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Abstract

In this paper we establish several relations between convex order, vari-
ance order, and comonotonicity. In the first part, we extend Cheung
(2008b) to show that when the marginal distributions are fixed, a sum with
maximal variance is in fact a comonotonic sum. Thus the convex upper
bound is achieved if and only if the marginal variables are comonotonic.
Next, we study the situation where besides the marginal distributions, the
variance of the sum is also fixed. Intuitively one expects that adding this
information may lead to a bound that is sharper than the comonotonic
upper bound. However, we show that such upper bound does not even
exist. Nevertheless, we can still identify a special dependence structure
known as upper comonotonicity, in which case the sum behaves like a
convex largest sum in the upper tail. Finally, we investigate when the
convex order is equivalent to the weaker variance order.

Throughout this paper, interpretations and significance of the results
in terms of portfolio risks will be emphasized.

Key words: Copula, comonotonicity, Value-at-Risk, convex bounds, tail-end
correlations, worst-case scenario

1 Introduction

Consider a portfolio of risks (Xi, ..., X,) with marginal distributions F; (i =
1,...,m). We are often interested in the distribution of the sum S = X; +
...+ X, for example when determining various risk measures of S like the
Value-at-Risk (VaR) and the Tail Value-at-Risk (T'VaR). This requires not only
the knowledge of the marginal distributions but also the dependence structure
among the risks. However, the latter is often unknown, only partially known or
known but difficult to work with. In this case, it is common to overcome the dif-
ficulty by identifying the least favorable dependence structure that corresponds
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to a “largest” sum S (an upper bound) in the sense that all risk averse decision
makers would make conservative decisions when using S in these cases.

Bounds for sums of risks when only the marginal distributions are given
have been studied in the literature extensively; see e.g. Denuit et al. (2005)
for an overview of the most important theoretical results as well as Embrechts
and Pucetti (2006) for a recent application in the context of Solvency II. Specif-
ically, it is well-known that when the underlying risks are non-compensating
(comonotonic), the sum S will be the largest with respect to the convex order,
and hence riskiest to all risk averse decision makers. In particular, the sum S
will exhibit maximal variance when the underlying risks are comonotonic. Che-
ung (2008b) proved that the reciprocal holds as well: if the sum S is maximal
with respect to convex order, then it must be a comonotonic sum, provided that
each underlying risk is integrable and continuous. In the first part of this paper,
we extend Cheung (2008b)’s result to show that if S is a sum with maximal
variance then it must be a comonotonic sum. The continuity assumption is not
needed any longer, but as we make use of the variance of the sum we now need
to impose square integrability on each risk . This result suggests that detecting
maximal variance is meaningful when identifying the most risky situation of a
portfolio.

When only the marginal distributions are given, it often holds that for the
largest convex (comonotonic) sum S many risk measures (such as VaR and
TVaR) are additive. Hence while comonotonicity is a “prudent” dependence
structure, it does not reflect the common intuition that adding risks should bring
some benefit. Hence in the second part of this paper, we study the situation
where besides the marginal distributions of the individual risks, the variance of
the sum S is also provided. We seem to be among the first to do so. Note that
in practical situations it often occurs that besides the marginal distributions one
also knows the variance of the sum S, see for example Vandendorpe et al. (2008)
for a recent study when S represents a sum of credit default risks. Intuitively
one expects that adding the new information on variance may lead to a convex
upper bound that is sharper than the comonotonic one.

Unfortunately, in this paper we show that in such a situation there does not
exist a largest sum in the sense that not all risk averse decision makers will ever
agree on what the most risky situation for the portfolio is. Nevertheless, we show
that a so-called upper comonotonic dependence structure can still be found that
ensures that S behaves like a convex largest sum in the upper tail, and we relate
this to an ordering concept which we label as tail convex order. Broadly speaking
our results imply that while not all risk averse decision makers will consider such
upper comonotonic sum S as the most risky random variable, at least those risk
averse decision makers who are mostly concerned with the variability in the
right tail of the portfolio sum, will consider the upper comonotonic sum as the
largest and riskiest sum.

Electronic copy available at: http://ssrn.com/abstract=1368637



As a natural development, in the final part of this paper we study under
which circumstances the variance order and the convex order will be equivalent.
In such instance we can compare the riskiness of portfolios in terms of convex
order by simply comparing the variance which is simpler to do. We show that
in a variety of contexts the two orderings are in fact equivalent.

