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Abstract

This study aims to develop analytical solutions for steady electroosmotic (EO)

flow of a viscoplastic material, namely Casson fluid, through a parallel-plate mi-

crochannel. The flow is driven by electric as well as pressure forcings. A very thin

electric double layer is assumed, and the Debye-Hückel approximation is used.

The Casson yield stress makes the present problem distinct from existing studies

on EO flow of other kinds of non-Newtonian such as power-law fluids. A first

step of the analysis is to locate the yield surface, which divides the flow section

into sheared and unsheared regions, where the stress is larger and smaller in mag-

nitude than the yield stress, respectively. Different combinations of the electric

and pressure forcings can lead to different types of distribution of stress relative

to the yield stress. In this study, integrals of the nonlinear coupling terms of the

two forcings are analytically expressed by uniformly valid approximations derived

using the boundary-layer theory. It is shown that even a small value of the Casson

yield stress, characteristic of that of blood, can considerably reduce the rate of

flow of the fluid through a microchannel by electroosmosis. The decreasing effect

of the yield stress on the flow is intensified by the presence of a pressure gradient,

whether favorable or adverse.

Keywords: Electroosmotic flow; electric double layer; Casson fluid; viscoplastic

yield stress.
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1 Introduction

The rheology of fluid is an important consideration in microflows: Newtonian as well

as non-Newtonian fluids need to be considered in engineering flows through micro-

devices [1]. In these small devices, polymeric solutions are often used as the media

for DNA and protein separation [2]. Colloidal systems involving blood are also often im-

plemented on a microscale. A Newtonian model will fall short in describing the rheology

of these systems.

The need to understand the effect of non-Newtonian rheology in microflows has

spurred a growing interest in this topic in recent years. Flow through a microchannel

is commonly driven by a pressure gradient, an electric field, or a combination of both.

Flow driven by electric field works on the basis of electroosmosis, and is therefore known

as electroosmotic (EO) flow. A body force that drags fluid into motion arises when the

electric field interacts with the unbalanced charge in an electric double layer (EDL),

which is formed at the contact interface of an electrolyte and a solid surface.

While pressure-driven non-Newtonian flow has long been studied, the EO flow of

a non-Newtonian fluid was not theoretically investigated until recently. Motivated

to study biofluids in micro-systems, Das and Chakraborty [3], and Zimmerman et

al. [4] were among the first to present theoretical work on non-Newtonian electroki-

netic flow and transport in microchannels. The non-Newtonian model adopted by Das

and Chakraborty [3] is the power-law model, while that by Zimmerman et al. [4] is the

Carreau model. The power-law (also known as Ostwald-de Waele) model is one of the

simplest models to describe nonlinear viscous behaviors. It is a two-parameter model,

where the shear-thinning or shear-thickening behaviors can be conveniently represented

by the flow index being less than or larger than 1, respectively. For sufficiently simple

geometry and in the absence of other forcings, it is possible to determine EO flow of a

power-law fluid analytically.

EO flow of a power-law fluid in microchannels of various shapes (single surface,

parallel-plate, rectangular, cylindrical, or annular) has since then been intensively stud-

ied. For relatively simple flows (e.g., one-dimensional flow, no pressure forcing, linearized

Poisson–Boltzmann equation), analytical or semi-analytical solutions (exact or approx-
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imate) have been obtained by Chakraborty [5], Berli and Olivares [6], Zhao et al. [7],

Olivares et al. [8], Zhao and Yang [9–11], Berli [12], Vasu and De [13], and Sadeghi et

al. [14]. More complicated flows (e.g., two-dimensional flow, unsteady flow, nonlinear

coupling of the EO and pressure forcings, nonlinear Poisson–Boltzmann equation) can

only be solved or simulated numerically. Such numerical studies have been performed

by Bharti et al. [15], Tang et al. [16], Vasu and De [17], Babaie et al. [18], Hadigol et

al. [19], Cho et al. [20,21], Deng et al. [22], Shamshiri et al. [23], and Vakili et al. [24].

Because of its simplicity, the power-law model has been the most chosen model to de-

scribe non-Newtonian rheology in EO flow through microchannels. Much fewer existing

studies are based on other models. The Bingham, Herschel–Bulkley, and Carreau mod-

els have been selected only in a limited number of studies (e.g., Berli and Olivares [6],

Tang et al. [25], Zhao and Yang [26]).

The present study aims to look into flow of a particular kind of viscoplastic material,

viz. Casson fluid, under the combined action of electrokinetics and pressure gradient in

a parallel-plate microchannel. Polymeric solutions and colloidal suspensions are often

classified as viscoplastic materials. They exhibit a yield stress, a critical value of stress

below which the materials do not flow or flow like a rigid body. Most viscoplastic

materials can be described by the Bingham, Casson, or Herschel–Bulkley models [27].

Electrokinetic driven flow of Casson fluids in microcapillaries has been studied by Liu

and Yang [28] and Liu et al. [29], who applied a two-phase Newtonian/non-Newtonian

model to describe blood flow.

