a PBN

can be studied using Markov chain theory [2, 3, 25, 26, 27].

A Boolean Network (BN) G(V, F ) is represented by a set of vertices

V = {v1, v2, . . . , vn}

and also a set of Boolean functions

F = {f1, f2, . . . , fn}

where

fi : {0, 1}n → {0, 1}.
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States v1(t) v2(t) f (1) f (2)

1 0 0 0 1

2 0 1 1 0

3 1 0 0 0

4 1 1 1 0

Table 1: The Truth Table.

We define vi(t) to be the state (0 or 1) of vertex i at time t. Thus the rules of the

interactions among the vertices can then be represented by Boolean functions:

vi(t+ 1) = fi(v(t)), i = 1, 2, . . . , n

where the Boolean vector

v(t) = (v1(t), v2(t), . . . , vn(t))

can take any possible states from the set

S = {(v1, v2, . . . , vn)T : vi ∈ {0, 1}}

and it is easy to see that |S| = 2n.

The following is an example of a two-vertex BN with the truth table being given in

Table 1. From the truth table, there are four states and they are (0, 0), (0, 1), (1, 0) and

(1, 1). One may label them by 1, 2, 3 and 4 respectively. We note that if the current

state of the network is 1, the network will go to State 2 in the next step (with probability

one). Suppose the current state is 2, the network will go to State 3 in the next step (with

probability one). If the current state is 4, the network will go to State 3 in the next step

(with probability one). The transition probability matrix (Boolean network matrix) of

the 2-gene BN is then given by

B =


0 0 1 0

1 0 0 0

0 1 0 1

0 0 0 0

 . (1)

The truth table gives the one-step transition probability between any two states. The

BN is a deterministic model, each column in B (the Boolean network matrix) has only

one non-zero element. We observe that there is only one cycle (attractor) of period three

given respectively as follows: (0, 0) → (0, 1) → (1, 0) → (0, 0). Moreover, (1, 1) belongs
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to the basin of attraction of the three-period attractor cycle. We remark that there is an

one-to-one relation between a BN and its corresponding BN matrix.

Here to extend the concepts of a BN to a stochastic model, for each vertex vi in a PBN,

instead of having only one Boolean function as in BN, there are a number of Boolean

functions (predictor functions) f
(j)
i (i = 1, 2, . . . , l(j)) to be chosen for determining the

state of gene vj. The probability of choosing f
(j)
i as the predictor function is c

(j)
i ,

0 ≤ c
(j)
i ≤ 1 and

l(j)∑
i=1

c
(j)
i = 1 for j = 1, 2, . . . , n. (2)

We let fi be the ith possible realization, where

fi = (f
(1)
i1 , f

(2)
i2 , . . . , f

(n)
in ), 1 ≤ ij ≤ l(j), j = 1, 2, . . . , n. (3)

Suppose that the selection of the Boolean function fij for each gene j is an independent

process, then the probability of choosing the corresponding BN with Boolean functions

(fi1 , fi2 , . . . , fin)

is given by

qi1i2···in =
n∏

j=1

c
(j)
ij .

There are at most N =
∏n

j=1 l(j) different possible realizations of BNs. The transition

process of the states in S actually forms a Markov chain process. Let a and b be any two

column vectors in the set S. Then the transition probability

P {v(t+ 1) = a | v(t) = b} =∑N
i=1 P {v(t+ 1) = a | v(t) = b, the ith network is selected} · qi.

(4)

Here we let

qi = qi1i2···in and i = i1 +
n∑

j=2

(ij − 1)(
j−1∏
k=1

l(k))

 . (5)

By letting a and b take all the possible states in S, one can get the transition probability

matrix of the Markov chain. The transition probability matrix can be written as

A =
N∑
i=1

qiAi (6)

with Ai being the corresponding transition probability matrix of the ith BN and qi being

the probability of choosing the ith BN matrix Ai, i.e.,
∑N

i=1 qi = 1 and qi ≥ 0.
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3 Construction of PBN

Boolean networks (BNs) and Probabilistic Boolean networks (PBNs), are genetic regula-

tory networks in the computational systems biology. Ching et al. [4] proposed algorithms

of generating PBNs from a given transition probability matrix A which can be written

as the sum of the BN matrices Ai as in (6). This is an ill-posed inverse problem as there

are many possible solutions. One possible approach to estimating {qi} is to formulate it

as an entropy optimization problem as suggested in [4].

