
Entry and Exit Echoes∗

Boyan Jovanovic and Chung-Yi Tse†

July 29, 2009

Abstract

While aggregate data do not show the investment echoes predicted by
vintage-capital models, echoes arise in rates of entry and exit of firms at the
industry level. Moreover, industries where prices decline rapidly experience
early ‘shakeouts’. The relation emerges naturally in a vintage-capital model
in which exit of firms sometimes accompanies the replacement of their capital,
and in which a shakeout is the first replacement ‘echo’ of the capital created
when the industry is born.

1 Introduction
In a class of models of embodied technological change, capital is periodically replaced.1

In the same class of models, any burst of investment activity creates an “echo” when
the investment becomes obsolete.2 Faster technological progress then implies faster
replacement of capital and, hence, more frequent investment echoes.

We argue that this by now standard vintage capital model has strong predictions
for industry lifecycle dynamics – the existence of ‘shakeouts’ and ‘echoes.’ In par-
ticular, our model links these features to the rate of technological progress. We find
that the data do support the ‘vintage capital’ view.

Two key assumptions deliver the simple link between technological progress and
entry and exit echoes. First, we assume that the need to replace capital is associated
∗We thank G. Violante (editor), an associate editor of the journal, an anonymous referee, A.

Gavazza, M. Gort, X. Gabaix, S. Greenstein, C. Helfat, O. Licandro, S. Klepper, S. Kortum and
M. Kredler for comments, R. Agarwal for providing data, and the NSF and Kauffman Foundation
for support. In earlier versions, the title of this paper was “Creative Destruction at the Industry
Level.”

†NYU and Hong Kong University, respectively.
1Early examples are Johansen (1959), Arrow (1962) who model steady states.
2Boucekkine, Germain and Licandro (1997) and Mitra, Ray and Roy (1991) study dynamics in

this class of models.
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Figure 1: Technological progress and industry age at shakeout

with exit of firms faced with that need. We shall provide evidence from the airline in-
dustry that suggests this link is empirically important. Second, we assume that when
an industry comes into being, a burst of investment is required. When that capital
comes up for replacement, the investment echo then generates exit. We interpret this
exit as the shakeout.

When an industry is competitive, technological progress leads to a reduction in
the price of the output. Competitive producers, in other words, pass on the benefits
of technological change to consumers. This means that we can proxy industry-specific
technological change by the reduction in the product price. At first pass, the argument
looks plausible: Figure 1 which shows that industries where prices decline rapidly
experience early ‘shakeouts’ — simultaneous exits of a fraction of incumbent firms —
just as the amended vintage-capital model implies.3 This pattern will stand up when
more data are added. Moreover, repeated echoes in entry and exit occur in several
industries, and the interval of time between the first and second echoes is also shorter
in industries where prices decline more rapidly: The faster the technological progress,
the more frequent the echoes.

3The Figure uses data from Gort and Klepper (1982, henceforth GK). GK measure an industry’s
age from the date that the product was commercially introduced, i.e., from the date of its first sales.
The shakeout period is defined as the epoch during which the number of firms is declining. GK say
that an ‘exit’ occurs when a firm stops making the product in question, even if that firm continues
to make other products. GK time the start of the shakeout when net entry becomes negative for
an appreciable length of time. The shakeout era typically begins when the number of producers
reaches a peak and ends when the number of producers again stabilizes at a lower level.

2



Ours is primarily a model of investment echoes. To make it a theory of exit
echoes then requires explaining why capital replacement may sometimes cause exit.
Our explanation is that as firms age, they sometimes lose the ability to implement
new technology (which in turn is embodied in new capital). The assertion is roughly
that ‘old dogs can’t learn new tricks’. We do not explain why they cannot, we instead
parameterize this tendency in the form of a hazard rate of losing implementation skill
exogenously and randomly.4 A loss of implementation skill does not induce an exit
right away. Rather, it induces an exit when all the capital that a firm owns reaches
replacement age.

We also provide direct new evidence that firms with old capital are more likely
to exit: In the air-transportation industry, exiting firms have capital that is on av-
erage eight years older than the capital of the surviving firms; in Section 5 we shall
display this highly significant relation both for the U.S. and for the world as a whole.
A related pattern emerges at the two-digit-industry level: Sectors that face more
rapidly declining equipment-input prices experience higher rates of entry and exit
(Samaniego, forthcoming). In other words, a sector that enjoys a high rate of embod-
ied technological change will have a high rate of entry and exit, or what one would
normally understand to be a higher level of creative destruction.

All technological change in our model is embodied in capital, which means that
TFP should be constant when one adjusts inputs for quality. During the shakeout, a
fraction of the capital stock is replaced by new capital; the number of efficiency units
of capital stays the same but the productivity of capital per physical unit rises.

