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Human neural stem cells hold great promise for research and therapy in neural disease. We 

describe the generation of integration-free and expandable human neural progenitor cells 

(nPcs). We combined an episomal system to deliver reprogramming factors with a 

chemically defined culture medium to reprogram epithelial-like cells from human urine into 

nPcs (huinPcs). these transgene-free huinPcs can self-renew and can differentiate into 

multiple functional neuronal subtypes and glial cells in vitro. Although functional in vivo 

analysis is still needed, we report that the cells survive and differentiate upon transplant into 

newborn rat brain. 

Several neural disorders have no effective drug treatment at present, and stem cells offer hope for 

those suffering from these debilitating diseases. There has been intense interest in obtaining 

human neural stem cells (NSCs) that may be used to treat neural disorders or to study them in the 

laboratory. The isolation and use of NSCs from either fetal or adult human tissue remain 

challenging because of ethical concerns and immune rejection1,2. Induced pluripotent stem cell 

(iPSC) technology provides a promising solution to this problem because it may be used to 

generate patient-specific cells for autologous engraftment3–6. Indeed, iPSCs from patients with 

neural diseases have been established successfully, such as with Parkinson’s disease7,8, 

Huntington’s disease7 and Alzheimer’s disease9. Differentiation of such iPSCs along the neural 

lineage and modeling of disease in vitro could increase our mechanistic understanding of these 

diseases, enable drug screening and eventually provide functional cells for autologous 

transplantation. However, the differentiation of human iPSCs into NSCs is inefficient, time 

consuming and variable among different iPSC lines6. Moreover, pluripotent cells such as iPSCs 

pose the risk of teratomas when transplanted in vivo. To attempt to circumvent these problems, 

new approaches have been devised to convert one somatic cell type to another without full 

reprogramming to the pluripotent state. Notably, functional neurons, termed induced neurons, 



have been generated directly from fibroblasts by retroviral delivery of neural-specific transcription 

factors or microRNAs10–15. The direct conversion approach has also been successfully applied to 

reprogram mouse fibroblasts into hepatocyte-like cells16,17, cardiomyocytes17 and pancreatic β 

cells18, using virally delivered reprogramming factors. 

An attractive alternative to using induced neurons or iPSC-derived neurons is to generate 

self-renewable NPCs from a patient’s own somatic cells, and to do so avoiding viral integration of 

the genes encoding reprogramming factors. In this report, we describe the integration-free 

generation of hUiNPCs, human NPCs from epithelial-like cells in human urine. The cells could be 

expanded in vitro and differentiate into neuronal subtypes and astrocytes. 

 

RESULTS 

Generation of integration-free NPCs from human urine cells 

We have recently shown that human urine contains live cells that can be efficiently reprogrammed 

into iPSCs19. In an effort to further improve this approach to derive naive iPSCs, we adopted 

integration-free and feeder-free methods to reprogram human urine cells (HUCs). We purified 

viable HUCs from the urine (Fig. 1a) of a healthy 37-year-old male donor and transfected them 

with oriP/EBNA episomal vectors carrying a combination of reprogramming factors encoded by 

OCT4 (POU5F1), SOX2, SV40LT, KLF4 and microRNA cluster MIR302–367 through 

electroporation20,21 and cultured the transfected cells in defined basal medium containing FGF2 

(ref. 22) and a cocktail of small molecules (5i) known to promote reprogramming: CHIR99021, 

PD0325901, A83-01, thiazovivin and DMH1 (refs. 23–29). We observed that the transfected 

HUCs showed rapid morphological changes in these cultures. Notably, as early as day 12 

post-electroporation, we began to observe the formation of compact colonies (Fig. 1b). The 

average colony-forming efficiency was around 0.2% as determined from the initial number of 

HUCs used in each reprogramming experiment and was consistent for three different donors (n = 

3, Supplementary Fig. 1). This is in sharp contrast to HUCs electroporated with the same episomal 

vectors but cultured in TeSR22, in which iPSC colonies appeared at around 25 d after 

electroporation (Supplementary Fig. 2). We were intrigued by the appearance of these early 

colonies and characterized them further. 