Here we consider such a problem. Let T be the time index set {0, 1, 2, . . . , } of our

model. To model the uncertainty, we consider a probability space (Ω,F ,P), where P is

a real-world probability. Suppose that X := {Xt}t∈T denote one stochastic process on

(Ω,F ,P), where {Xt = (X1t, X2t, . . . , Xnt)} denotes the default states of the n sectors at

time t. Xit are quantized to only two levels: survival or default (represented as 0 and 1),

i = 1, 2, . . . , n and t ∈ T . The target state is predicted by previous state via a number

of Boolean functions. Given the observable transition probability matrix A2n×2n of this

stochastic process {Xt}, we admit the following representation

A =
M∑
i=1

qiAi + ϵ,

where {Ai}Mi=1 is a set of BNs and qi is the probability of choosing Ai, and ϵ is the residual

part of A. Here we regard Ai as the important part of the transition probability matrix A

with its weight qi, and the residual part ϵ is the noise of the transition probability matrix

A with ||ϵ||F being sufficiently small.

3.1 The Algorithm

We consider the minimization problem

min
qi

{
−

N∑
i=1

qi log qi

}

subject to
N∑
1

qi = 1 and qi ≥ 0.

7



Here we adopt the following algorithm proposed in [4] to solve the problem.

Step 0: Set R1 = A; k = 0

Step 1: k := k + 1

Step 2: We assume in the ith column of Rk, there are m non-zero entries

[Rk]1i, [Rk]2i, . . . , [Rk]mi.

Then we define the probability of choosing [Rk]ji to be [Rk]ji
[Rk]1i+[Rk]2i+...+[Rk]mi

.

After choosing entries based on the probability defined above,

suppose the concerned entries are given by [Rk]k1,1, [Rk]k2,2, . . . , [Rk]k2n ,2n ,

we choose the smallest entry qk from [Rk]ki,i(i = 1, . . . , 2n).

Then we define the following BN matrix:Ak = [ek1,1, . . . , ek2n ,2n ].

Here ej,i is the unit column vector whose jth entry is 1 for i = 1, . . . , 2n.

Step 3: Rk+1 = Rk − qkAk

Step 4: If Rk+1 is a zero matrix then go to Step 5 otherwise go to Step 1.

Step 5: N = k and A =
N∑
k=1

qkAk.

This algorithm can be iterated for a number of times, where at each time we compute

and record the entropy of solution q obtained. Finally, after a predetermined number

of iterations (say 1000), we select the solution with the lowest entropy. The following

proposition justifies the algorithm.

Proposition 1 Suppose

A =
N∑
i=1

qiAi

where

1 ≥ q1 ≥ . . . ≥ qN ≥ 0

and
N∑
i=1

qi = 1.

Let M be a positive integer and E be the entropy of (q1, q2, . . . , qN), i.e.,

E = −
N∑
i=1

qi log qi and ϵ =
N∑

i=M+1

qiAi.

We have

||ϵ||2F ≤ 2n
(

E

log(M + 1)

)2

where ||H||F is the Frobenius norm of the matrix H, defined by

||H||2F =
N∑
i=1

N∑
j=1

H2
ij.
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Proof: Since Ai is a BN matrix with its corresponding probability qi and

ϵ =
N∑

i=M+1

qiAi = (aij)2n×2n ,

then for any j, we have
2n∑
i=1

aij =
N∑

i=M+1

qi.

Therefore one can get

2n∑
i=1

(aij)
2 ≤

(
2n∑
i=1

aij

)2

=

 N∑
i=M+1

qi

2

.

Thus we have

||ϵ||2F =
2n∑
j=1

2n∑
i=1

a2ij ≤
2n∑
j=1

 N∑
i=M+1

qi

2

≤ 2n

 N∑
i=M+1

qi

2

.

Since

q1 ≥ q2 ≥ . . . ,≥ qN ≥ 0 and
N∑
i=1

qi = 1,

we have qi ≤ 1
i
. Hence we have

E = −
N∑
i=1

qi log qi

= −
M∑
i=1

qi log qi −
N∑

i=M+1

qi log qi

≥ −
M∑
i=1

qi log qi + log(M + 1)
N∑

i=M+1

qi

≥ log(M + 1)
N∑

i=M+1

qi.

Thus we have
N∑

i=M+1

qi ≤
E

log(M + 1)

and hence

||ϵ||2F ≤ 2n
(

E

log(M + 1)

)2

.

Corollary 1 For q = (q1, q2, . . . , qN) such that A =
∑N

i=1 qiAi, and a given positive integer

M , if E → 0 then ||ϵ||F → 0 and q1 → 1.