The model is of a standard vintage-capital type; Mitchell (2002) and Aizcorbe and
Kortum (2005) use it to analyze industry equilibrium in steady state, i.e., the station-
ary case in which the effect of initial conditions has worn off, and after any possible
investment spikes that may be caused by initial conditions have vanished. Jovanovic
and Lach (1989) use it to analyze transitional dynamics but they generate neither a
shakeout nor repeated investment echoes. We shall derive damped investment echoes
that relate to the constant investment echoes derived by Boucekkine, Germain and
Licandro (1997, henceforth BGL) in a similar GE model and by Mitra, Ray and Roy
(1991) in a model where there is no progress but in which capital is replaced because
it wears out. A number of other papers relate Figure 1, among them, Caballero and
Hammour (1994), Klepper (1996), and Utterback and Suarez (1993). Some relate
also to the repeated echoes that we shall document below. We shall discuss this work
in Section 6.

Plan of the paper.–Section 2 presents the model. Section 3 and 4 describe tests of
the two main propositions. Section 5 links capital replacement to firm exit empirically.
Section 6 discusses other models in some detail and section 7 concludes the paper.
The Appendix contains some proofs.

4Deeper reasons for why firms find it hard to adopt new technology are modeled by Klepper and
Thompson (2009) and Chatterjee and Rossi-Hansberg (2008).
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2 Model
Consider a small industry that takes as given the rate of interest, r, and the price
of its capital. The product is homogeneous, and technology improves exogenously at
the rate g. To use a technology of vintage t, however, a firm must buy capital of
that vintage. The productivity of vintage-0 capital is normalized to 1, and so the
productivity of vintage-t capital is egt.

Each firm is of measure zero and takes prices as given. Let p be industry price,
q industry output, and D (p, t) the demand curve at date t, assumed continuous in
both arguments. Production of the good becomes feasible at t = 0.

The price of capital is unity for all t. Capital must be maintained at a cost of
c per unit of time; c does not depend on the vintage of the capital, nor on time.
Capital cannot be resold to firms outside the industry; it has a salvage value of zero.
We assume that willingness to pay at small levels of q is high enough to guarantee
that investment will be positive immediately.5

Implementation costs.–Let τ denote the age of a firm and let ε (τ) be that firm’s
cost of installing a unit of frontier capital. Since the cost of all capital is unity, the total
cost of buying and installing capital of a τ -year old firm then is 1 + ε (τ). In section
5, we will discuss evidence on how relative to their contribution to industry output,
new firms implement new technologies more than incumbents do. This would happen
if incumbents face some additional costs of adopting new technology. To model this
tendency, we assume that ε (τ) is a Poisson process, independent over firms, with
initial condition ε (0) = 0, Poisson parameter λ, and jump size κ > 0. This means
that among firms aged τ , a fraction e−λτ will be on a par with entrants in their ability
to adopt technology, and a fraction 1− e−λτ will face costs of at least 1 + κ.

Industry output.–Capital is the only input. Let Kt (s) be the date-t stock of
active capital of vintage s or older, not adjusted for quality. Industry output at time
t is the sum of the outputs of all the active capital

q (t) =

Z t

0

egsdKt (s) . (1)

Capital ceases to be active when it is scrapped.

Evolution of the capital stock.–Because capital is supplied to the industry at
a constant price, the investment rate will exhibit damped echoes. Any mass point
that occurs will repeat itself, though in a damped form. That is, if a mass-point
of investment ever forms, will recur at a periodicity of T , and the size of the mass
point will diminish over time. Moreover, there must be an initial mass point at
t = 0 because no capital is in place when the industry comes into being. After that
initial mass point, capital evolves smoothly until date T when the original capital

5Sufficient for this is that
R∞
0 e−rtD−1 (0, t) dt > 1, where D−1 (q, t) denotes the inverse demand

curve.
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Figure 2: The number of spikes, i (t).

is completely replaced by vintage-T capital. This is the second industry investment
spike. The third investment spike then occurs at date 2T , when all the vintage-T
capital is replaced, and so on. Since the inter-spike waiting times are T , and since
the first spike occurs at t = 0, the date of the i’th investment spike is (i− 1)T , for
i = 1, 2, .... Let i (t) be the integer index of the most recent spike.6 We plot i (t) in
Figure 2.
We shall show that equilibrium is indeed of the form described in the previous

paragraph: All the capital created at one spike date is replaced at the following
spike date, T periods later. Therefore the capital stock at date t comprises capital
created at the most recent spike date i (t), plus the flow of investment, x (t) , over the
preceding T periods.
Let Xi denote the size of the i’th investment spike. At date t, then, the amount of

capital accounted for by the last spike is Xi(t), and the date-t cumulative distribution
of capital by vintage is

Kt (s) = Xi(t) +

Z s

max(0,t−T )
x (u) du. (2)

We portray Kt (s) in Figure 3. It has exactly one discontinuity at (i (t)− 1)T .