We picked colonies from both TeSR and 5i cultures and cultured them further on Matrigel, in 

their original media. Surprisingly, the domed colonies that had emerged in the 5i medium assumed 

a rosette-like morphology typical of NPCs (Fig. 1c). In contrast, colonies grown in TeSR medium 

grew as typical human iPSC colonies (Supplementary Fig. 2). We hypothesized that cells 

undergoing reprogramming in the 5i medium might preferentially commit to the NPC fate at an 

early stage (around day 12) before the establishment of a full pluripotent state (around day 25). To 

test this hypothesis, we randomly picked 20 individual colonies from the reprogramming culture 

in 5i at day 14 or 15 and examined the expression of NSC and pluripotency markers without 

further re-plating or culturing. By quantitative real-time PCR (qRT-PCR) analysis, we observed 

robust expression of typical NSC genes such as SOX2 and NES (encoding nestin) in all 20 

colonies. We did not observe substantial activation of genes encoding pluripotency markers such 

as OCT4 and NANOG or other lineage markers such as T (brachyury) and SOX17 (Fig.  1d and 

Supplementary Fig. 2). We did detect low expression of SOX17 in HUCs and some picked 

colonies, which is consistent with the endodermal origin of HUCs (Supplementary Fig. 2). PAX6, 



another NSC gene, was activated at day 14, but more substantially so at day 15, which suggests a 

dynamic process of reprogramming toward a neural fate (Fig. 1d). 

We further immunostained the 5i colonies at day 15 for known embryonic stem cell (ESC) or 

NSC markers. The colonies were negative for pluripotency markers such as TRA-1-60, TRA-1-81 

and NANOG but stained positively for PAX6 and nestin (Fig. 1e–i). We also failed to detect 

substantial activation of OCT4 and NANOG at earlier stages of reprogramming (days 6–8) 

(Supplementary Fig. 2). It has been reported that mouse embryonic fibroblasts reprogrammed with 

standard pluripotency factors (Oct4, Sox2, Klf4 and c-Myc) can be switched to a neural identity 

by transferring the virally infected cells to neural medium containing fibroblast growth factors and 

epidermal growth factor30. However, we did not observe NPC-like colonies among the 

transfected HUCs grown in the identical neural medium reported earlier (data not shown). 

Furthermore, when we replaced HUCs with human dermal fibroblasts, we observed no NPC-like 

cells under the conditions that we used for HUC reprogramming with 5i (data not shown). Taken 

together, our results suggest that the compact, dome-shaped colonies that appeared early during 

reprogramming in 5i medium may have committed to an NPC fate rather than a pluripotent one. 

We observed the same outcome for HUCs donated by two additional individuals ages 10 and 25 at 

an average reprogramming efficiency of around 0.2% based on the starting number of HUCs 

(Supplementary Fig. 1). 

To characterize the proliferative potential of hUiNPCs, we dissociated the re-plated rosette 

colonies and seeded them as single cells on Matrigel (Fig. 1j). We observed that these cells grew 

well and exhibited typical NPC morphology. When cultured in suspension, the hUiNPCs grew as 

neural spheres, a typical property of NSCs31, and could be expanded over multiple passages with 

a high proliferation rate (Fig. 1k). The cells expressed high levels of the proliferation marker Ki67 

(Fig. 1l). hUiNPC spheres expanded for 11 passages also showed homogenous expression (>90% 

of cells) of the neural ectoderm transcription factors PAX6 (ref. 32) and SOX1 as well as the 

neural stem cell markers SOX2 and nestin (Fig. 1m–o and Supplementary Fig. 2). In contrast, we 

did not detect the expression of pluripotency markers such as OCT4 or markers for other germ 

layer lineages such as SOX17 and T (Fig. 1p,q and Supplementary Fig. 2). The expanded 

hUiNPCs at passage 6 no longer harbored the reprogramming factors encoded by OCT4, SOX2, 

KLF4, SV40LT or MIR302–367, nor did they carry the genes from the episomal vector backbone 

(Fig. 1r), yet they possessed normal karyotypes (Fig. 1s). We also performed whole-genome 

sequencing of select hUiNPCs and confirmed that they are of human origin (data not shown). 

hUiNPCs show distinct gene expression profiles 

We profiled the global gene expression patterns of hUiNPCs, the parental HUCs and the urine 

cell–derived iPSCs (Uri_iPSCs). The hUiNPCs clustered independently from the starting HUCs 

(UriC1 and UriC2) and the urine iPSCs (Uri_iPSC1, Uri_iPSC2) (Fig. 2a). Further 

paired-comparison analysis revealed distinct expression profiles between hUiNPCs and Uri_iPSCs 

derived from the same starting cells: neural genes were more highly expressed in hUiNPCs, and 

pluripotency genes were more highly expressed in Uri_iPSCs (Fig. 2b). By comparing the 

expression profiles between HUCs and hUiNPCs, we identified 720 genes related to neuronal 

function that were upregulated in hUiNPCs (Fig. 2c,d and Supplementary Table 1). In contrast, the 

HUC expression profiles were enriched for genes related to endothelial, angiogenic or epithelial 

functions (Fig. 2c,d and Supplementary Table 2), indicating that the HUCs might be of endothelial 

or epithelial origin. 