The model proposed by Casson [30] can be generalized into

µγ̇ =





[
1 −

√
τ0/|τ |

]2
τ for |τ | > τ0

0 for |τ | ≤ τ0
, (1)

where τ is the stress tensor, γ̇ = ∇u + (∇u)T is the rate of deformation tensor, µ is the

plastic viscosity, τ0 ≥ 0 is the Casson yield stress, and

|τ | =
√

1
2
τ : τ (2)

is the magnitude of the stress. The Casson model reduces to the Newtonian model when

the yield stress vanishes τ0 = 0, by which µ becomes the Newtonian viscosity. Even with
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a non-zero yield stress, a Casson fluid will asymptotically behave like a Newtonian fluid

as the stress increases to a level much higher than the yield stress. The viscosity µ is

also known as the limiting Newtonian (high-shear-rate) viscosity.

The Casson model was originally developed for pigment-oil suspensions of the print-

ing ink. It is now commonly used to describe the rheology of blood [31, 32]. The yield

stress of blood is a strong function of the volume fraction of red blood cells, or the hemat-

ocrit. At hematocrit of 40%, the yield stress for normal blood is typically 0.04 dynes/cm2

or 4 mPa [32]. Such a small value of yield stress is often regarded as physiologically in-

significant for blood flow in large vessels. The significance of the Casson yield stress,

however, remains to be determined for EO flow in microchannels. This has motivated

the present study. The behaviors of a Casson fluid under EO pumping in a microchannel

are yet to be fully understood.

A complication arises in the analysis of flow of a yield-stress fluid. It needs to divide

the flow domain into regions where the stress is smaller or larger in magnitude than

the yield stress. The two regions are accordingly called unsheared (or unyielded) and

sheared (or yielded) regions. The location of the yield surface, which is the interface

between the two regions, is in general not known a priori, and has to be found as part

of the final solution. The problem then becomes highly nonlinear, and can only be

solved numerically. To study the physics as analytical as possible, we shall consider

in this study strictly one-dimensional flow in a uniform channel, for which the stress

distribution is known prior to finding the velocity. With a known stress distribution, the

position of the yield surface can be readily determined. The velocity can then be found

straightforwardly.

Another complication arises when the flow is simultaneously driven by two forcings.

Owing to nonlinear rheology, linear superposition of solutions due to individual forcings

is not applicable. A nonlinear coupling term of the two forcings is bound to appear when

the Cauchy momentum equation is solved for the velocity. As a result, the velocity may

not be analytically expressed, unless some approximations are made (e.g., Zhao and

Yang [9]).

In the present problem, both pressure and electric forcings are considered, and they
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can independently affect the stress distribution. Different combinations of the two forc-

ings will lead to qualitatively different stress distributions, thereby different types of the

partitioning into sheared and unsheared regions. We shall first identify all the possible

cases of stress distribution, and then derive expressions for the velocity in each case.

To obtain analytical expressions for the velocity, we shall use the boundary-layer theory

to approximate the integral of the nonlinear coupling term. If the electric double layer

(EDL) is very thin compared with the channel height, the stress distribution will have

two components. Across the entire channel section is a slowly varying component due

to the pressure forcing, while near the wall is a rapidly varying component due to the

electric forcing. By virtue of this boundary-layer structure, an asymptotically uniform

approximation can be deduced for the integral.

In the modeling of flow of non-Newtonian polymeric solutions in microchannels, a

two-phase distribution of rheology is often considered: near the wall is a thin layer which

is depleted of polymer molecules and is hence Newtonian, while outside this layer the

fluid is non-Newtonian. This two-phase configuration also accounts for the well-known

Fahraeus–Lindqvist effect in blood flow in a capillary: the apparent viscosity of blood

decreases as the tube diameter decreases. This is due to the fact that adjacent to the

capillary wall is a plasma skimming layer, which is depleted of red blood cells and is hence

a region of reduced viscosity. Such a near-wall depletion effect has been incorporated

in the EO flow models by, among others, Zimmerman et al. [4], Berli and Olivares [6],

Olivares et al. [8], Berli [12], Liu and Yang [28], and Liu et al. [29]. In the present

problem, we shall, however, not consider the depletion layer. We simply consider the

EO flow of a one-phase fluid that is homogeneously non-Newtonian. This will enable

us to look into the coupling effect of the electrokinetic forcing and the non-Newtonian

rheology, as has been done by Babaie et al. [18] and Hadigol et al. [19]. We leave it to

a future study to extend the problem to a two-phase model.

Our problem is further described in Section 2, where assumptions are stated as the

problem is mathematically formulated. The various possible cases of stress distributions

are then described in Section 3. For each case of stress distribution, the position(s) of

the yield surface(s) and the velocity are analytically derived. We shall then examine in

Section 4, through some numerical results, the effect of the yield stress on the flow rate
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as a function of the pressure gradient. Velocity profiles are also presented for illustration

of the yield stress effects. Some concluding remarks are finally given in Section 5.