2.1 Equilibrium

The definition of equilibrium is simple if x (t) > 0 for all t. BGL call this the ‘no
holes’ assumption because when it holds, the vintage distribution of capital in use
has no gaps in it. To ensure a positive investment flow at all dates, i.e., x (t) > 0 all
t, it is necessary and sufficient that output is increasing at all t > 0 :

d

dt
D (p, t) =

∂D

∂p

dp

dt
+

∂D

∂t
> 0. (3)

6Formally, i (t) = max {i ∈ integers | i ≥ 1 and (i− 1)T ≤ t}.
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Thus it is possible for the time-derivative of D to be negative, but not too negative to
offset the positive effect on output of the fall in price. Now, condition (3) is of limited
value because it involves the endogenous variable p. One can, however, reduce (3) to
a condition on primitives in some special cases. Take the case where population grows
at the rate γt and where each consumer’s demand is iso-elastic, i.e., the case where

D (p, t) = Ap−λ exp
³R t

0
γsds

´
. In an equilibrium in which price falls at a constant

rate g, dp/dt = −gp. Then (3) is equivalent to
gλ > −γt

for all t ≥ 0. Thus (3) can hold even if population is declining, as long as its rate
of decline, γt, never exceeds gλ, or that demand be sufficiently elastic to offset any
exogenous demand declines.
DEFINITION: A constant-T equilibrium consists of a product-price function p (t) ,

a retirement-age of capital, T, investment flows x (t) > 0, and investment spikes Xi
accruing at dates (i− 1)T, (i = 1, 2, ...) that satisfy, for each t ≥ 0, the following
three conditions:

1. Optimal retirement of capital : The revenue of a vintage-t machine at date
t0 ∈ [t, t+ T ] is egtp (t0). Since price declines monotonically, it is optimal to
replace vintage-t capital as soon as its revenue equals its maintenance cost:

egtp (t+ T ) = c. (4)

2. Optimal investment : Only entrants and incumbents for whom ε (τ ) = 0 will
invest, because for them the total cost of a new machine is unity. If investment
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x (t) > 0, the present value of a new capital good must equal its cost. The
present value of the net revenues derived from that (vintage-t) unit of capital
must satisfy

1 =

Z t+T

t

e−r(s−t)
¡
egtp (s)− c¢ ds. (5)

If the RHS of (5) were ever less than unity, x (t) would be zero.7

3. Market clearing:

D (p (t) , t) = eg(i(t)−1)TXi(t) +
Z t

max(0,t−T )
egsx (s) ds. (6)

Since the industry does not exist before date zero, x (t) = 0 for t < 0, so that
D (p (0) , 0) = X1.

Proposition 1 If demand satisfies (3), a constant-T equilibrium exists, with

p (t) = p0e
−gt, (7)

where
p0 = ce

gT . (8)

and where T uniquely solvesµ
r + c

c

¶
(r + g) = ge−rT + regT . (9)

Proof. (i) First we show that (7), (8), and (9) imply (4) and (5): Eq. (7) and
(8) imply (4) for all t ≥ 0, i.e., exit occurs at all t ≥ T . When substituted into (5),
(7) and (8) also imply 1 = c

R t+T
t

e−r(s−t)
¡
eg(t−s)egT − 1¢ ds, which is equivalent to

1 + c
1− e−rT

r
= cegT

1− e−(r+g)T
r + g

. (10)

Multiplying by r (r + g) /c we have r (r + g)+c (r + g)
¡
1− e−rT¢ = cr ¡egT − e−rT¢ ,

and cancelling cre−rT and combining terms we reach (9). Therefore if T solves (9),
(5) holds.
(ii) Exactly one solution T to (9): The LHS of (9) is constant and exceeds r + g.

On the other hand, the RHS of (9) is continuous and strictly increases from r + g
to infinity, having the derivative rg

¡
egT − e−rT¢ > 0 for T > 0. Therefore the two

curves have exactly one strictly positive intersection.
(iii) If (3) is satisfied with dp/dt = −gp, there exists a sequence of x (t) > 0 that

satisfies (6).
7Proposition 4 of BGL covers that case which arises when there is too high an initial stock of

capital. This cannot be true at t = 0 in our model, and we shall state conditions in (3) that exclude
it as an equilibrium possibility at any date.
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2.2 The nature and frequency of the spikes

Relation to Figure 1.–The negative pattern arises across steady states indexed by
g; a situation in which each industry experiences its specific rate of technological
progress g. Implicitly differentiating (9) in the Appendix, we reach the result:

Proposition 2 The replacement cycle is shorter if technological progress is faster:

∂T

∂g
= −

r+c
c
+ (gT − 1) egT

g2 (egT − e−rT ) < 0. (11)

Thus, industries with higher productivity growth should have an earlier shakeout and
more frequent subsequent spikes.8

The second relation concerns the rate at which investment echoes or investment
spikes die off:

Proposition 3 Investment spikes decay geometrically. That is,

Xn = e
−gT (n−1)X1 (12)

for n = 1, 2, ....

Proof. Because p (t) is continuous at T , the number of efficiency units replaced
at the spikes is a constant, X1, which means that Xn = e−gTXn−1, and (12) follows.

The spike dates remain T periods apart, at 0, T, 2T, 3T, .... The spikes occur
regularly because technological progress occurs at the steady rate g. The assumption
that g is constant is essential for both the constancy of T and for the geometric
nature of the decay in the mass of investment. Asymptotically, however, the spikes
vanish and the equilibrium becomes like the one that Mitchell (2002) and Aizcorbe
and Kortum (2005) analyze.