The rest of the paper is structured as follows. In Section 2 we summarize
the results that we need in the remainder of the paper regarding the order-
ing of risks, comonotonicity and upper comonotonicity, and we also introduce
the notion of tail convex order. Notation and conventions will be established
as well. In Section 3, we analyze the equivalence of maximal variance and
comonotonicity. Next in Section 4, we study the situation where besides the
marginal distributions of the individual risks also the variance of the sum S is
provided. Finally in Section 5 we identify and discuss various relations that
exist between the variance order and the convex order. In particular, we show
that the two orderings are in fact equivalent in a variety of situations.

2 Preliminaries

Throughout this paper, all random variables are defined on a common probabil-
ity space (2, F,P). Given n one-dimensional distribution functions Fi, ..., F,,
we denote by R(F1,..., F,) the Fréchet space of all n-dimensional random vec-
tors with Fi, ..., F, as their marginal distribution functions. Sometimes we will
also use the shorthand notation R for denoting R(F1,. .., Fy,).

Furthermore, given any random variable X or random vector X, we use Fx
or Fx to denote its distribution function, unless otherwise stated. When we say
that the k-th moment of a given distribution F'y is assumed to exist we mean
that the k-th moment of X exists (k = 1,2,...). Finally, whenever mentioned
all expectations and other statistical quantities used are assumed to exist.

In this section, we recall some basic definitions and results about stochastic
orders, comonotonicity, and upper comonotonicity that are needed for the rest
of this paper.

2.1 Ordering risks

Definition 1 (Convex ordering) The random variable X is said to precede
another random variable Y in the convex order sense, written as X <. Y, if
and only if

E[X]=E[Y] and B[(X —d),] <E[(Y —d).] foralldeR,
where (+)4 = max (+,0).

It follows from the definition that convex order represents the common pref-
erence of risk averse decision makers when choosing between risks with equal



expectations under the Expected Utility framework of von Neumann & Mor-
genstern. Hence the relationship X <., Y can be interpreted as “X is less
dangerous than Y”, see Denuit et al. (1999, 2005) or Dhaene et al. (2006) for
further discussion. The intimate connection between the convex order and the
comparison between risks becomes also visible when considering TVaR. Dhaene
et al. (2006) have shown that

X < Y <= TVaR, [X] < TVaR, [Y] for all p € (0,1), (1)

where the Tail Value-at-Risk (TVaR) at level p of a risk Z is defined as
1 1
TVaR, [7] = —— / VaR, (2] dg,
1-pJ,

in which VaR,, [Z] denotes the Value-at-Risk (VaR) at level p of Z and is equal
to inf {z e R| Fz(z) > p}.

When X and Y are square integrable, X <., Y implies that Var(X) <
Var(Y'). The latter is represented by the notation X <, Y, and we say that
X is smaller than Y in the variance order. Obviously, X <, Y does not imply
X <. Y in general. Nevertheless, we will demonstrate in Section 4 that they
could be equivalent under some special situations.

We will also make use of a weaker ordering concept, which we label as tail
convex order

Definition 2 (Tail convex ordering) The random variable X is said to pre-
cede another random variable Y in the tail convexr order sense with index k€ R,
written as X <icpr) Y, if the following conditions hold:

E[X] =E[Y] and B[(X—d),]<E[(Y -d),] forald>keR.

Broadly speaking, X <;.,) Y can be interpreted as “X is less dangerous
than Y beyond the threshold £”. Of course we have that for all £ € R:

X <ex Y =X Stcx(k) Y7 (2)
and also that for k1 < ko € R:
X Stcw(kl) Y=X Stcw(kg) Y7 (3)

which reflects that the larger the threshold value k the weaker the tail convex
ordering concept is (more pairs of risks can be ordered).

2.2 Comonotonicity

Comonotonicity describes a very special dependence structure among several
random variables in the sense that random variables are comonotonic if they
always move in the same direction. More precisely, we say a subset C of R™



is comonotonic if (s; — ¢;)(s; —t;) > 0 for all ¢,j whenever (si,...,s,) and
(t1,...,tn) belong to C. A random vector (Xi,...,X,) is called comonotonic
if there is a comonotonic set C C R™ such that P((Xy,...,X,) € C) = 1.
Equivalently, (X1, ..., X,) is comonotonic if there is a random variable Z and
non-decreasing functions fi, ..., f, such that

(X1, X0) L (11(2),.... fu(2)).