9



4 Empirical Results for the Proposed Model

In this section we present the empirical results of applying the algorithms stated in Section

3 to solve our proposed problem, using real default data extracted from the figures in [15].

The default data come from four different sectors. They include consumer/service sector,

energy and natural resources sector, leisure time/media sector and transportation sector.

Table 2 shows the default data taken from [15]. The data sets are time series (quarterly)

of number of defaults in the captured sectors. From the table, the proportions of defaults

for Consumer, Energy, Media and Transport are 24.11%, 16.90%, 20.46% and 21.00%,

respectively.

Sectors Total Defaults

Consumer 1041 251

Energy 420 71

Media 650 133

Transport 281 59

Table 2: The default data (Taken from [15]).

To construct a PBN, here we only consider binary data (0 if there is no default observed

and 1 if there is at least one default). To build the model, we first choose all the four sectors

to write a transition probability matrix. However, the matrix is of size 24 × 24=16× 16,

while we just have 88 quarterly default data extracted from [15]. The relative inadequacy

of the data source will lead to the inaccuracy of our numerical study. This encourages

us to reduce the number of sectors in our experiment. Here we consider the first three

sectors, consumer, energy and media. There are eight default states (0 represents no

default, 1 represents default observed) as shown in Table 3.

State
Consumer

v1

Energy

v2

Media

v3

1 (000) 0 0 0

2 (100) 1 0 0

3 (010) 0 1 0

4 (001) 0 0 1

5 (110) 1 1 0

6 (101) 1 0 1

7 (011) 0 1 1

8 (111) 1 1 1

Table 3: The default states of the three sectors.
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Using the real default data extracted from [15], we first construct the transition fre-

quency matrix Fij by using the observed transition frequency from State j to State i. Then

the transition probability matrix [Aij] can be obtained by making a column normalization

i.e.,

Aij =



Fij

N∑
j=1

Fij

if
N∑
j=1

Fij ̸= 0

δij if
N∑
j=1

Fij = 0.

We obtain

A =



0.57 0.00 0.10 0.00 0.00 0.04 0.00 0.00

0.14 0.31 0.00 0.50 0.13 0.13 0.33 0.06

0.00 0.08 0.40 0.25 0.25 0.00 0.67 0.00

0.00 0.15 0.00 0.00 0.00 0.08 0.00 0.00

0.00 0.15 0.30 0.00 0.00 0.13 0.00 0.00

0.29 0.31 0.20 0.00 0.25 0.29 0.00 0.39

0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00

0.00 0.00 0.00 0.25 0.00 0.33 0.00 0.56



.

We apply the algorithm for 1000 iterations, and get the estimation of {qi} with the lowest

entropy. There are 23 positive qi in q = (q1, q2, . . . , qN). Without loss of generality, we

reorder {qi} from the largest down to the smallest and we use the same notation {qi} and

assume N = 23 while M = 6. Thus we have

1 ≥ q1 ≥ q2 ≥ . . . ≥ qN ≥ 0,

and A =
M∑
i=1

qiAi + ϵ and
N∑

i=M+1

qi < 0.111.

Thus we have ||ϵ||2F < 23(0.111)2 = 0.099. The estimation results are given as follows:

(q1, q2, . . . , q6) = (0.29, 0.20, 0.13, 0.12, 0.09, 0.05).

A1 =



1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1



A2 =



1 0 0 0 0 0 0 0

0 1 0 1 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0


11



A3 =



0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 1 0 0 1 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1



A4 =



0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1



A5 =



0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0



A6 =



0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



Table 4: The truth table of A1.

state v1 v2 v3 f1 f2 f3

1 0 0 0 0 0 0

2 1 0 0 1 0 1

3 0 1 0 1 1 0

4 0 0 1 1 0 0

5 1 1 0 0 1 1

6 1 0 1 1 0 1

7 0 1 1 0 1 0

8 1 1 1 1 1 1

Table 5: The truth table of A2.

state v1 v2 v3 f1 f2 f3

1 0 0 0 0 0 0

2 1 0 0 1 0 0

3 0 1 0 1 0 1

4 0 0 1 1 0 0

5 1 1 0 0 1 0

6 1 0 1 1 1 1

7 0 1 1 1 0 0

8 1 1 1 1 0 1

Suppose we regard the six major BNs Ai, i = 1, 2, . . . , 6 as the most important parts

of the original transition probability matrix A, then we may assume the default data is

explained by the six Boolean networks. We can then summarize the rules in Table 11 (a

column stochastic matrix), where we drop ϵ from A and change qi to qi/
∑M

i=1 qi. Note

that an attractor cycle, or a limit cycle, in each of the six BNs represents a particular

pattern of the business cycle which manifests itself in the joint default pattern of the

three industrial sectors. For example, in the BN matrix A1, there is a limit cycle of three

periods, namely, (010) → (110) → (011) → (010). This reflects how the business cycle

influences the joint default of the three sectors. For example, in the recession, there are
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Table 6: The truth table of A3.