Firm exit at the investment spike.–At a replacement spike at date t, say, all
firms that need to replace their capital bought that capital at date t− T . All firms,
whatever their age was at date t−T had ε = 0 at that time Among those, a fraction
1 − e−λT will have experienced a jump in ε and will not find it profitable to invest.
These firms will then exit.

The remaining parameters of the model are the maintenance cost c and the rate
of interest r. The following claim is proved in the Appendix:

8We interpret g as an invariant property of an industry. But it can be interpreted as applying only
to a given epoch in the lifetime of a given industry, and subject to occasional shifts. In Aizcorbe and
Kortum (2005), e.g., one can think of such shifts as tracing out the relation between technological
change and the lifetime of computer chips.
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Proposition 4

(i)
∂T

∂c
< 0. And, if gc < r2, (ii)

∂T

∂r
> 0, (iii)

∂ (gT )

∂g
> 0.

A rise in the maintenance cost, c, reduces the lifetime of capital as one would expect.
Since replacing capital constitutes an investment, when the rate of interest rises that
form of investment is discouraged, and it will occur less frequently.
The role of the demand curve.–As long as the demand curve is sufficiently elastic

and as long as exogenous forces do not lead demand to fall too much (as specified in
(3)), only X1 — industry capacity created at the outset, and the rate of investment
to follow x (t) depend on the demand for the product. Neither the time-path of
prices, nor the frequency of the spikes depends on it. These results also rest on the
assumption that capital is supplied perfectly elastically at a unit price, an assumption
that seems reasonable if the industry at hand is a small fraction of the economy or
if, as in a one-sector growth model, capital is produced linearly, at constant returns
to scale.

3 T vs. g: Testing Proposition 2
We shall begin by proxying the age, T , of an industry at its first replacement spike,
by the industry’s age at which the shakeout of its firms begins. This measure will
underlie the first test of the model. And as suggested by (7), we shall proxy the rate
of technological progress, g, by the rate at which the price of the product declines.
Since replacement episodes are in the model caused by technological progress, we
first check if industries with higher productivity growth experience earlier shakeouts.
That is, we ask whether industries with a high g have a low T as Proposition 2 claims
and, if so, how well the solution for T to (9) fits the cross-industry data on g and T .
We now describe the procedure by which we choose the model’s parameters. By

Proposition 1, a unique solution to (9) for T exists; denote it by T̃ (r, c, g). In Table 1,
T̂ (1) is the date that GK find that Stage 4 (the shakeout stage) begins in their various
industries. In a couple of cases the shakeout had not yet begun, and they are censored.
The annual rate at which the price declines, averaged over the period

h
0, T̂ (1)

i
is ĝ(1)i .

We do not have observations on r and c; we find r = .07 a reasonable guess, but
wish to check robustness with respect to this assumption and therefore choose three
alternative values for r, namely .02, .07 and .12 and in each case estimate c. The
estimation assumes that the distribution of c over industries is log-normal: For all
firms in industry i, ln ci is a draw from N (ln c, σ2). We then estimate c and σ to fit
the model to the data; the details are in the Appendix.
The data and the three implicit functions T̃ (g, r, c) fitted to them are shown in

Figure 4.9 The estimates of c are reported in the figure. Since r makes little difference
9Table 7 of GK reports the number of years until shakeout for 39 industries. But only for 8 of
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to the predicted relation we shall proceed with the value r = .07 for the remainder of
the analysis.

Product name ĝ(1) T̂ (1) ĝ(2) T̂ (2)

Auto tires 0.03 21
Ball-point pens 0.07 >28 0.07 >18
CRT 0.04 24
Computers 0.07 19
DDT 0.20 12 0.13 16
Electric shavers 0.05 8 0.01 5.5
Fluorescent lamps 0.21 2 0.21 2.5
Nylon 0.03 >34 0.03 >21
Home & farm freezers 0.02 18
Penicillin 0.57 7 0.57 8.5
Phonograph records 0.03 36 0.02 8.5
Streptomycin 0.31 22
Styrene 0.06 31 0.07 12
Television 0.05 33 0.08 8
Transistors 0.17 15
Zippers 0.04 63 0.05 38

Table 1 : The data in Figures 4 and 5.10

Our estimate of c is in the range of typical maintenance spending. McGrattan
and Schmitz (1999) report that in Canada, total maintenance and repair expenditures
have averaged 5.7 percent of GDP over the period from 1981 to 1993, and 6.1 percent if
one goes back to 1961. These estimates are relative to output, however, whereas ours
are relative to the purchase price of the machine which is normalized to unity. Relative
to output, maintenance costs are one hundred percent at the point when the machine
is retired (this is equation [4]). Maintenance costs are constant over the machine’s
lifetime, whereas the value of the machine’s output relative to the numeraire good is
egT when the machine is new. For instance if g = 0.1 and c = 0.05, our model gives
a value of T = 16; then egT = 4.9, so that as a percentage of output, maintenance
spending ranges between 20 and 100 percent. Therefore, c must stand partly for
wages to workers as a fixed-proportion input as in the original vintage-capital models
like Arrow (1962) and Johansen (1959) that had a fixed labor requirement.

them does Table 5 report data on the rate of price decline up to the shakeout. These are the eight
reported in Figures 1 and 4.
10The variable definitions are: T̂ (1) = age at the start of shakeout, ĝ(1) = average annual price

decline on
h
0, T̂ (1)

i
, T̂ (2) = the number of years elapsed between the start of stage 2 and the midpoint

of the shakeout stage, and ĝ(2) = annual price decline over stages 2 and 3.