A useful characterization of comonotonicity in terms of the joint distribution
function is that (X, ..., X,) is comonotonic if and only if for all real numbers
TlyeoeyIp:

FX17,”,X7L(.’131, PN ,.7,‘”) = min{FXl (.7,‘1), .o ,Fxn(.’ljn)}

Throughout this paper, we use the notation X¢ = (X¢,..., X¢) to indicate a
comonotonic random vector, and the corresponding comonotonic sum X{+-- -+
X?¢ will be denoted by S°. An interesting property of comonotonicity is that
VaR, TVaR (and by extension other distortion risk measures) are comonotonic
additive:

VaR,[S°] = zn:VaRp [X¢] and TVaR,[S%] = Z TVaR,[X].  (4)

i=1 =1

For an overview of the basic properties of comonotonicity, we refer to Denneberg
(1994), Dhaene et al. (2002, 2008) and Denuit et al. (2005). Some recent work
about the applications of comonotonicity in finance and actuarial science can
be found in Campana (2007), Deelstra et al. (2008, 2010), Vanduffel et al.
(2008a,b) and Vanmaele et al (2004), amongst others.

2.3 Upper comonotonicity

The concept of upper comonotonicity was first studied by Cheung (2009) as a
generalization of the classical concept of comonotonicity. We say that a random
vector X = (X1,...,X,) is upper comonotonic with threshold a € (RU{—o0})"
if the following holds:

1. {X(w)|w € 2} NU(a) is a comonotonic subset of R™;
2. P(X € U(a)) > 0;
3. {X(w)|w € 2} N R(a) is empty.

Here, U(a) := (a1,0) X -+ X (an,00), R(a) := R"\ (U(a) U L(a)) where
L(a) := (—o0,a1] X -+ X (—00,a,]. Loosely speaking upper comonotonicity
reflects that while in normal markets risks can be correlated with each other
in a normal range, they may become extremely correlated during crisis periods.
Hence upper comonotonicity reflects situations where risks move together in bad
times. For example, while financial stock markets are typically presenting some



positive correlation in normal periods, they become heavily correlated when
markets are collapsing. The same holds true for a portfolio of credit risks where
the collapse of a few major credit counterparts may be contagious and affect
a whole portfolio leading to a sharp increase in the default statistics, see also
Vandendorpe et al. (2008). We will use the notation X“¢2® = (X% ... XUo2)
to indicate that a random vector is upper-comonotonic with threshold a and the
corresponding (upper-comonotonic) sum X;“* + -+ 4+ X¥%? will be denoted by
Suc,a.

Upper-comonotonicity shares many nice properties of the classical notion of
comonotonicity. Cheung (2008b) showed that VaR, TVaR are upper-comonotonic
additive, provided that the probability level is greater than Fxuc.a(a). The next
lemma presents another useful property of comonotonic and upper-comonotonic
random vectors.

Lemma 3 (Property of upper-comonotonicity) Suppose that (Y1,...,Y,)
is comonotonic, and S = Y1+---+Y,. For any d € R, there exist some constants
di,...,dn with dy + -+ d, = d such that

n

E(S—d)4 = ZE(Yi —di)+

i=1

If (Y1, ..., Ys) is upper comonotonic with threshold (aq, ..., a,), the above prop-
erty remains valid for d > a1 + -+ ay,.

The first part of the lemma can be found in Kaas et al. (2002). The second
part concerning upper comonotonicity is taken from Dong et al. (2010).

3 Maximal variance and comonotonicity

In this section, all random vectors considered belong to the same Fréchet space
R(F4,...,F,). The following result essentially states that within R(F7,..., Fy)
the comonotonic sum is the least favorable from the point of view of risk averse
decision makers. A proof for it can be found in e.g. Kaas et al. (2002).

Proposition 4 (Comonotonicity = Largest convex sum) For any random
vector (X1,...,X,) € R(F1,...,F,) it holds that

The proposition makes clear that for sums of random variables with given
marginal distribution functions but unknown dependence structure, imposing
comonotonic dependence leads to an overestimation of the risk and thus allows
“safe” decision making. This property of a comonotonic sum together with its
intrinsic analytical tractability (see equation (4) for instance) has been exploited
in a series of papers dealing with a wide range of problems in finance and
actuarial science; see Deelstra et al (2010) for a recent account.