state v1 v2 v3 f1 f2 f3

1 0 0 0 1 0 0

2 1 0 0 1 1 0

3 0 1 0 0 1 0

4 0 0 1 0 1 0

5 1 1 0 1 0 1

6 1 0 1 1 1 1

7 0 1 1 0 1 0

8 1 1 1 1 1 1

Table 7: The truth table of A4.

state v1 v2 v3 f1 f2 f3

1 0 0 0 1 0 1

2 1 0 0 0 0 1

3 0 1 0 0 1 0

4 0 0 1 1 1 1

5 1 1 0 1 0 0

6 1 0 1 1 1 0

7 0 1 1 0 1 0

8 1 1 1 1 1 1

Table 8: The truth table of A5.

state v1 v2 v3 f1 f2 f3

1 0 0 0 1 0 1

2 1 0 0 1 0 0

3 0 1 0 0 1 0

4 0 0 1 1 1 1

5 1 1 0 1 0 1

6 1 0 1 1 0 0

7 0 1 1 1 0 0

8 1 1 1 1 0 1

Table 9: The truth table of A6.

state v1 v2 v3 f1 f2 f3

1 0 0 0 1 0 1

2 1 0 0 0 1 0

3 0 1 0 0 0 0

4 0 0 1 0 1 0

5 1 1 0 0 1 0

6 1 0 1 0 0 1

7 0 1 1 0 1 0

8 1 1 1 1 0 1

Table 10: Attractor cycles of the six BNs.

BN Attractor cycles

A1 (000), (101), (111), (010) → (110) → (011) → (010)

A2 (000), (100), (101) ↔ (111)

A3 (010), (111)

A4 (010), (111)

A5 (100), (010)

A6 (000) → (101) → (001) → (010) → (000)
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Table 11: The prediction rules from the six BNs.

(000) (100) (010) (001) (110) (101) (011) (111)

(000) 0.55 0.00 0.06 0.00 0.00 0.00 0.00 0.00

(100) 0.15 0.32 0.00 0.55 0.14 0.10 0.32 0.00

(010) 0.00 0.06 0.39 0.21 0.28 0.00 0.68 0.00

(001) 0.00 0.14 0.00 0.00 0.00 0.06 0.00 0.00

(110) 0.00 0.15 0.33 0.00 0.00 0.14 0.00 0.00

(101) 0.30 0.33 0.22 0.00 0.25 0.33 0.00 0.38

(011) 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00

(111) 0.00 0.00 0.00 0.24 0.00 0.37 0.00 0.62

defaults in two sectors, (i.e. either (110) or (011)), whereas in an economic boom, there is

only one default, say (010). This piece of information can be used to predict the pattern

of correlated defaults among different sectors.

From the prediction table we have the following observations. If current state is (000)

(no default in all sectors) then either there will be no default in all sectors or there must

be default in the consumer sector in the next quarter. If the current state is (100) (default

only found in the consumer sector) then default will be observed in at least one of the

sectors. If the current state is (010) (default only found in the energy sector) then either

there will be no more default in all the sectors or default will be observed in at least one

of the sectors. If the current state is (001) (default only found in the media sector) then

default will be observed in at least one of the sectors or even all the sectors. We see that

both the consumer and media sectors have strong infectious effect when compared to the

energy sector. Finally, if the current state is (111) (all sectors have default cases) then

default will be observed in at least two of the sectors or even all the sectors.

We have further conducted some numerical on the other groups of default data con-

sisting three sectors. Let G1 denote the group consist the consumer, media and transport

sector; G2 denote the group of energy, media and transport sector; G3 denote the group

of the consumer, energy and transport sector. There are eight default states the same

as shown in Table 3, where the order of sector are listed as above, e.g., v1 stands for

consumer, v2 stands for media and v3 stands for transport in G1. We report the attractor

cycles of the major BNs in these groups of default data in Tables 12, 14 and 16, and the

corresponding prediction rules in Tables 13, 15 and 17. We remark that ||ϵ||2F < 0.142 for

all the groups and the PBN approach seems to give reasonable results in all the groups.
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Table 12: Attractor cycles of the seven major BNs for G1.