10



0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6

Annual price decline, g 

T

FLL

PEN
ESH

DDT

STE

TVPHR

ZP

Figure 4: The relation between T̂ and ĝ for the eight uncensored GK
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3.0.1 Testing Proposition 2 using an alternative definition of T

We now entertain a different definition of T ; one that may provide a better test of
the model, and one that will provide us with more observations. The main reason for
doing this is that GK’s ‘Stage 1,’ defined as the period during which the number of
producers is still small (usually two or three), may not contain what we would call
an investment spike. During stage 1, only a few firms enter, a number that is in some
industries — autos and tires, e.g., — much smaller than the number of firms that exit
during the shakeout.

The model predicts a date-zero investment spike X1 = D (p0, 0), without which
there would be no exit spike at date T . Not all the GK industries will fit this,
however. Indeed, GK state that rarely is a product’s initial commercial introduction
immediately followed by rapid entry. Autos, e.g., had very low sales early on, and it
took years for sales to develop.11 Therefore the spike is better defined at or around
the time when the entry of firms was at its highest. Moreover, in GK, for many
industries, the shakeouts were not completed until a few years after they first began.
It may thus be more appropriate to designate the shakeout date as the midpoint of
the shakeout episode instead of as the start date of the shakeout episode.

In light of this, let T̂ (2) be the time elapsed between the industry’s ‘Takeoff’ date
(which is when Stage 2 begins) and the midpoint of the the industry’s shakeout
episode (the midpoint of Stage 4). This revised definition for bT calls for adjusting
11Klepper and Simons (2005), however, do find an initial spike for TVs and Penicillin — both start

out strong after WW2. There may be a problem with the TV birthday being set at 1929 as GK
have it. During WW2 the Government had banned the sale of TVs.
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Figure 5: T̂ and ĝ using the alternative definition of T

bg to be the rate of the average annual price decline between the takeoff date (which
comes after the industry has completed stage 1), and the first shakeout date. We call
this variable ĝ(2). This allows us to enlarge the sample. The additions are as follows:

1. For six of the GK industries, complete information for price-declines in Stages
2 and 3 (but not Stage 1) is available. They can now be added to the analysis.

2. The two censored observations listed in Table 2 will also be added.12

3. We replace the GK information for the TV by that reported in Wang (2006),
who compiled the data from the Television Factbook. This change may better
reflect the history of the TV industry as GK dated the birth of the industry
as early as 1929, while according to Wang, the commercial introduction of TV
starts only in 1947.

Figure 5 plots eT for the various industries.13 The estimate of c̄ = 0.078 is a bit
higher than with the estimate in the previous sample (c = 0.05). This is because T is
smaller under the new definition, and a higher replacement cost is needed to generate
the earlier replacement.
12The likelihood function is amended accordingly. See Appendix for details.
13For the two truncated observations, Ball—point pens and Nylon, the data points in Figure 5

represent the respective means conditional on their truncated values. The Appendix explains how
the conditional means are computed.
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4 Echoes: Testing Proposition 3
Let us first elaborate on the content of Proposition 3.

1. Shakeouts should diminish geometrically in absolute terms. Relative to the size
of the industry, however, the decline will be faster than (12) indicates because
industry output increases from its date-zero level — both because price declines
and because the demand curve tends to shift to the right over time.

2. Moreover, exit spikes should coincide with entry spikes.

3. The inter-spike waiting times should depend negatively on g as Proposition 2
claims.

This section tests these implications using Agarwal’s extension and update of the
GK data, described fully in Agarwal (1998).14 The products are listed and some
statistics on them presented in Table 3 in the Appendix.

A procedure for detecting spikes must recognize the following features of the data:

(A) Length of histories differ by product.–Coverage differs widely over products,
from 18 years (Video Cassette Recorders) to 84 years (Phonograph Records).

(B) The volatility of entry and exit declines as products age.–The model predicts
that the volatility of entry and exit should decline with industry age. Other factors
also imply such a decline: (i) Convex investment costs at the industry level, as in
Caballero and Hammour (1994), and (ii) Firm-specific c’s. Both (i) and (ii) would
transform our Xn from spikes into waves and, eventually, ripples.15