In this context it becomes useful to characterize comonotonicity further.
Under the assumption that each marginal distribution is continuous with fi-
nite mean, Cheung (2008b) proved that the largest convex sum exhibits the
comonotonic dependence structure:

Proposition 5 (Comonotonicity < Largest convex sum) Assume that each
F; is continuous with finite mean. Then (X1, ..., X,) € R(Fy,...,Fy,) is comonotonic
if and only if for every random vector (X1,...,X]) € R(Fi,...,F,) it holds
that

X{++X7IL Sch1+"'+X7L~

Cheung’s proof of this result is rather technical. In this paper we will give a
direct and simpler proof of this result without invoking the continuity assump-
tion but under an extra assumption that each X; has finite variance. With this
additional integrability assumption, we can further strengthen the characteri-
zation of comonotonicity by replacing the convex ordering in Proposition 5 by
the weaker variance order.

Theorem 6 (Comonotonicity < Largest variance) Assume that each F;
has finite variance. Then (Xi,...,X,) € R(F1,...,Fy) is comonotonic if and
only if for every random vector (X1{,..., X)) € R(F1,...,Fy,) it holds that

X{_|_..._|_X7’ISUMX1_|_..._|_XH.

Proof. Step 1: Let us denote by r(X;, X;) the Pearson’s correlation coefficient
of the random variables X; and X;. In this step we first show that (X;, X;) is
comonotonic if and only if r(X;, X;) is maximal. While a proof can be found
in From Dhaene et al. (2002), the proof of their “if” part is not complete and
requires modification. Here we provide a complete proof of it. Without losing
generality, we assume that ¢ = 1 and j = 2. From Dhaene et al. (2002), the
maximality of r(X1, X5) implies that

“+o0
/ [Fxe xg(x,d —x) — Fx, x,(v,d — )] dx =0 for all d. (6)

—0o0

The integrand is non-negative by the Fréchet-Hoeffding inequality. From this
Dhaene et al. (2002) concluded that for all = and d,

FX17X2 (:L‘,d - m) = FX{yXS (xv d— :L‘) = min{FX1 (x)7FX2 (d - :E)},

and hence Fx, x, = Fx¢ x;. However, we can indeed only conclude from (6)
that

Fx, x,(z,d —z) = min{Fx, (z), Fx,(d —x)} for all x outside Ny,

where Ny is a subset of the real line with zero Lebesgue measure, and this
null set depends on the choice of d. In general, the set of all (a,b) such that



Fx, x,(a,b) # min{F¥, (a), Fx,(b)} may be very large. Hence in order to show
that Fx, x,(a,b) = min{Fx, (a), Fx,(b)} for all ¢ and b, further work is required.
To this end, we make use of the right-continuity of Fx, and F¥x,. Fix any
real numbers a and b. Let d = a + b. For each positive integer n we choose
an € (a,a+1/n)NNg,, ,,. This is always possible because if (a, a+1/n)NNg, , /,,
is empty, then the Lebesgue measure of Ny i/, is non-zero. Next let b, =
d+1/n—a,. Then a, > a,b, > b and a,, — a,b, — b. By passing to a
subsequence if necessary, we may assume that a, \, a and b, \, b. By right
continuity we have

lim FXl,Xg (an,bn) = FX1,X2 (a,b)

and also
nhjréo FXl,X2 (anv bn) = nhiréo min{FX1 (an)v FX2 (bn)} = min{FX1 (a)7 FX2 (b)}

Therefore, Fx, x,(a,b) = min{F¥x, (a), Fx,(b)} for all real numbers a,b, and
hence (X7, X3) is comonotonic.

Step 2: Now we are ready to complete of proof of Theorem 6. The “only if”
part follows from Proposition 4. For the “if” part, suppose that Var(Z?zl X;)
is maximal but that (Xi,...,X,) is not comonotonic. From Step 1 it follows
that at least one 7(Xj, X;) is not maximal. Hence we find that Var(3~7_, X;) <
Var(zyzl X§) must hold, which is a contradiction. This completes the proof.
|

Alternatively, Theorem 6 also follows from a result by Cuesta and Matran
(1989), which asserts, in a Hilbert space setting, that E[(X; — X3)?] attains its
minimum value over all pairs (X, X2) with prescribed marginal distributions
with finite second moments precisely when (X, X5) is comonotonic. The essence
in this work is that E[X; X5] is maximized over all pairs (X7, X2) with prescribed
marginal distributions precisely when (X7, X5) is comonotonic, which can also
be regarded as a version of Hardy-Littlewood inequalities found in Féllmer and
Schied (2004, Theorem A.24). The proof provided here is more transparent and
elementary.