2 Combined pressure-driven and electroosmotic flow

We consider steady flow through a microchannel bounded by two parallel plates, which

are uniformly charged with a zeta potential ζ, and at a distance 2h apart. Figure 1

shows a definition sketch of our problem, where (x, y) are the streamwise and transverse

coordinates, respectively. The channel is filled with a non-Newtonian liquid electrolyte,

which can be modeled as a Casson fluid. Because of symmetry of the flow about the

mid-plane, it suffices for us to consider only the lower half of the channel 0 ≤ y ≤ h.

The flow is simultaneously forced by a constant electric field Ex and a constant

pressure gradient Px = −dp/dx, both purely in the x-direction. When fully developed,

the flow is strictly one dimensional, and is governed by the Cauchy momentum equation

as follows:

Px +
dτ

dy
+ ρeEx = 0, (3)

where τ = τxy(y) is the shear stress, and ρe(y) is the free charge density in the electric

double layer (EDL) of the channel wall. Here, the pressure gradient and the electric

field can be both externally applied (and thereby independent of each other), or one is

applied while the other is induced (e.g., streaming potential in pressure-driven flow, or

electroosmotic pressure induced in EO flow in a closed channel). For generality, we shall

treat them as two independent forcings in our following analysis.

The electric potential ψ(y), measured relative to the bulk solution phase, where ψ is

zero, is related to the charge density ρe by the Poisson equation (which simplifies in one

dimension into)
d2ψ

dy2
= −ρe

ε
, (4)

where ε is the dielectric permittivity of the liquid electrolyte.

With Eq. (4), Eq. (3) can be integrated to give the stress distribution

τ (y) = Px(h− y) + εEx
dψ

dy
, (5)
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where the symmetry boundary conditions τ = 0 and dψ/dy = 0 at y = h have been

used. This stress distribution is valid for any type of generalized Newtonian fluid.

Consider a symmetrical electrolyte of valence z and a Boltzmann distribution of the

electrolyte ions in the EDL, the charge density is given by

ρe = −2zen sinh

(
zeψ

kBT

)
, (6)

where e is the fundamental charge, n is the bulk concentration, kB is Boltzmann’s

constant, and T is the absolute temperature. Putting Eq. (6) into Eq. (4) will form

the well-known Poisson–Boltzmann equation. On further assuming small potentials,

zeψ/kBT � 1, the Poisson–Boltzmann equation can be linearized to

d2ψ

dy2
= κ2ψ, (7)

where κ = (2z2e2n/εkBT )1/2 is termed the Debye parameter, the inverse of which is the

Debye shielding length of the EDL. The linearization of the Poisson–Boltzmann equation

is also known as the Debye-Hückel approximation. In view of the fact that the Debye

length is usually of the order of tens of nanometers (for a buffer concentration larger

than 1 mM), while the height of a microchannel is usually of the order of microns, it is

reasonable to further assume that the EDL is much thinner than the channel height, or

κh � 1. Therefore, the electric potential is essentially zero in the core of the channel.

With the boundary conditions ψ(0) = ζ and ψ(h) = 0, where ζ is the wall zeta potential,

Eq. (7) can be readily solved to give

ψ(y) = ζe−κy . (8)

Substituting this into Eq. (5), we now obtain the stress distribution as

τ (y) = Px(h− y) + τEe
−κy in 0 ≤ y ≤ h, (9)

where

τE = −εκζEx (10)

is the wall stress induced by the electric field. Without loss of generality, we shall assume

that the electric wall stress τE is always positive, while the pressure gradient Px can be

positive (favorable), zero, or negative (adverse).
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The liquid solution is assumed to behave like a Casson fluid with a constant yield

stress τ0 and constant plastic viscosity µ. Under simple shear, the Casson constitutive

Eq. (1) reduces to

µ
du

dy
=





τ − 2τ
1/2
0 τ 1/2 + τ0 for τ > τ0

0 for |τ | ≤ τ0

τ + 2τ
1/2
0 (−τ )1/2 − τ0 for τ < −τ0

. (11)

One may note that by omitting the terms containing τ
1/2
0 and reversing the sign of τ0,

the above equation becomes the Bingham model. As will be shown in the next section,

the significance of the present problem is much due to the term τ
1/2
0 . Hence, the effects

to be found here are specific to a Casson fluid, and may not be manifested in other

yield-stress materials like Bingham plastic.

To facilitate discussion, let us introduce the following normalized variables (distin-

guished by an overhead caret) and dimensionless parameters:

ŷ = y/h, κ̂ = κh, û = u/ (τE/µκ) , (τ̂ , α, β) = (τ, Pxh, τ0)/τE. (12)

Note that the velocity is normalized by τE/µκ = −εζEx/µ, which amounts to the

Smoluchowski slip velocity for Newtonian fluid. The parameter β, which is the nor-

malized yield stress, is always non-negative. The other parameter α, which represents

the normalized pressure gradient, can be positive (favorable pressure gradient), zero, or

negative (adverse pressure gradient).