Hodrick-Prescott residuals in entry and exit rates.–Our spike-detection procedure
is in the spirit of the investment-spike literature that defines a spike as an unusually
high investment rate.16 Roughly speaking, we shall say that a spike in a series Yt
occurs whenever its HP residual is more than two standard deviations above its mean.
‘Roughly’, because of adjustments for (A) and (B) above. We constrain industry i’s
14The evidence hitherto is mixed: Cooper and Haltiwanger (1996) find industry-wide retooling

spikes, but GK did not report second shakeouts, though this may in part be because the GK data
rarely cover industry age to the point t = 2T where we ought to observe a second shakeout. In any
case, Agarwal’s data cover more years and contain entry and exit separately, and we shall use them
to study this question.
15Spikes may also dissipate because (i) A positive shock to demand would start a new spike

and series of echoes following it; these would mix with the echoes stemming from the initial
investment spike, (ii) Random machine breakdowns at the rate δ would transform (12) into
Xn = e−(g+δ)T (n−1)X1, which decays faster with n.
16Gourio and Kashyap (2007) record a spike whenever investment exceeds twenty percent of the

beginning-of-period capital stock, which is roughly 2.5 times the level of replacement investment.
This leads to 15-20 percent of the years being spike years. Our procedure produces a weighted
average of 4.3 percent of the years as exit-spike years and 5.6 percent as entry-spike years.

13



trend, τ , by
AiX
t=2

(τ t − τ t−1) ≤ aAbi ,

where Ai is the age at which an industry’s coverage ends. We set a = 0.005 for both
series. Because both series are heteroskedastic, with higher variances in earlier years,
we chose b = 0.7 for both entry and exit (If b were unity, an industry with longer
coverage would have a larger fraction of its observations explained by the trend). The
trend therefore explains about the same fraction of the variation in short-coverage
industries as in long-coverage industries.
This fixes problem (A), but not (B): The HP residual, ut ≡ Yt − τ t, is still

heteroskedastic, the variance being higher at lower ages. To fix this, we assume that
the standard-deviation depends on product age as follows:

σt = σ0t
−γ , (13)

where σ0 ≥ 0 and γ ≥ 0 are product-specific parameters estimated by maximizing
the normal likelihood17

AiY
t=1

1p
2πσ2t

exp

Ã
−1
2

∙
ut
σt

¸2!
.

The spike-detection algorithm.–If at some date the HP residual is more than two
standard deviations above its mean of zero, then that date is a spike date. But we
shall allow for the possibility that unusually high replacement will take up to three
periods. Thus we shall say that a series Yt in a certain time window is above ‘normal’
if one or more of the following events occurs

1-period spike: ut > 2σt,

2-period spike: ut > σt and ut+1 > σt+1,

3-period spike: ut >
2

3
σt and ut+1 >

2

3
σt+1 and ut−1 >

2

3
σt−1.

The cutoff levels of 2, 1, and 2
3
times σt were chosen in the expectation that each

of the three events would carry the same (small) probability of being true under the
null. The latter depends on the distribution and the serial correlation of the ut which
we do not know. But, again for the normal case, these probabilities turned out to be
roughly the same. That is,

1−Φ (2) = 0.023, (1− Φ (1))2 = 0.025, and
µ
1−Φ

µ
2

3

¶¶3
= 0.016.

17Although the HP residuals are not independent and unlikely to be normal, this procedure still
appears to have removed the heteroskedasticity in the sense that the spikes were as likely to occur
late in an industry’s life as they were to occur early on.
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Table 3 summarizes the results in more detail. The 33 products are listed al-
phabetically and are so numbered. To explain the table, let us focus on product 23,
Phonograph Records and read across the row. Records were first commercialized, i.e.,
sold, in 1908. Being the oldest product, it also is the product for which we have the
most observations, 84, since (with one exception) the series all end in 1991.18 The
next four entries are the exit and entry spikes, by age of industry and by calendar
year. There are seven one-year spikes and one two-year spike, this being the last
exit spike. The 1934 exit spike falls in the GK shakeout region the dates of which
are in the last column of the table. See Figure 6 where the GK shakeout region is
shaded. The remaining columns report the correlations between the entry and exit
series. The raw series are negatively correlated — when the industry is young, entry
is higher than exit, and later the reverse is true — but the correlation is slight (-0.07).
The trends (i.e., the τ ’s) are more negatively correlated (-0.27). The HP residuals,
on the other hand, are positively correlated; our model suggests that this should be
so because the spikes should coincide. The correlations averaged across products are
at the bottom of the table.

Figure 6 plots the exit and entry series for Phonograph records, in each case
plotting the HP trend and the two-standard-deviation band. Spikes are circled. Let
us note the following points:

1. For both entry and exit the spikes are evenly distributed as a function of indus-
try age, predominating neither early nor late in the life of the industry. Table 3
shows this is true in most industries. This suggests that the heteroskedasticity
adjustment in (13) is adequate.

2. The number of entry and exit spikes is equal — four entry and four exit spikes.
But only the final, fourth spikes coincide in that they are within one year of
each other. There were ten other products for which this was so. In seven out
of the ten, there is at least one instance where an entry an exit spikes occur in
the same year.

3. The second exit spike is well in the GK region, but there should also have been
an entry spike in that region. Over all the industries the number of entry spikes
(67 in all) is slightly less than the number of entry spikes (79 in all); for the nine
industries in which the GK region does contain an Agarwal spike, it is always
an exit spike — see the numbers in italics in Table 3.