hUiNPCs differentiate into cell subtypes of neural lineage  

The promise of NPCs relies on their capacity to differentiate into functional subtypes of neural 

cells (Fig. 3). We observed that hUiNPCs (at passage 5) could efficiently give rise to β III tubulin 

(TUJ1)-positive neurons (at an average efficiency of 76.7% of total cells in three experiments) and 

glial fibrillary acid protein (GFAP)-positive astrocytes (at an average efficiency of 7.8% of total 

cells in three experiments) upon in vitro spontaneous differentiation (Fig. 3a,b,l). Moreover, this 

differentiation potential was well maintained throughout prolonged in vitro expansion (passage 8) 

(Fig. 3l). Unlike mouse NPCs, human NPCs do not give rise to oligodendrocytes during 

spontaneous in vitro differentiation33,34. However, in the presence (for 3 weeks) of factors 

(PDGF-AA, NT3, IGF1) known to promote oligodendrocyte differentiation, we observed O4- and 

PDGFR-α–positive oligodendrocyte-like cells (Fig. 3h,i). We observed, by staining with neuronal 

subtype–specific markers, that hUiNPCs could generate various subtypes of neurons including 

mature glutamatergic, GABAergic and dopaminergic neurons at 37.6%, 15.2% and 6.5%, 

respectively (Fig. 3e–g, respectively, and Fig. 3k). We also observed DCX-positive immature 

neurons in the differentiation culture (Fig. 3d). Finally, 85.4% of neurons derived from hUiNPC 

were positive for synapsin, indicating that most of the neurons were likely to be excitable (Fig. 

3j,k). 

hUiNPC-derived neurons are functional in vitro 

We used standard whole-cell patch-clamp recordings to examine the function of hUiNPC-derived 

neurons (Fig. 4). We observed rapidly inactivating inward currents and persistent outward currents 

in response to depolarizing voltage steps that could be blocked by tetrodotoxin and 

tetraethylammonium (Fig. 4b,c). We also observed that the neurons generated repetitive trains of 

action potentials (Fig. 4a). Notably, the hUiNPC-derived neurons exhibited strong postsynaptic 

currents spontaneously or in response to excitatory or inhibitory neurotransmitter stimulation (Fig. 

4d–f; 5 out of 5 neurons for each experiment). Together, these data demonstrate that hUiNPCs can 

give rise to mature, functional neurons invitro. 

Transplantation of hUiNPCs in vivo 

To examine the potential of hUiNPCs invivo, we transplanted these cells into the striatum of 

newborn rats (n = 12 rats) (Fig. 5a) and analyzed the brains of the animals 4 weeks after 

transplantation. We observed human nuclear antigen (hNA)-stained cells that had survived and 

migrated in the host brain (Fig. 5) and did not observe teratoma formation in any of the 

transplanted rats (Fig. 5a). Some hNA-positive cells apparently remained as NPCs, as they stained 

positively for the NSC marker nestin (Fig. 5b and Supplementary Fig. 3). We also observed 

hNA-positive cells that expressed the astrocyte marker GFAP and the neuronal marker TUJ1 (Fig. 

5b), which indicated that the engrafted hUiNPCs could give rise to both neurons and astrocytes in 

vivo. A full characterization of the stability, differentiation potential and function of these cells in 

vivo will require further study. 

DISCUSSION 

We describe here the notable finding that functional NPCs can be generated from somatic cells 

with the same factors known to be capable of reprogramming to pluripotency when cells are 

cultured in specially defined conditions. Recently, several reports have shown that mouse 

fibroblasts can be reprogrammed directly into neural stem cells using virally delivered 

reprogramming factors35–38. In contrast, our method uses episomal factors for rapid and efficient 



derivation of integration-free NPCs from cells in human urine. 

We showed that hUiNPCs arise at day 12–15, before the emergence of iPSCs at day 24–28 (Fig. 

1). Further, the colonies express NSC markers, but we did not detect the expression of 

pluripotency markers (Fig. 1d–i). However, on the basis of our current data, which were obtained 

from mixed populations of cells, we cannot rule out the possibility that some cells in the 

reprogramming culture pass through a fully pluripotent state. Single-cell analysis will help clarify 

this question39,40 and may also yield insight at the molecular level into how different cell fate 

decisions can be triggered in somatic cells by the same reprogramming factors. 

We have applied our approach successfully to generate hUiNPCs from three individuals at ages 10, 

25 and 37 years, with an average reprogramming efficiency around 0.2% (Supplementary Fig. 1). 

We envision that our protocols can be further applied to HUCs isolated from patients with neural 

disorders such as Parkinson’s disease, Alzheimer’s disease or other neurodegenerative diseases. 