In terms of the normalized variables and dimensionless parameters, Eqs. (9) and (11)

can be written as

τ̂ = α(1 − ŷ) + e−κ̂ŷ in 0 ≤ ŷ ≤ 1, (13)

dû

dŷ
=





κ̂
[
τ̂ − 2β1/2τ̂ 1/2 + β

]
for τ̂ > β

0 for |τ̂ | ≤ β

κ̂
[
τ̂ + 2β1/2(−τ̂ )1/2 − β

]
for τ̂ < −β

. (14)

These two equations form the basis of the present study. In the following section, we

shall look into various possible stress distributions and deduce the corresponding velocity

profiles. From here on, we shall for simplicity drop the overhead carets.
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3 Possible stress and velocity profiles

It is necessary that, in order to determine the velocity, the flow domain is divided

into sheared and unsheared regions, where the stress is larger and smaller in magni-

tude than the yield stress, respectively. The interface between the two regions, known

as the yield surface, along which the stress is equal in magnitude to the yield stress,

needs to be located before the flow in individual regions can be determined. In the

present one-dimensional problem, for which the stress distribution is known before the

velocity is found, it is straightforward to locate the yield surface and to identify the

sheared/unsheared regions. Figure 2 shows schematically 6 possible cases. In any case,

the fluid will remain static until the maximum stress exceeds the yield stress. In the

following sections, we shall provide for each case the condition(s) for fluid in motion

pertinent to the case, as well as analytical expressions for the yield height(s), and for

the velocity profile.

3.1 Base case: α = 0, 1 > β

In the absence of pressure gradient, the stress distribution reduces to τ = exp(−κy), as

shown in Fig. 2(a). The shear stress drops sharply from unity at y = 0 to virtually zero

far from the wall. In this case, the maximum stress occurs at the wall, and the condition

for the fluid to be set into motion is

1 > β. (15)

There is only one yield surface, located at a height y0 (referred to as the yield height)

given by exp(−κy0) = β, or

y0 = −κ−1 lnβ, where 0 ≤ y0 ≤ 1. (16)

The height of the yield surface is at y0 = 0 when β = 1 (i.e., at the threshold of motion).

The height increases monotonically as the yield stress decreases. The limiting case is

y0 = 1 when β = 0 (i.e., a vanishing unsheared region at the Newtonian limit). For a

finite value of 1 > β > 0, because of κ� 1, the yield height is very small y0 � 1, or the

yield surface is located within the EDL near the wall, as expected. The sheared region
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is 0 ≤ y < y0, within which the velocity satisfying no slip at the wall can be readily

found to be

u(y) = 1 − e−κy − 4β1/2
(
1 − e−κy/2

)
+ βκy in 0 ≤ y < y0. (17)

The unsheared region is y0 < y ≤ 1, within which the velocity is uniform; it is hence a

plug flow region:

up = u(y0) = 1 − 4β1/2 + β (3 − lnβ) in y0 < y ≤ 1. (18)

When β = 0, the Newtonian limits u(y) = 1 − exp(−κy) and up = 1 are recovered.

Since y0 � 1, the plug flow region is nearly as wide as the channel section. Hence,

the yield stress will have little effect on the size of the plug flow region, but can have

significant effect on the flow itself. It is easy to see that for 1 > β > 0, the plug

flow velocity is always less than 1. Therefore, the yield stress causes the Smoluchowski

velocity to be smaller than the Newtonian limit. Some sample values of y0 and up

as functions of β are shown in Table 1. Even a normalized yield stress as small as

β = 0.001 can decrease the plug flow velocity by more than 10%. This decreasing effect

is so significant mainly because of the term −4β1/2 in Eq. (18). For Newtonian EO

flows, the Smoluchowski velocity is often used as a slip boundary condition. Owing to

nonlinear rheology, such an approach is no longer valid here.

Table 1: The yield height y0 and the plug flow velocity up as functions of the normalized

yield stress β, as given by Eqs. (16) and (18), where κ = 100.

β y0 up

0 1 1

0.001 0.069 0.883

0.01 0.046 0.676

0.1 0.023 0.265

0.5 0.007 0.018

10



3.2 Case 1: α > 0, α + 1 > β

With a favorable pressure gradient, the stress decreases monotonically away from the

wall, as shown in Fig. 2(b). Therefore, the fluid will be in motion only when the wall

stress exceeds the yield stress:

α + 1 > β. (19)

There exists only one yield surface, which is at a height y0 given by

α(1 − y0) + e−κy0 = β, (20)

which has to be solved numerically for y0. Numerical solution can be sought by iteration

with one of the following initial guesses:

y0 ≈





−κ−1 ln(β − α) for β > α

−κ−1 ln(0.1α) for β = α

1 − β/α for β < α

. (21)

The above three sub-cases are referred to as cases 1(a), 1(b) and 1(c), respectively. In

the sheared region 0 ≤ y < y0, the velocity satisfying no slip at the wall can be found

as follows:

u(y) = ακ
(
y − 1

2
y2
)