4 Bounds when the marginal distributions and
the variance of the sum are fixed

In practice it often occurs that besides the marginal distributions, one also
knows the variance of its corresponding sum S. Indeed while the distribution
function and most risk measures of S are often difficult to obtain, its variance
may be readily available. Intuitively one may then expect that adding this new
information may sharpen the comonotonic bound discussed above. So a natural
question then is that if the variance of the sum is fixed, how can we achieve
the largest convex sum and how does this relate to the comonotonic bound we
discussed in the previous section.



4.1 General consideration

To begin with, we fix a Fréchet space R = R(F1,..., F,) where it is assumed
that all the F; (i = 1,2, ...,n) have finite variance. Then we define a subset con-
taining the random vectors with a fixed variance for the sum of its components.
Formally

R ={(X1,....X,) e R| Var(X1 +--- + X,,) = K},
where K is always taken such that
Cardinality of {Distribution of X1 +---+ X,, | (X1,...,X,) € Rx} > 1.

For instance, K cannot be the variance of the comonotonic sum. We aim to
find some (Y7,...,Y,) € Rk such that

X1+"'+Xn Scx Y1++Yn
for all (Xq,...,X,) € Rk. Surprisingly, we have the following negative result:

Theorem 7 (No convex largest sum exists in Rx) There does not exist a
mazximal vector in Ry with respect to the convex order.

Proof. We prove the theorem by contradiction. Suppose that (Y1,...,Y,) is
maximal in R i with respect to the convex order. Let Sy be the sum Y;+---4Y,,.
Let (X1,...,X,) be an arbitrary random vector in R, and let Sx be the sum

X1+ -+ X,,. We claim that Sy 4 Sy. To see this, we follow the idea of
Denuit et al. (2005, p. 151). By the identity

1 oo
FVar(s) = [ (BI(S— 0]~ (BIS] — 1))
(cf. Kaas et al. (1994, p. 68)) and the fact that Var(Sx) = Var(Sy) = K, we
have

/ T (BISx — )]~ El(Sy 1)) dt = 0.

However, the integrand is positive because Sx <., Sy. Thus E[(Sx — t)4+] =
E[(Sy — t)4+] for almost all ¢t € R. As both functions ¢ — E[(Sx — t)+] and

t — E[(Sy —t)4] are decreasing, Sx and Sy have the same stop-loss transforms,

which implies that Sx 4 Sy. We arrive at the contradiction that the sum of

every random vector in Rx has the same distribution. m

The theorem implies that for a portfolio of risks where the marginal distribu-
tions as well as the variance of the portfolio sum are known, it cannot occur that
all risk averse decisions will ever be agreeable on what the most risky situation
for the portfolio sum is.

Despite this negative result, we show in the next theorem that for a given
fixed non-minimal variance, one can always find a dependence structure such



that the corresponding sum “behaves like a comonotonic sum in the upper
tail”. Hence while not all risk averse decision makers will consider such upper
comonotonic sum S as the most risky random variable, at least those risk averse
decision makers who are mostly concerned with the variability in the right tail
of the portfolio sum, will consider the upper comonotonic sum as the largest
and riskiest sum.

Theorem 8 (Tail convex largest sum in Rx) If all F; and F, ' are con-
tinuous, and K s not minimal, then there always exists an upper comonotonic
vector (Y1,...,Y,) € Rx . Moreover there exists a threshold k € R such that
forall (Xq,...,Xn) €R

X1+'~'+XnStcm(k)yl"_-“'i'}/n (7)

Proof. First fix an arbitrary random vector (Z1,...,7,) € R such that
Var(Zy + -+ + Z,) = K is not minimal. The non-minimality of K (for in-
stance, K is not the variance of the sum of two counter-comonotonic random
vector when n = 2) implies the existence of some (X7,...,X},) € R such that

K >1l:=Var(X]+ -+ X]).
We also let (X§,...,X<5) € R be comonotonic such that
L:=Var(X{+ -+ X;) > K.