These patient-specific hUiNPCs should be useful for modeling disease and for drug screening. 

hUiNPCs may in the future also prove useful for cell therapy, such as for patients with  

spinal cord injury. Our feeder- and serum-free culture system for generating these cells can enable 

this application. The overall efficiency of ~0.2% for the generation of hUiNPCs from HUCs is 

operationally adequate for current research, although future improvements to efficiency could be 

made, as has been accomplished for iPSC generation41. 

Acknowledgments 

We thank M. Esterban for helpful suggestions, Z. Li for providing support in the initial phase of this work and 

members of our labs for their kind help. This work is supported by the Strategic Priority Research Program of the 

Chinese Academy of Sciences (grant nos. XDA01020202 and XDA01020401); National Basic Research Program 

of China, 973 Program of China (2012CB966503 and 2012CB966802); National S&T Major Special Project on 

Major New Drug Innovation (2011ZX09102-010); and National Natural Science Foundation of China (31200970 

and 91213304). D.P. and G.P. are supported by the 100 Talents Project of Chinese Academy of Sciences, China. 

Author contributions 

G.P., Lihui, W. and D.P. conceived hypotheses and designed the experiments. Lihui, W. and W.H. performed the 

experiments and generated data in all figures. In addition, Linli, W., D.Q., Y.X. and Z.S. performed experiments 

for Figure 1 and Supplementary Figure 2; H.S., W.W. and K.F.S. participated in experiments and analysis for 

Figure 5; X.B. provided reagents and experimental assistance for miR302–367; B.L. performed the experiments 

for Figure 1; and H.W. and J.H. performed the experiments for Figure 4. G.P. and D.P. wrote the paper.  

 

1. Aboody, K., Capela, A., Niazi, N., Stern, J.H. & Temple, S. Translating stem cell studies to the clinic for 

CNS repair: current state of the art and the need for a Rosetta stone. Neuron 70, 597–613 (2011). 

2. Breunig, J.J., Haydar, T.F. & Rakic, P. Neural stem cells: historical perspective and future prospects. Neuron 

70, 614–625 (2011). 

3. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult 

fibroblast cultures by defined factors. Cell 126, 663–676 (2006). 

4. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 

(2007). 

5. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 

131, 861–872 (2007). 

6. Hu, B.Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental 



principles but with variable potency. Proc. Natl.  Acad.  Sci.  USA 107, 4335–4340 (2010). 

7. Park, I.H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008). 

8. Soldner, F. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset 

Parkinson point mutations. Cell 146, 318–331 (2011). 

9. Israel, M.A. et al. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. 

Nature 482, 216–220 (2012). 

10. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 

1035–1041 (2010). 

11. Yoo, A.S. et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231 

(2011). 

12. Caiazzo, M. et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. 

Nature 476, 224–227 (2011). 

13. Ambasudhan, R. et  al. Direct reprogramming of adult human fibroblasts to functional neurons under defined 

conditions. Cell  Stem  Cell 9, 113–118 (2011). 

14. Son, E.Y. et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem 

Cell 9, 205–218 (2011). 

15. Qiang, L. et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell 146, 

359–371 (2011). 

16. Huang, P. et al. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 

475, 386–389 (2011). 

17. Sekiya, S. & Suzuki, A. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. 

Nature 475, 390–393 (2011). 

18. Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D.A. In vivo reprogramming of adult pancreatic 

exocrine cells to β-cells. Nature 455, 627–632 (2008). 

19. Zhou, T. et al. Generation of induced pluripotent stem cells from urine. J. Am. Soc. Nephrol. 22, 1221–1228 

(2011). 

20. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 

797–801 (2009). 

21. Liao, B. et al. MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a 

mesenchymal-to-epithelial transition. J. Biol. Chem. 286, 17359–17364 (2011). 

22. Ludwig, T.E. et al. Feeder-independent culture of human embryonic stem cells. Nat. Methods 3, 637–646 

(2006). 

23. Ying, Q.L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008). 

24. Shi, Y. et  al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. 

Cell  Stem  Cell 2, 525–528 (2008). 

25. Lluis, F. et al. Periodic activation of Wnt/β-catenin signaling enhances somatic cell reprogramming mediated 

by cell fusion. Cell Stem Cell 3, 493–507 (2008). 

26. Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. 

Biotechnol. 25, 681–686 (2007). 

27. Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. Suppression of SHP-2 and ERK signalling 

promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43 (1999). 

28. Yu, J., Chau, K.F., Vodyanik, M.A., Jiang, J. & Jiang, Y. Efficient feeder-free episomal reprogramming with 

small molecules. PLoS  ONE 6, e17557 (2011). 