+ βκy + 1 − e−κy − 2β1/2κI1(y), (22)

where I1 is an integral of the nonlinear coupling term

I1(y) =
∫ y

0

[
α(1 − y) + e−κy

]1/2
dy. (23)

In the unsheared region y0 < y ≤ 1, the plug flow velocity is up = u(y0) by continuity of

velocity. The velocity is everywhere positive in this case. When β = 0, Eq. (22) reduces

to the Newtonian limit u(y) = ακ (y − y2/2)+1−exp(−κy), which without the coupling

term is good for any α. Only in the Newtonian limit can the Smoluchowski velocity,

which has a normalized value of unity here, be used as a boundary slip velocity in the

case of a very thin EDL κ� 1.

There exists no exact analytical expression for the integral I1 in general. In view

of the fact that the integrand has a boundary-layer structure, namely rapid variation

near y = 0, a uniformly valid approximation can be derived for this integral. Following

the boundary-layer theory, we may approximate the integrand by [α+ e−κy]
1/2

in the
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inner region κy = O(1), and by [α(1 − y)]1/2 in the outer region κy � 1. For these

approximations, we obtain

I in

1 (y) =
∫ y

0

[
α+ e−κy

]1/2
dy

=
2

κ

[
α1/2 sinh−1 (αeκy)1/2 −

(
α+ e−κy

)1/2
]y

0
for κy = O(1), (24)

where F |ba stands for F (b)− F (a), and

Iout

1 (y) =
∫ y

[α(1 − y)]1/2 dy

= −2

3
α1/2 (1 − y)3/2 + C for κy � 1, (25)

where C is a constant to be determined by asymptotic matching. The above two ex-

pressions should match each other in their asymptotic limits Imatch
1 (y) = I in

1 (y � κ−1) =

Iout
1 (y � 1), where

I in

1 (y � κ−1) → 2

κ

[
α1/2 ln

(
2α1/2

)
+ α1/2κy

2
− α1/2 − α1/2 sinh−1 α1/2 + (α+ 1)1/2

]
,

(26)

Iout

1 (y � 1) → −2

3
α1/2 + α1/2y + C, (27)

The term that depends on y is the same in either limit, which confirms that C is indeed

a constant that can be determined by matching. Finally, a uniform approximation for

the integral is obtained by combining the above expressions

Iapp

1 (y) = I in

1 (y) + Iout

1 (y)− Imatch

1 (y)

=
2

κ

[
α1/2 sinh−1 (αeκy)1/2 −

(
α + e−κy

)1/2
]y

0

− 2

3
α1/2

[
(1 − y)3/2 − 1 +

3

2
y
]
. (28)

We compare in Table 2 this approximation with the exact values of the integral (eval-

uated numerically) for α = 0.1 and κ = 100, 200. For κ = O(100), the maximum

difference is no larger than O(10−3), which is practically insignificant. The larger the κ,

the more accurate the approximation.

3.3 Case 2: α < 0, α + 1 > β, τm > −β

With an adverse pressure gradient, the stress distribution is non-monotonic. The stress

changes abruptly near the wall, namely from a positive value at y = 0 to a maximum
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Table 2: Comparison between the numerically evaluated exact values of the integral I1

and the analytical approximation Iapp

1 given by Eq. (28), where α = 0.1.

κ = 100 κ = 200

y Iexact
1 Iapp

1 Iexact
1 Iapp

1

0.01 8.488 × 10−3 8.484 × 10−3 7.111 × 10−3 7.107 × 10−3

0.05 2.533 × 10−2 2.529 × 10−2 2.051 × 10−2 2.050 × 10−2

0.1 4.064 × 10−2 4.060 × 10−2 3.572 × 10−2 3.571 × 10−2

0.5 0.1461 0.1461 0.1412 0.1412

1.0 0.2206 0.2206 0.2157 0.2157

negative value τm at y = ym, where

τm = α
(
1 − ym − κ−1

)
and ym = κ−1 ln(−κ/α). (29)

The stress then changes gradually from this maximum negative value to zero at y = 1.

The case shown in Fig. 2(c) is subject to the condition τm > −β, by which the fluid

is unsheared throughout the negative stress domain. Again, the fluid can be set into

motion only if the condition given in Eq. (19) is satisfied. Under these conditions, there

is only one yield surface, which is located within the EDL near the wall. The yield height

y0 is found numerically from

y0 = −κ−1 ln [β − α(1 − y0)] , (30)

where y0 ≈ −κ−1 ln(β − α) can be used as an initial value for solution by iteration.