If K = L, we may simply take (X7,...,X) as the desired random vector. In
what follows we assume that [ < K < L. Denote the copula associated with
(X1,..., X)) as C. Let Vi,...,V, be n uniform(0,1) random variables with

copula C. Tt is clear that (Fy'(Vi),...,Frt(V,)) £ (X),...,X"). For any
B € [0, 1], define

Y = F ' (Iwspy U + Liw<p BVi),  i=1,...,n, (8)

where U is any uniform(0, 1) random variable independent of (V1,...,V,), [{u>gy
and Iy <gy are indicator functions. It is easy to check that I1y 5y U+I{y<p 8Vi
is also uniform(0, 1) distributed, so Y# := (Y{®,...,Y) € R. By construction,
Y# is upper comonotonic with threshold a” := (F; *(8),...,F,(B)). Now
define
f(ﬁ) :Var(ylﬁ—i_—i_yv’?)» 56[071]

When 8 =0, (Y?,...,Y)?) is comonotonic, so f(0) = L. When 3 = 1, we have
(Vi,.... ¥ £ (X, ..., X’) and hence f(1) = I. Moreover, f is continuous by
the monotone convergence theorem. Thus by the intermediate value theorem,
there exists some §* € (0,1) such that

F(87) =Var(y{" +--+Y)) = K.

Hence Y# is an upper comonotonic vector in R .
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Finally, we check that there exists some k such that Y?" fulfills (7) for all
(X1,...,X,) € R. To this end, we let k = a? +---+af = F7YB) +-- +
F1(B*). Then for any d > k and (X1,...,X,) € R, Lemma 3 implies that

n
there are some constants dq,...,d, with d; 4+ -- -+ d,, = d such that

n
E(Yf* ot Ynﬁ* —d)y = ZE(Yiﬁ* —d;i)+
1=1

= D EB(Xi—di)y
i=1

E(X1 4+ + X, —d)s,

%

as desired. m

The copula C in the above proof, which is the joint distribution of V;,...,V,,,
is called the base copula of the upper comonotonic random vector (Y7, ..., Y5).
In general, different base copulas lead to different upper comonotonic random
vectors in Rg.

From Theorem 8 it follows that in a situation where the marginal risks
present upper comonotonic behavior, the risk of the portfolio sum S as measured
by VaR or TVaR will be rather robust with respect to changing the correlations
between the risks. More precisely, if (Xi,...,X,) and (X7,...,X]) are two
portfolios of upper comonotonic risks with the same marginals, the sums S =
X1+ +X,and §' = X| +- -+ X/, may have different variance but yet their
VaR or TVaR will be the same whenever the probability level p is larger than
some threshold p*:

VaR,[S] = VaR,[S'] = VaR,[X1] + - - + VaR,[X,], p > p*.

It also follows that, when the marginal distributions as well as the variance
of the sum are known, using an upper comonotonic sum to determine capital
requirements does not guarantee that diversification effects between the risks
will be accounted for, i.e. when S is an upper comonotonic sum we still have
that VaR, [S] = """, VaR, [X;] for all p > p* where p* is some non-negative
threshold value.

4.2 The two-dimensional case

In the two-dimensional case, more can be said in relation to Theorem 8. The
Fréchet lower bound copula Cf(u1,us) = max(0,u; + us — 1) corresponds to
the minimal variance of the sum for all random vectors in a given Fréchet space.
Hence if we replace in the proof of Theorem 8 the copula C' by C', we obtain a
new function f, which always lies below the original f:

Lemma 9 (Dominating f) Suppose that n = 2. If we replace the copula C
in the proof of Theorem 8 by Cp, to obtain a new function f, then f < f.

11



Proof. Let (V1,V2) and (V{, V3) be two pairs of uniform(0, 1) random variables
with copula C' and Cf, respectively, and U any uniform(0, 1) random variable
independent of V4, Vo, V{, V4. For any § € [0, 1],

2

15 TwspU + Lu<p 8:)
=1

1(8) = F(8) E

2
H FH LU + Lu<p BVY)
i=1

2
[TF(5v)

=1

—E

e |

which is positive because (Fy ' (8V1), Fy 1(8V2)) and (F; H(BVY), Fy ' (8VY)) have
the same marginal distributions but the latter is counter-comonotonic. m

2

15 6v)

i=1

—-E

From this lemma we find that if C', is used as the base copula, the corre-

~ %
sponding 3 will be the smallest possible to determine a upper comonotonic
random vector (Y{ ,Y{ ), in the sense that for all (X, X,) € R it holds that

Xl + X2 Stcw(k) Ylﬁ + YQB (9)
with &k equals o + ag*, and there exists no I < k € R nor other upper
comonotonic vector in R g for which such relation holds.