BN Attractor cycles

A1 (011) , (100) ↔ (010), (110) ↔ (111)

A2 (000), (110), (011), (111)

A3 (100), 011, (111)

A4 (011), (000) ↔ (001), (110) ↔ (111)

A5 (100), (011), 111

A6 (011), (000) → (111) → (110) → (101) → (000)

A7 (011), (100) ↔ (001)

Table 13: The prediction rules from the seven major BNs for G1.

(000) (100) (010) (001) (110) (101) (011) (111)

(000) 0.23 0.00 0.40 0.48 0.00 0.22 0.00 0.00

(100) 0.23 0.27 0.46 0.05 0.27 0.23 0.00 0.00

(010) 0.00 0.31 0.00 0.00 0.05 0.00 0.00 0.06

(001) 0.35 0.05 0.00 0.00 0.00 0.11 0.00 0.00

(110) 0.11 0.23 0.00 0.31 0.23 0.00 0.00 0.45

(101) 0.00 0.14 0.00 0.16 0.08 0.00 0.00 0.00

(011) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

(111) 0.08 0.00 0.14 0.00 0.37 0.44 0.00 0.49

Table 14: Attractor cycles of the nine major BNs for G2.

BN Attractor cycles

A1 (000), (101), (111)

A2 (010) ↔ (011)

A3 (000) ↔ (001), (100) ↔ (010)

A4 (101), (110) ↔ (011)

A5 (010), (111)

A6 (000) ↔ (100), (011) ↔ (111)

A7 (000), (100) ↔ (010)

A8 (100), (111)

A9 (111), (100) ↔ (110)
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Table 15: The prediction rules from the nine major BNs for G2.

(000) (100) (010) (001) (110) (101) (011) (111)

(000) 0.33 0.19 0.26 0.38 0.10 0.00 0.00 0.00

(100) 0.08 0.05 0.24 0.06 0.16 0.47 0.00 0.00

(010) 0.39 0.18 0.10 0.38 0.19 0.00 0.43 0.10

(001) 0.14 0.00 0.10 0.00 0.11 0.00 0.00 0.00

(110) 0.00 0.22 0.08 0.00 0.00 0.00 0.23 0.19

(101) 0.06 0.26 0.00 0.00 0.00 0.36 0.00 0.00

(011) 0.00 0.10 0.19 0.18 0.10 0.17 0.00 0.27

(111) 0.00 0.00 0.03 0.00 0.34 0.00 0.34 0.44

Table 16: Attractor cycles of the ten major BNs for G3.

BN Attractor cycles

A1 (100), (111)

A2 (100) ↔ (110), (101) ↔ (111)

A3 (111), (100) ↔ (101)

A4 (010), (101), (110) ↔ (111)

A5 (100), (010) ↔ (101)

A6 (000) → (111) → (100) → (000)

A7 (000), (010), (111), (100) ↔ (001), (110) ↔ (011)

A8 (010), (100) → (111) → (110) → (101) → (100)

A9 (000), (010)

A10 (000) ↔ (100)

Table 17: The prediction rules from the ten major BNs for G3.

(000) (100) (010) (001) (110) (101) (011) (111)

(000) 0.09 0.12 0.08 0.32 0.00 0.05 0.00 0.00

(100) 0.41 0.32 0.25 0.68 0.32 0.29 0.00 0.05

(010) 0.11 0.00 0.22 0.00 0.25 0.07 0.51 0.00

(001) 0.25 0.05 0.00 0.00 0.00 0.00 0.00 0.00

(110) 0.00 0.25 0.13 0.00 0.00 0.25 0.24 0.17

(101) 0.00 0.21 0.07 0.00 0.14 0.09 0.00 0.35

(011) 0.00 0.00 0.25 0.00 0.05 0.00 0.00 0.00

(111) 0.14 0.05 0.00 0.00 0.24 0.25 0.25 0.43
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5 Conclusion

A framework for modeling and predicting correlated defaults based on information about

the business cycle was proposed. The modeling framework was built using the concept

of the Probabilistic Boolean Network (PBN). A transition probability matrix describing

joint defaults was decomposed into a weighted average of Boolean Network matrices giv-

ing information about the impact of different patterns of the business cycle on different

patterns of joint defaults among different industrial sectors. This piece of information

was used to predict joint defaults of different sectors. We provided a real data example

to illustrate the practical implementation of the model and its use for predicting joint

default behavior of different industrial sectors.
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