In the sheared region 0 ≤ y < y0, where the stress is positive, the velocity satisfying

no slip at the wall has formally the same expression as that in Case 1, given in Eq. (22):

u(y) = ακ
(
y − 1

2
y2
)

+ βκy + 1 − e−κy − 2β1/2κI2(y), (31)

where I2 is the following integral, which resembles I1,

I2(y) =
∫ y

0

[
α(1 − y) + e−κy

]1/2
dy. (32)
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Owing to the fact that α is negative in this case, the approximation derived for I1 in

Case 1 cannot be applied to I2 here. Since the upper limit of the integral domain y0 � 1

is very small, a good approximation for I2 is

Iapp

2 (y) =
∫ y

0

[
α+ e−κy

]1/2
dy

=
2

κ


(−α)1/2 tan−1

(
−1 − e−κy

α

)1/2

−
(
α+ e−κy

)1/2




y

0

. (33)

In the unsheared region y0 < y ≤ 1, the plug flow velocity is up = u(y0). Like the

base case, the plug flow extends across nearly the whole channel section. The adverse

pressure gradient is not strong enough to cause any negative shear, so the velocity is

always positive in this case.

3.4 Case 3: α < 0, α + 1 > β, τm < −β

In this case, shown in Fig. 2(d), there are multiple yielded and unyielded regions. First,

the wall stress is positive and larger than the yield stress. This is the condition given

in Eq. (19). Second, the maximum negative stress is also larger in magnitude than the

yield stress: τm < −β, where τm is given in Eq. (29). Consequently, there are three yield

surfaces: two near the wall, and one far from the wall.

The three yield heights are determined iteratively by the following equations

y01 = −κ−1 ln [β − α(1 − y01)] , (34)

y02 = −κ−1 ln [−β − α(1 − y02)] , (35)

y03 = 1 +
(
β + e−κy03

)
/α, (36)

where y01 ≈ −κ−1 ln(β − α), y02 ≈ −κ−1 ln(−β − α), and y03 ≈ 1 + β/α can be used as

the initial values for the iteration.

In the first sheared region, 0 ≤ y < y01, the velocity u1(y) can be determined using

Eqs. (31)–(33) that are derived for Case 2. In the first unsheared region, y01 < y < y02,

the plug flow velocity is given by continuity of velocity up1 = u1(y01). The velocity is

always positive in these two regions.
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In the second sheared region, y02 < y < y03, where the stress is negative, the velocity

can be obtained as follows:

u2(y) = up1 + ακ
[
y − y02 − 1

2
(y2 − y2

02)
]

− βκ(y − y02) + e−κy02 − e−κy + 2β1/2κI3(y), (37)

where I3 is an integral of the nonlinear coupling term

I3(y) =
∫ y

y02

[
−α(1 − y)− e−κy

]1/2
dy. (38)

There exists no exact analytical expression for this integral. Again, in view of the

boundary-layer structure of the integrand, we may seek a uniform approximation for I3

using the boundary-layer theory. The procedure is the same as that we have described

for the approximation of I1 in Case 1. Without showing the intermediate steps, we give

the final expression for the approximation of I3 as follows:

Iapp

3 (y) = −2

3
(−α)1/2

[
(1 − y)3/2 − (1 − y02)

3/2 +
3

2
(1 − y02)

1/2 (y − y02)
]

+
2e−κy02/2

κ

[
α′1/2 tanh−1

(
1 − α′−1e−κ(y−y02)

)1/2

−
(
α′ − e−κ(y−y02)

)1/2
]y

y02

, (39)

where

α′ = −α(1 − y02)e
κy02 . (40)

We have also checked the accuracy of this approximation by comparing it with some

exact values of the integral. The accuracy is comparable to that of Iapp

1 . In the second

unsheared region y03 < y ≤ 1, the plug flow velocity is determined by continuity of

velocity up2 = u2(y03). The velocity in the second sheared region can be positive, zero,

or negative, depending on α. As a result, the net flow through the channel can be

positive, zero, or negative in this case.

3.5 Case 4: α < 0, −β < 1 + α < β, τm < −β

In this case, as shown in Fig. 2(e), the wall stress is smaller in magnitude than the

yield stress −β < 1 + α < β. The maximum negative stress is, however, larger in

magnitude than the yield stress: τm < −β, where τm is given in Eq. (29). There are two

15



yield surfaces, separating one sheared region from two unsheared regions. The two yield

heights, denoted by y02 and y03, can be determined using Eqs. (35)–(36) as in Case 3.

In the first unsheared region 0 ≤ y < y02, owing to no slip at the wall, the velocity is

zero: up1 = 0. In the sheared region y02 < y < y03, the velocity u(y) can be determined

using Eqs. (37)–(40) that have been derived for u2(y) in Case 3. In the second unsheared

region y03 < y ≤ 1, the plug flow velocity is up2 = u(y03). The velocity is everywhere

negative across the reduced section y02 ≤ y ≤ 1.

3.6 Case 5: α < 0, 1 + α < −β

In this case, as shown in Fig. 2(f), the wall stress is negative and is larger in magnitude

than the yield stress 1 + α < −β. There is only one yield surface located far from the

wall. The yield height, denoted by y03, can be determined using Eq. (36) as in Case

3. In the sheared region 0 ≤ y < y03, the velocity u(y) can be determined using Eqs.

(37)–(40), where up1 = 0 and y02 = 0. In the unsheared region y03 < y ≤ 1, the plug

flow velocity is up = u(y03). The velocity is negative across the entire channel.