5 Equivalence between convex order and vari-
ance order

Since the variance order is weaker than the convex order in general, it follows
that increasing the correlations between the marginal risks X1, ..., X,, hence
increasing the variance of their sum S, may not imply that the sum .S becomes
larger with respect to the convex order, and thus more dangerous to risk averse
decision makers. On the other hand, we also know from Theorem 6 that in the
extreme case of comonotonicity, we always have such an equivalence between
convex order and variance order. The question arises naturally whether there are
no situations where increasing variance of S is always equivalent with increasing
danger of S. In other words, if (Xi,...,X,) and (Y1,...,Y,) have the same
marginals, is it possible for

n n n n
ZXi Svar ZY; — ZXz Scm ZY; (10)
i=1 i=1 i=1 i=1

to hold true? In this section, we will demonstrate several instances in which
(10) holds true. In these situations, we can compare the riskiness of portfolios
with same marginals by simply comparing their variance, which is a much easier
task in general.
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5.1 Location-scale family of distributions

To begin with, we consider the location-scale family of distributions. We will say
that a random variable X belongs to the location-scale family with generator Z
if there exist positive real constants a and b such that

XLa Z+0 (11)

As the first example, we show that when sums of risks belong to the same loca-
tion scale family of distributions we find that increasing variance is equivalent
with increasing convex ordering.

Proposition 10 (Location-scale family of distributions) If the sums Sx =
Yo X and Sy =Y.' | Y; belong to the same location-scale family with a com-
mon generator Z, then

SX <var SY — SX <cz SY-

Proof. To prove “=", we can assume that E[Z] = 0 and Var(Z) = 1 without
loss of generality. Since Sx and Sy belong to the same location-scale family

with Z, there exist b > 0 and c¢ such that Sx 207 +c. Simple calculation
reveals that b = /Var(Sx) and ¢ = E[Sx], so

Sx < Vv Var(Sx)-Z +ec.
Similarly, we have

Sy < Vv Var(Sy) - Z + c.

Fsy(z) < Fg, (x) for x <c,

Let us observe that

whereas
Fsy(xz) > Fg, (x) for > c.

From this it follows by the so-called cut criterion (see e.g. Miiller and Stoyan
(2002)) that Sx <;ci Sy. Together with the fact that E[Sx| = E[Sy], the result
follows. m

Under the conditions of Proposition 10, we have either 7" | X; <, > |V,
or > Y < > X; must hold. An important situation where the condition
of the proposition holds (i.e., both Sx and Sy belong to the same location-scale
family with a common generator) is when (X1, ..., X,,) and (Y1, ...,Y,) are mul-
tivariate elliptically distributed with the same characteristic generator ¢. In par-
ticular choosing the characteristic generator equal to ¢(u) = exp (—u/2) gives
rise to a multivariate normal distribution for both (X7,..., X,,) and (Y1,...,Y},).
For more information on elliptical distributions we refer to the extensive survey
of Fang et al. (1990). For a recent application of elliptical distributions in fi-
nance and actuarial science; see Valdez et al. (2009) as well as the references
herein.
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5.2 Upper comonotonicity and conditional comonotonic-
ity

Let us assume that there exists an injective mapping I > ¢ — (X?,..., X!) €
R(F4,. .., F,) such that

<ty = XD+ o+ XD <, XP+ X2
— Var(XP' +. + X)) < Var(XP + - + X2),

where [ is any subset of R. It is evident in such case the three statements are
effectively equivalent, and in particular that the variance order will imply the
stronger convex order. In what follows, we demonstrate how one can apply
this general principle concretely using the notion of upper comonotonicity and
conditional comonotonicity.

5.2.1 Upper-comonotonicity

We fix two continuous marginals Fi, F5 and a 2-copula C'. Define Yiﬁ as in (8)
with base copula C":

Y] = F ' LwepU + Lwspy V), i=12, Be01].

From the proof of Theorem 8, (Y{B , YQ’B ) is upper-comonotonic. We prove that
the equivalence between convex order and variance order can be obtained when
varying the parameter 3, provided that the base copula C satisfies an additional
property. In what follows, we denote the joint distribution of (YIB , YQB ) as Fjg,
and the sum Ylﬁ + YQB as Sg. The notation z = x A y is used to denote z =
min(z,y). Let (by,bs) := (F; ' (8), Fy *(B)). Cheung (2009) proved that

(a) if s1 > by and sy > bg, then FB(Sl,Sg) = F1(51) A\ FQ(SQ);
(b) otherwise, F3(s1,s2) = Fa(s1 Ab1,s2 A ba).