29. Hao, J. et al. In vivo structure-activity relationship study of dorsomorphin analogues identifies selective VEGF 



and BMP inhibitors. ACS Chem. Biol. 5, 245–253 (2010). 

30. Kim, J. et al. Direct reprogramming of mouse fibroblasts to neural progenitors. 

Proc.  Natl.  Acad.  Sci.  USA 108, 7838–7843 (2011). 

31. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian 

central nervous system. Science 255, 1707–1710 (1992). 

32. Zhang, X. et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7, 90–100 (2010). 

33. Liu, H. & Zhang, S.C. Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell. 

Mol. Life Sci. 68, 3995–4008 (2011). 

34. Hu, B.Y., Du, Z.W., Li, X.J., Ayala, M. & Zhang, S.C. Human oligodendrocytes from embryonic stem cells: 

conserved SHH signaling networks and divergent FGF effects. Development 136, 1443–1452 (2009). 

35. Thier, M. et al. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10, 

473–479 (2012). 

36. Ring, K.L. et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with 

a single factor. Cell Stem Cell 11, 100–109 (2012). 

37. Han, D.W. et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell Stem Cell 

10, 465–472 (2012). 

38. Sheng, C. et al. Direct reprogramming of Sertoli cells into multipotent neural stem cells by defined factors. 

Cell Res. 22, 208–218 (2012). 

39. Buganim, Y. et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic 

and a late hierarchic phase. Cell 150, 1209–1222 (2012). 

40. Pan, G. & Pei, D. Order from chaos: single cell reprogramming in two phases. Cell Stem Cell 11, 445–447 

(2012). 

41. Esteban, M.A. et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. 

Cell Stem Cell 6, 71–79 (2010).  

 

 

Methods 

Isolation and culture of HUCs. Three donors were recruited for urine samples with informed 

consent based on IRB approval (no. GIBH-IRB02-2009002) at Guangzhou Institutes of 

Biomedicine and Health (GIBH). The procedures and purposes for isolating urine cells and 

generating stem cells were explained to the donors in detail, and questions, if any, were answered 

in full. We then obtained a formal signed consent form and collected a total of ~500 ml of urine 

from each donor. The subsequent procedures for isolating human urine cells and generating stem 

cells were performed as approved. The method for isolating urine cells was modified from a 

previous established protocol19. Briefly, urine samples were collected at the mid-stream from 

three individuals and centrifuged to collect the exfoliated cells. The primary urine cells were then 

processed and cultured in urine cell medium consisting of a 1:1 mixture of DMEM/F12 culture 

medium supplemented with 10% of FBS (FBS, PAA), 0.1 mM non-essential amino acids (NEAA), 

1 mM GlutaMAX (Life Technologies), 0.1 mM β-mercaptoethanol and SingleQuot Kit CC-4127 

REGM (Lonza). 

hUiNPC generation. For reprogramming, an oriP/EBNA1-based pCEP4 episomal vector 

containing the OCT4, SOX2, KLF4 and SV40LT genes20 and a pCEP4 vector carrying the 

miR302–367 precursor21 were co-transfected into urine cells via nucleofection (Amaxa Basic 

Nucleofector Kit for primary mammalian epithelial cells with the T-013 program, Lonza). 



Transfected urine cells were directly plated to Matrigel-coated six-well plates (1–3 × 105 cells per 

well) in urine cell culture medium. On day 2 post-transfection, the media were changed into 

reprogramming media mTeSR or 5i (mTeSR supplemented with 5i 0.5 μM A83-01, 1 μM 

PD0325901, 3 μM CHIR99021, 0.5 μM thiazovivin and 0.2 μM DMH1). Medium was changed 

every 2 d during the reprogramming. Fifteen days after transfection, colonies were picked up in 5i 

and transferred onto a new Matrigel plate. For further passaging, the cells were dissociated to 

small clusters or single cells for suspension in flasks containing neural growth medium as neural 

spheres (1:1 of DMEM/F12 supplemented with 1% N2 (Invitrogen) and Neurobasal medium 

supplemented with 2% B27 (Invitrogen) supplemented with 20 ng/ml bFGF and 20 ng/ml EGF). 