4 Discussion

The present problem depends on three parameters: the normalized pressure gradient α,

the normalized yield stress β, and the normalized Debye parameter κ. In the following,

we shall examine results to find out how the EO flow may be affected by the yield stress

of a Casson fluid under a favorable or adverse pressure gradient. A sufficiently large

Debye parameter κ = 100, for a very thin EDL, is used in all our calculations. Let us

first have an order of magnitude estimate about the yield stress parameter β, which is

defined in Eq. (12). Consider blood in particular. When modeled as a Casson fluid,

blood has a yield stress that depends strongly on the hematocrit (the volume fraction

of red blood cells) and the fibrinogen (a protein involved in clotting) concentration.

For normal human blood at a hematocrit of 45%, the yield stress lies between 1 and

6 mPa [31]. A typical value commonly adopted in the literature for blood flow analysis

is 4 or 5 mPa [32–34]. Such a yield stress is much smaller in magnitude than the normal
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blood pressure and is often deemed to be of little physiological significance. We have

here normalized the yield stress τ0 by the electric wall stress τE = −εκζEx. Hence,

for ε ≈ 5 × 10−10 C/(Vm) (permittivity of blood), Ex ≈ 10 V/cm, ζ ≈ −10 mV, and

κ−1 ≈ 10 nm (based on an ionic strength of 1 mM [3]), we may get τE ≈ 500 mPa, and

therefore β = τ0/τE = O(0.01). This calculation shows that the parameter is indeed very

small, but the effect of a small parameter in the present problem is not necessarily small.

As has been shown earlier and will be further shown below, a normalized yield stress of

the order 0.01 can already cause appreciable effect on EO flow in a microchannel. Our

model is of course applicable to other Casson fluids than blood. To make our discussion

more general, values of β ranging from zero to unity are considered, as presented below.

Figure 3 shows the flow rate q =
∫ 1
0 udy as a function of the normalized pressure

gradient α, for normalized yield stress β = 0, 0.01, 0.1, where κ = 100. The flow rate

has been evaluated numerically by Simpson’s rule. In the absence of yield stress β = 0,

corresponding to Newtonian fluid, the flow rate varies linearly with the pressure gradient,

as expected. A small yield stress β = 0.01 is, however, sufficient to cause appreciable

departure from the linear limit. There is a range in the neighborhood of α = 0, where the

flow rate varies slowly with α. This happens when the magnitude of α is so small that

the stress outside the EDL is smaller in magnitude than the yield stress, corresponding

to the Base Case, Case 1(a), or Case 2 of the stress distribution. Hence, the stress

outside the EDL, which is due to the pressure gradient, has no effect on the flow. It

is entirely a plug flow outside the EDL, and the flow rate only weakly depends on α

within this range of α. This range of α is larger for larger β. Even outside this range,

the flow rate will increase with α at a rate smaller than that of the linear limit. Hence,

the decreasing effect of the yield stress on the flow intensifies as the pressure gradient

increases in magnitude.

Under Case 3 of the stress distribution, for given β and κ, there exists a unique value

of α for which the net flow is zero. We show in the inset of Fig. 3 these particular values

of α for the admissible range of β. One can show that, for κ = 100, the maximum β is

0.4838 for a possible Case 3 stress distribution. When β exceeds this value, there exists

no fluid in motion that will correspond to a zero net flow; only fluid at rest will do.

For illustration, some velocity profiles for β = 0 and β = 0.1 are shown in Figs. 4(a, b),
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respectively. Those for the Newtonian limit β = 0 serve as a basis of comparison. The

difference between the Newtonian and the Casson velocity profiles is indeed very large.

Under the same α, the velocities may differ from each other in the magnitude, the sign,

as well as the shape of the profile.

In Fig. 4(b), the heights of the yield surfaces, y0, are marked by open circles on the

velocity profiles. We also denote by the numbers in the brackets the types of stress

distribution associated with these profiles. As noted above, for a small magnitude of α,

the fluid is completely unsheared away from the EDL. As α increases in magnitude, the

sheared region also increases in size, in which the velocity is largely parabolic outside

the EDL. There are three yield surfaces for a Case 3 stress distribution: two near the

wall, and one far from the wall. The unsheared region in the EDL, if any, is very small

in size, and can practically be ignored. The net flow is zero when α = −0.18367 for

β = 0.1 and κ = 100. In this case, the flow is positive near the wall, but is a negative

plug flow in the core of the channel.

We further show in Fig. 5 how the flow is sensitively affected by the yield stress. We

have shown earlier that in the Base Case α = 0, the flow is decreased by some 12% for

β = 10−3, and 32% for β = 10−2. This decreasing effect due to the yield stress will

be enhanced by the presence of a pressure gradient, whether favorable or adverse. Our

results show that, for α = 0.1, the flow is decreased by 19% for β = 10−3, and 51%

for β = 10−2. The effect is even more dramatic under an adverse pressure gradient.