Proposition 11 (Upper tail comonotonic sums when n =2 ) If the base
copula C' fulfills the following property:

y—v-C (ﬂ, 2) is decreasing on [max{sy, s2},1] for every s1,s2 € [0,1],
T (12)
then
0<a<fB<1l <= Fp(s1,s2) < Fy(s1,82) for every si,ss
= S5 < Sa
= S5 <par S (13)

Proof. We first prove the direction “— ”: Fix 0 < a < 8 < 1. The condition
Fp(s1,82) < Fu(s1, s2) for every s1, s2 is exactly the definition of correlation or-
der: (Yf , YQ’B ) is smaller than (Y;*,Y5*) in the correlation order, see for example
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Dhaene and Goovaerts (1996). It was proven there that the correlation ordering
implies the convex ordering of the sum and thus the variance ordering as well.
Thus, it is enough to prove the right-hand implication in the first line of (13).
To this end let (b1,b2) := (F; 1(B), F5 ' (B)) and (a1,as) := (F (), Fy ' ().
Note that b; > ay and by > as. When s1 < a; and s < ag,

Fo(s1,82) = a-PlaVi < Fi(s1),aVa < Fy(s2))
— . Fl(sl) FQ(SQ) ) Fl(sl) FQ(SQ) _ s s
- C<—a = )25 C( 55 > Fps(s1,52),

where the inequality follows from assumption (12). When s1 > a1 and sz > ag,
Fa(sl, 82) = Fl(sl) A FQ(SQ) > FB(Sla 82)

because Fi(s1) A Fa(sz) is the Fréchet upper bound of all joint distribution
functions at (s1, s2) with marginals F} and F5. When s; < a1 and s3 > ag, and

Fa(Sl,Sg) = Fa(sl,a2) = - C (#,1) = Fl(Sl)

and

Fs(s1,82) = Fg(s1,82 Nb2) =3-C <F1(31) Fy(s2 /\bz)) ,

B B

thus we have

Fo(s1,82) = Fi(s1) = B-C(Fl(;l),l)

> p-C (Fl(;l), F2(525/\ b2)) = Fp(s1,52).

Similarly, one can prove that F,(s1,s2) > Fﬁ(sl, s2) when s1 > a1 and s2 < as.
Combining all these cases together yields Fy,(s1, s2) > Fg(s1, s2) for all s; and
s9. For the proof of “«<= ”: Suppose that Sz <,qr So. If @ > (3, the proof
of “= "above implies that S, <4 Ss. However, S, and Sg have different
distributions by construction. This leads to a contradiction and hence we must
have a < 3. m

We remark that condition (12) is fulfilled by some commonly used copula,
like the independence copula Cr(u,v) = uv and the Fréchet lower bound copula
Cr(u,v) = max{u+v—1,0}. The underlying meaning of Proposition 11 is that
when the parameter /3 gets smaller, the random vector (Ylﬁ , YQB ) is comonotonic
over a larger upper quadrant, and hence the sum Sz becomes convex bigger. We
also remark that if the dimension n is strictly greater than two, the construction
above no longer works. While Fg < F, still holds true when a < 8 when the
base copula fulfills the n-dimensional analog of condition (12), it is known that
such an ordering of the joint distribution functions is not strong enough to
guarantee a corresponding convex order of the sums.
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5.2.2 Conditional comonotonicity

To apply the general principle stated at the beginning Section 5.2 in higher
dimensions, we consider a notion called conditional comonotonicity. Loosely
speaking a random vector is comonotonic conditional on a certain sub-o-field if
the corresponding regular conditional distribution is comonotonic almost surely,
see Jouini and Napp (2004) for the precise definition and the rationale behind
the concept. Cheung (2007) proved, under some topological assumptions on the
underlying sample space, that conditional comonotonicity is equivalent to local
comonotonicity on each atom of the sub-o-field. A proof for the following result
can be found in Cheung (2008a).

Proposition 12 (conditionally comonotonic sums) Given the marginal dis-
tributions Fi, ..., F, and filtration F1 C Fo C ---, there exists a sequence of
random vectors YY1, Y?, ... in R(Fy,...,Fy,) so that

Sl Zcx 52 chz SS ch Tty (14)

where S* :=YF + - + Y and each Y* is comonotonic conditional on Fy.

n’

Because of (14), the family {Y!, Y2, ...} provides an n -dimensional example
of the equivalence between the convex order and the variance order of the sums:

S <cz S" = 5™ <var Sn7 m < n.

The idea here is similar to that of Proposition 11. When the index k is larger,
the atoms in F}, becomes smaller and so Y* is comonotonic over a larger number
of bigger regions. This makes the sum S* convex smaller.
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