Neural differentiation in vitro. hUiNPCs were cultured in neural medium N2B27 containing 

EGF and bFGF. For pan-neuronal differentiation, hUiNPC spheres were plated on Matrigel-coated 

coverslips and cultured in neural N2B27 medium with the withdrawal of EGF and bFGF and the 

addition of neurotrophic factors, BDNF, GDNF, CNTF, IGF1 (all at 10 ng/ml, Peprotech) and 

1 μM cAMP to improve neuronal survival. hUiNPCs differentiated for 2 weeks were then 

examined for the expression of neuronal markers and an astrocyte marker. To derive 

oligodendrocytes, hUiNPCs were plated on poly-l-ornithine/laminin substrate and cultured in 

DMEM/F12 supplemented with 1% N1 (Sigma), biotin (100 ng/ml), PDGF-AA (20 ng/ml, 

Peprotech), NT3 (20ng/ml, Peprotech), 1 μM cAMP and bFGF (10 ng/ml) for 1 week. Afterward, 

bFGF was replaced by IGF1 (10 ng/ml) for another 3 weeks. All media were replenished every 2 

d. 

Quantitative real-time PCR. Total RNAs were extracted with Trizol (Invitrogen). qRT-PCR was 

performed using a Thermal Cycler Dice Real Time System and SYBR Premix EX Taq  

(Takara). β-actin was used for qRT-PCR normalization, and all data were measured in triplicate. 

Primer sequences are listed in Supplementary Table 3. 

Analysis of gene integration by PCR. Genomic DNAs were extracted using the Wizard Genomic 

DNA Purification Kit (Promega) for PCR analysis using primers (Supplementary Table 3) that 

specifically amplify the exogenous transgenes as described20. 

Immunocytochemistry. Cells were fixed in 4% paraformaldehyde dissolved in 0.1 M phosphate 

buffer (PB) for 20 min. After several washes with 0.01 M phosphate-buffered saline (PBS), the 

cultures were incubated with the primary antibodies in PBS plus 1% BSA, 10% normal goat 

serum and 0.3% Triton X-100 overnight at 4 °C. The primary antibodies are listed in 

Supplementary Table 4. Primary antibodies were visualized with species-specific secondary 

antibody conjugated to the fluorescent labels Alexa 568 or 488 (1:400; Invitrogen). Cells were 

mounted in anti-fade medium containing 4′,6-diamidino-2-phenylindole (Sigma) to counterstain 

nuclei. At least 500 DAPI-positive cells from five randomly selected fields were counted to 

calculate the fraction of each lineage. Results are mean ± s.e.m. of data from three experiments 

unless stated otherwise in legends. Cells were imaged on a Zeiss Axio Imager A1 microscope or a 

Leica TCS SP2 Spectral confocal microscope. 

Electrophysiological analysis. Whole-cell patch-clamp recording techniques were used to study 

the physiological properties of hUiNPC-derived neurons in culture with borosilicate glass pipettes 

(resistance 5–10 MΩ) using an Axopatch 200B amplifier (Axon Instruments for Molecular 



Devices). Both the spontaneous postsynaptic current and current response to exogenous focal 

application of glutamate and GABA were recorded. Pressure ejection was used to puff 1 mM 

glutamate (10 p.s.i., 100 ms) and 1 mM GABA (10 p.s.i., 100 ms), and the holding voltages were 

−80 mV and 0 mV, respectively. The patch pipette internal solution contained (in mM): 136.5 

K-gluconate, 0.2 EGTA, 10 HEPES, 9 NaCl, 17.5 KCl, 4 Mg-ATP and 0.3 Na-GTP, adjusted with 

KOH to pH 7.2, 285 osmol/l. For the recording of voltage-gated currents and action potentials, we 

used the following composition of the intracellular solution (in mM): 140 potassium 

methanesulfonate, 10 HEPES, 5 NaCl, 1 CaCl2, 0.2 EGTA, 3 ATP-Na2, 0.4 GTP-Na2, pH 7.3 

(adjusted with KOH). The external solution contained (in mM): 120 NaCl, 1.2 KH2PO4, 1.9 KCl, 

26 NaHCO3, 2.2 CaCl2, 1.4 MgSO4, 10 d-glucose, 7.5 HEPES (pH with NaOH to 7.3). The bath 

solution was equilibrated with 95% O2 and 5% CO2 before use. Resting potentials were 

maintained at about −60 mV. Signals were sampled at 10 kHz using a Digidata1440A 

analog-to-digital converter and acquired and stored on a computer hard drive using pClamp10 

software. Data were analyzed using pClamp10 (Clampfit). 

Karyotype analysis. hUiNPCs were used for karyotype analysis as described42. Cells were 

grown in 10-cm plates, and demecolcine (Dahui Biotech) was added to a final concentration of 50 

μg/ml for 40 min. Cells were then trypsinized, pelleted by centrifugation at 200g for 5 min, 

resuspended in 8 ml of 0.075 M KCl and incubated for 20 min at 37 °C. Fixative solution 

composed of one part acetic acid and three parts methanol was added to a final  

volume of 10 ml, mixed gently and incubated for 10 min at 37 °C. After further centrifugation, the 

supernatant was removed, and ice-cold fixative solution composed of one part acetic acid and 

three parts methanol was added to a final volume of 10 ml. Cells were dropped on a cold slide and 

incubated at 75 °C for 3 h. Belts were treated with trypsin and colorant, and metaphase states were 

analyzed on an Olympus BX51 microscope. 