4. Just as our model predicts, however, T2,i−T1,i is negatively related to ĝi. That
is, analogously to the result in Figures 4, the first exit spike is followed sooner
by the second exit spike in those industries i where prices decline faster in the

18Since neither the entry nor the exit rate is defined in the year of the industry’ birth, our entry
and exit rate series begin in the year after the birth of the industry.
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interim. We now calculate bg as the rate of average price decline during the
years covered by T2 − T1. To maximize the number of observations, we include
products for which price information is available for as little as 70% of the time
during the years covered by T2−T1. For Outboard Motors and Recording Tapes,
however, price went up during those years which is inconsistent with the model.
But they both had above-average T2 − T1 values, 42 and 17 respectively, and
while we did not include them in the estimation routine, we include them in
Figure 7, setting ĝ to zero in both cases.

5. The same test is also done on entry spikes. Once again, T2,i− T1,i is negatively
related to ĝi. The results are in Figure 8.19

4.0.2 Entry- and exit-spike coincidence

If the entry and exit spikes did not coincide, industry price would not fall at the
rate needed to satisfy the free-entry condition. Thus entry and exit spikes in capi-
tal should occur simultaneously: Capital retired at the spike date should equal the
capital brought in at that date. If the fraction of exiting capital accounted for by
the exiting firms (as opposed to continuing incumbents) was the same as the fraction
19For both plots we assume, as before, that ln ci ∼ N

¡
ln c,σ2

¢
in the estimation. Instead of

fitting a eT curve to the observations independently, a more rigorous procedure would perhaps be to
calibrate a eT curve with c set equal to the estimates in Figures 4 and 7. After all, the theory assumes
a stationary c. But the products in the Agarwal dataset for which we can construct measures of
T2 − T1 and g are not the same products in Figures 4 and 7 from the GK dataset. Our procedure
for designating spike dates also differs from GK’s procedure for designating shakeout dates.
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of new capital accounted for by the new entrants (again, as opposed to continuing
incumbents) then the capacity and output relinquished by the exiting firms should
equal the capacity brought in by the entering capital. And, in particular, the mar-
ket share of the exiting firms would equal the market share of the entrants. More
generally, if the fractions were unequal but fixed over time, the model still predicts
a positive correlation of entering and exiting capital over time and, hence a positive
correlation between the market shares of entrants and exiters.

This implication gets support from Table 7 of Dunne, Roberts and Samuelson
(1988, ‘DRS’) which reports that whether or not one controls for industry effects, the
market shares of entering and exiting firms are positively correlated over time, when
the unit of time is five-years. Because our data do not have information on market
shares or on the output of individual entrants and exiters, we can deal only with firm
numbers. For numbers of entrants and exits, Table 7 of DRS find that the numbers
of entrants and exits is negatively correlated once they control for industry effects.
Our data show a positive correlation, probably because they are much more finely
disaggregated than the DRS data are.20

In our data, a period lasts one year, and entry and exit spikes coincide only in a
minority of cases. We shall now test the null hypothesis that the entry and exit spikes
are not correlated. We shall find that the number of coincidences highly significantly
20For instance, Antibiotics, the first product in Table 3, is just one of the 63 products classified

under the 4-digit industry Pharmacetical Preparations (2834). And Electric Shavers, the 9th product
in Table 3, is just one of 67 products classified under the 4-digit industry Electric Housewares and
Fans (3634).
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exceeds the fraction that would be expected to arise if the two sets of dates were
uncorrelated.

Test of coincidence.–Under the null that the entry dates are uncorrelated with
the exit dates, we now derive the probability that there will be no coincidences in
dates. This will be a limited-information test because we are unable to derive the
probability distribution of the full sample. Suppose an industry has τ periods of
coverage and that during these τ periods there were NE entry spikes and NX exit
spikes. Suppose entry spikes happened at dates t1, t2, ..., tientry (τ). Suppose that the
dates of the entry spikes were not correlated with the dates of the exit spikes. Suppose,
moreover, that an exit spike was equally likely to fall at any date. No match will arise
if and only if none of the NX exit spikes matches any of the NE entry spikes. In other
words, under the null hypothesis, H0, the spikes are exchangeable random variables
which are correlated only in so far as they cannot fall at the same date as another
spike. Exit-spike i is equally likely to fall in each ‘free’ year that the data cover.
We condition on the entry-spike dates. Only their number matters, not their actual
dates: Any set of dates would produce the same likelihood.