For α = −0.1, the flow is decreased in magnitude by 27% for β = 10−3, and 71% for

β = 10−2. In fact, for the results shown in Fig. 5, it is within the range 10−4 < β < 10−1

where the flow is sensitively affected by the yield stress.

For further illustration, we show some velocity profiles in Figs. 6(a, b), for α = 0.1

and α = −0.1, respectively. Increasing the yield stress will reduce the shear rate, or

the velocity gradient, in the sheared region. In the case of β = 0.01, the plug flow

region remains small in extent, but the velocity in the sheared region is already much

reduced in magnitude. In particular, the net flow becomes zero when β = 0.03066 for

α = −0.1 and κ = 100. For a larger yield stress β = 0.1, the flow profile diminishes

to become a positive plug flow outside the EDL, whether α = 0.1 or α = −0.1. As

already explained above, this happens when the stress induced by the pressure gradient
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is smaller in magnitude than the yield stress. The flow has then a weak dependence on

α for such a pressure gradient. In summary, the yield stress is to play two roles here.

First, it introduces a plug flow region. Second, it reduces the shear rate, and therefore

the magnitude of velocity, in the sheared region. For small β, while the first effect

remains small, the second effect can already be influential. For large β, both effects are

important, thereby resulting in a full plug flow but of a diminished magnitude outside

the EDL.

5 Concluding remarks

In this paper, we have presented analytical solutions for one-dimensional steady flow of

a Casson fluid, under the combined action of pressure gradient and electroosmotic (EO)

pumping, through a parallel-plate channel. The problem is simplified by the assumptions

of very small potentials (or the Debye-Hückel approximation) and a very thin electric

double layer (EDL) compared with the channel height. The flow analysis starts with lo-

cating the yield surfaces in order to partition the flow section into sheared and unsheared

regions. Six possible cases of the distribution of stress relative to the yield stress are

identified. Depending on the magnitude as well as the sign of the pressure gradient, it

is possible to have one or multiple yield surfaces in the flow section. The velocity in the

sheared region can be straightforwardly obtained by integrating the Cauchy momentum

equation. Using the boundary-layer theory, we have deduced uniform approximations

for the integrals of the nonlinear coupling terms of the two forcings. All velocities in the

present problem are thereby analytically expressed.

Even a small value of the Casson yield stress, characteristic of that of blood, can

considerably decrease the rate of EO flow in a microchannel. The Smoluchowski velocity

is found to be sensitively affected by the Casson yield stress. This velocity, owing to

nonlinear rheology, can no longer be used as an EO slip boundary condition for flow of a

non-Newtonian fluid in general. The presence of a pressure gradient, whether favorable

or adverse, will enhance the decreasing effect of the yield stress. The yield stress is to

introduce a plug-flow region, the size of which increases as the yield stress increases.

More dramatically, the yield stress will diminish the shear rate in a sheared region.
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It is worth extending the problem to include some more complicated effects, such as

the skimming layer near the wall, high potentials without the Debye-Hückel approxima-

tion, two-dimensional or unsteady flows, and so on. It is also worth comparing EO flow

of Casson fluid with that of other viscoplastic materials, such as Bingham plastic and

Herschel–Bulkley fluid.
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Figure 1: Definition sketch of the problem: one-dimensional flow of velocity u(y) and

shear stress τ (y), forced by a constant pressure gradient and electric field, through a slit

channel of height 2h. The wall is uniformly charged with a constant zeta potential ζ.

The electric double layer (EDL) is much thinner than the channel height κh� 1.
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Figure 2: Definition sketch of six possible cases of distribution of the stress τ (y) as

a result of different combinations of the pressure and electric forcings, where α is the

normalized pressure gradient, β is the normalized yield stress, y0, y01, y02, y03 are the

heights of the yield surfaces where |τ | = β. The maximum negative stress τm is at the

height ym. The stress distributions will occur under the conditions given in the text

boxes. The fluid is sheared in the regions where |τ | > β, and is unsheared in the regions

where |τ | < β.
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Figure 3: The flow rate q as a function of the normalized pressure gradient α, for the

normalized yield stress β = 0, 0.01, 0.1. Inset: particular values of α and β for which

q = 0.
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Figure 4: Velocity profiles u(y) for various α, where (a) β = 0 (Newtonian), and (b)

β = 0.1. The open circles are the places where the stress is equal in magnitude to

the yield stress, and the numbers in brackets denote the cases of stress distribution

associated with the velocity profiles.

27



β
10­4 10­3 10­2 10­1 100

­2

­1

0

1

2

3

4

α = 0.1

0.05

0

­0.05

­0.1

q
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Figure 6: Velocity profiles u(y) for various β, where (a) α = 0.1 (favorable), and (b) α =

−0.1 (adverse). The open circles are the places where the stress is equal in magnitude

to the yield stress, and the numbers in brackets denote the cases of stress distribution

associated with the velocity profiles.
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