Whole-genome expression analysis. Total RNAs were extracted from HUCs, hUiNPCs and 

Uri_iPSCs and quantified by the NanoDrop ND-1000. RNA integrity was assessed by standard 

denaturing agarose gel electrophoresis. About 5 μg total RNA was used for the reverse 

transcription with Invitrogen’s Superscript Double-Stranded cDNA Synthesis Kit. Labeled cDNA 

was synthesized by in vitro transcription using NimbleGen one-color DNA labeling kit. Array 

hybridization was performed with the NimbleGen Hybridization System and followed by a wash 

with the NimbleGen wash buffer kit. Arrays were scanned with the Axon GenePix 4000B 

microarray scanner. Data were analyzed with NimbleScan software (v.2.5). 

In vivo transplantation and tissue processing. The protocol used for newborn rat was reviewed 

and approved by the animal care committee at GIBH. For hUiNPCs transplantation, 12 newborn 

Sprague Dawley rats were used in the study. hUiNPC neurospheres were gently dissociated into 

single cells with Accutase (Millipore) and resuspended in N2 medium supplemented with 10 

μg/ml BDNF, 10 μg/ml GDNF, 10 μg/ml CNTF and 10 μg/ml  

42. Esteban, M.A. et al. Generation of induced pluripotent stem cell lines from Tibetan miniature 

pig. J. Biol. Chem. 284, 17634–17640 (2009).  

IGF1 at a concentration of 1.0 × 105 cells/μl and placed on ice for the duration of the grafting 

session. One microliter of cell suspension was slowly injected into each of the striatum of 

cryoanesthetized newborn rats through a Hamilton syringe with the sharpened tip. At 2 and 4 



weeks following transplantation, rats were anesthetized and perfused intracardially with 0.01 M 

PBS, pH 7.4, followed by 100–200 ml of fixative solution containing 4% paraformaldehyde in 0.1 

M PBS, pH 7.4. The brains were harvested and post-fixed in fresh fixative solution overnight and 

subsequently placed in 30% sucrose, 0.1 M PBS at 4 °C for 2–3 d. The samples were then cut into 

25-μm cross-sections on a microtome. The serial sections were collected in 0.01 M PBS and kept 

at 4 °C for further study. 

Immunohistochemistry of brain sections. Donor cells were identified by an antibody to a 

human-specific nuclear antigen (hNA). Immunopositive cells were double labeled with antibodies 

to β III tubulin (TUJ1), GFAP and nestin (Supplementary Table 4). Species-specific 

fluorescence-conjugated secondary antibodies conjugated to Alexa 488 (1:400; Molecular Probes) 

were applied for 2 h at 20 °C. Sections were then counterstained with 

4′,6-diamidino-2-phenylindole to stain nuclei and coverslipped with anti-fade mounting medium 

(FluorSave; Calbiochem). A Zeiss 710 NLO spectral confocal microscope was used for all 

immunofluorescence studies. 

 



 

Figure 1 | Generation and expansion of integration-free NPCs from human urine cells. (a–d) Generation of NPCs 

from human urine cells. Epithelial-like cells isolated from human urine (a) were transfected with episomal vectors 

encoding reprogramming factors and miR302–367 and cultured in defined medium (5i) on Matrigel. Colonies 

arising at day 12 (b) were picked and re-plated onto Matrigel (c) or directly analyzed for marker expression by 

qRT-PCR (d). The plot shows relative expression levels of the indicated genes in colonies picked at days 14 and 



15 compared to levels in HUCs and iPSCs (abbreviated as UC and iPS, respectively). Note that levels of NANOG 

in iPSCs are invisible on the plot at this scale. The value of NANOG in iPSCs was 0.0061, compared with 

0.0000036 in HUCs and 0.00165 in colonies at day 14 and 0.000899 in colonies at day 15. (e–i) Micrographs show 

immunostains of colonies for the indicated markers (day 15). Lower panel of g shows a positive control for the 

antibody to NANOG. (j–q) Expansion of hUiNPCs. Representative morphology of hUiNPCs cultured on Matrigel 

(j) or in suspension as neural spheres (k) is shown. (k) Left, growth curve of hUiNPCs cultured as neural spheres. 

Right, neural spheres before and after passage (P). (l) hUiNPCs stained for Ki67 and nestin (P6). (m–p) 

Immunostains of expanded hUiNPCs (P5) for the indicated markers. (q) qRT-PCR analysis of markers expressed 

by expanded hUiNPCs (P5). (r) PCR detection of integrated transgenes in expanded hUiNPCs (iNPC, P6). Primers 

were designed to detect exogenous reprogramming factors. Untransfected urine cells served as the negative control. 

HUCs transiently transfected with reprogramming factors served as the positive control. (s) Karyotype of 

expanded hUiNPCs (P5). Scale bars, 50 μm. Error bars, s.d., based on three replicates (n = 3) for d, k and q.  

 

 

 

 

 

 



 

Figure 2 | Global gene expression analysis of hUiNPCs. (a) Pearson correlation analyses of global gene expression 

in HUCs (UriC1 and UriC2) and in neural progenitor cells (UiNPC1 and UiNPC2) and iPSCs (Uri_iPSC1 and 

Uri_iPSC2) derived from them. (b) Comparison of global gene expression profiles of a Uri_iPSC and UiNPC line 

derived from the same starting cell sample. R, Pearson correlation coefficient. Selected neural-specific (purple) and 

embryonic stem cell (ESC)-specific (red) genes are highlighted. (c) Differential expression profile between 

parental HUCs (above) and hUiNPCs (below). Yellow dashed lines correspond to a twofold change. The 

differentially expressed genes (red) are those with an adjusted P value 0.05 and fold change 3. Known 

NPC-specific (green) and ESC-specific (purple) genes are depicted. (d) Functional annotations of genes 

differentially expressed between HUCs (top) and hUiNPCs (bottom). Gene ontology (GO) statistics for these 

genes were computed using the hypergeometric test, and enriched GO terms (biological processes) for each cell 

type are plotted with −log
10 

of the adjusted P values (adjpvalue).  

 

 

 

 

 



 

Figure 3 | Differentiation of hUiNPCs in vitro. (a) Bright-field image of spontaneously differentiated cells from 

hUiNPCs. (b–j) Immunostains of spontaneously differentiated hUiNPCs with antibodies against the indicated 

markers: GFAP, astrocyte marker; TUJ1, pan-neuronal marker; NeuN and MAP2, mature neuronal markers; DCX, 

immature neuronal marker; glutamate (Glu), GABA and TH, subtype-specific neuronal markers; O4, 

oligodendrocyte marker; PDGFR-α, oligodendrocyte progenitor marker; SYN (and arrow in j), synapsin I. (k) 

Percentage of each neuronal subtype (left) and of neurons with synapsin staining (right) out of total neurons. Total 

neurons were determined by staining with pan-neuronal marker MAP2 or TUJ1. At least 500 DAPI-positive cells 

from five randomly selected fields were counted to calculate the fraction of each lineage (Online Methods). (l) 

Percentage of neurons (TUJ1-positive cells) and astrocytes (GFAP-positive cells) in spontaneously differentiated 

hUiNPCs at different passages (P). Total cells were determined by DAPI stain. Scale bars: 50 μm (a–g), 20 μm 

(h–j). Error bars, s.e.m.; n = 3 experiments.  

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4 | hUiNPC-derived neurons are functional in  vitro. (a) Current-clamp recording showing a representative 

train of action potentials in a neuron differentiated from hUiNPCs. Intracellular injected currents were step 

currents of −20, 30, 50, 60, 70, 80, 90 and 100 pA. Right, current trace at 90-pA injected current. (b,c) 

Representative recordings of voltage-gated ion channels from a neuron differentiated from hUiNPCs. An inward 

current was observed and could be blocked by tetrodotoxin (TTX) (b), and an outward current could be blocked by 

tetraethylammonium (TEA) (c). (d–f) Analysis of postsynaptic currents in hUiNPC-derived neurons. Shown are 

representative traces of spontaneous postsynaptic currents (PSCs) (d), of excitatory postsynaptic currents in cells 

clamped at −80 mV in response to l-glutamate puffs (e), and of inhibitory postsynaptic currents in cells clamped at 

0 mV in response to GABA puffs (f).  

 

 

 



 

Figure 5 | In  vivo transplant of hUiNPCs. (a) Schematic shows the transplant location (striatum) of hUiNPCs into 

the brain of newborn rats. Micrographs show immunostains for human nuclear-specific antigen (hNA) and DAPI 

stain on a brain section at the transplant site. (b) Immunostains for the indicated markers of brain sections at the 

transplant site 4 weeks after cells were transplanted. Scale bars: 50 μm (a), 20 μm (b, left), 10 μm (b, right).  

 