To derive the likelihood, begin by placing the exit spikes in random order i =
1, ..., NX . Then under H0: “entry and exit dates are uncorrelated”, the probability
that the first exit spike falls in one of the τ − NE bins not occupied by an entry
spike is τ−NE

τ
. Since no two exit spikes can occupy the same bin, conditional on this

event, the probability that the second randomly chosen spike date will produce no
match is τ−NE−1

τ−1 . Proceeding in this way sequentially until the NX ’th exit spike, the
probability under H0 that there is no match is

1− ρ ≡
NXY
i=1

µ
τ −NE − (i− 1)

τ − (i− 1)
¶
. (14)

Denote the solution for ρ by ρ = ψ (τ ,NX , NE). The formula conditions on τ ,
NX and NE all three of which generally differ over industries. For industry j write

ρj = ψ
¡
τ j ,N j

X ,N
j
E

¢
. (15)

Then ρj is the probability that industry j has at least one match. Now define the
dichotomous random variable mj as follows: Let

mj =

½
1 if industry j has at least one exit-entry match
0 otherwise

so that mj = 1 with probability ρj and mj = 0 with probability 1− ρj. That is, mj

is binomially distributed.
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Figure 9: Frequency distribution of M under H0

The Likelihood function. — Let ρj be the parameter for industry j, defined in (15).
Among the 31 industries for which ρj can be defined, let J be the set of industries
for which mj = 1. The likelihood of the sample is

L (m1, ...,m31) =
Y
j∈J

ρj
Y
j /∈J

¡
1− ρj

¢
= 4.6852846× 10−9. (16)

The p-value.–The p-value is the probability of obtaining a result at least as
extreme as the one that was actually observed (in our case 7 industries for which
m = 1), given H0. Let the collection of industries be I; that is, I = {1, 2, ..., 31} is a
set consisting of 31 elements. Let M =

P
j∈Imj . In our context,

p7 = Pr
n
M ≥ 7 | ¡τ j , N j

X , N
j
E

¢31
j=1

and H0
o
.

Of course, H0 determines the ρj via (14). Let JM be the collection of M -element
subsets of I. That is, JM = {J ⊂ I | #J =M}. Then,

pn =
X
M≥n

X
J∈JM

Y
j∈J

ρj
Y
j /∈J

¡
1− ρj

¢
This is the likelihood of all possible values ofM that equal n or more. The probability
distribution ofM under H0 is pn+1−pn and it is shown in Figure 9. Since p7 = 0.0217,
we reject H0 at the 5% but not at the 1% level.

5 Capital replacement and exit
Our model assumes that ε (τ) jumps at the rate λ, but really only the first jump
matters, since that first jump suffices to disqualify a firm from competing in the
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market for new capital. The general question can be put as follows: ‘Do incumbent
firms develop a disadvantage in setting up machines and plants of the newest vintages
and, if so, how quickly?’ The literature offers some indirect evidence. Prusa and
Schmitz (1994) find that a firm’s initial product is better than its second product, its
second better than its third, and so on. Christensen (1997) cites examples of disk-
drive producers and printer producers that failed to invest in the new technologies
that entrants brought in. Henderson (1993) finds that incumbents are less successful
at research efforts to exploit radical innovation than entrants are. Supporting the
vintage-capital model generally, Filson and Gretz (2004, Tables 1-5) support the
proportion that ‘new firms and industry laggards are the most likely pioneers of new
product generations.’ Their Tables 1-5 show that in the early days of a product (here
a diameter of a disk), new entrants lead the pack in terms of quality (here defined as
storage capacity). As the format matures, the incumbents become leaders. There are
5 new generations of drives in the data set; all of them were pioneered by spin-outs.21

We now show evidence that airline companies are more likely to exit when their
capital is old. We use data on aircraft where accurate information on age is available.
Among exiting firms, the age of the capital stock is always T .22 Surviving capital is
generally younger than that. If demand was almost perfectly inelastic, there would be
very little investment between the spike dates, and the capital stock among surviving
firms would be almost as old as that among exiting firms. On the other hand, if
demand is highly elastic, most of the existing capital would be quite young. Thus if
we let aS be the average age of the surviving firms’ capital stock, unless we specify
the demand curve all we can say is that

0 < aS < T. (17)

Figure 10 shows the empirical counterparts of aS (white dots) and T (black dots)
for the U.S. airline industry, in which the airplanes of exiting airlines were on average
7 years older than those of the surviving airlines. After weighing by the number
of observations, the difference is highly significant. Balloon size is for each series
proportional to the square root of the number of observations, but the constant of
21The evidence is not unanimous, however. Dunne (1994) finds that the age of a plant is unrelated

to the tendency to adopt advanced technology.
22The presence of an active market for leased planes in the airline industry leaves this implication

largely intact. First, the competitive leasing price for a vintage-τ plane at date t would be p(t)egτ−c
with airlines making zero profits at each instant. Our argument is that whether an airline leases or
buys its equipment does not affect its ability to make use of it. An airline that has not experienced
any jumps in ε can make use of the latest vintage at zero additional cost after paying the competitive
rental. One that has experienced a shock to ε must also pay a positive amount in addition to the
competitive rental to fly latest-vintage planes. But it can buy or rent planes of an older vintage,
a vintage that it can still operate as efficiently as anyone else can. Suppose that the firm follows
this strategy for as long as it can, thus hanging on for T periods following the shock to its ε. When
it does finally exit, its rented planes will be T years old, i.e., the earliest vintage still in use in the
industry, which also is when the equilibrium rental price of the vintage reaches zero.
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Figure 10: Age of capital among exiters and survivors in the U.S. airline
industry, 1960-2003.

proportionality is larger for the exiting capital series so as to allow us to see how
sample size of that series too evolves over time.

Figure 11 shows almost as strong a difference among all the world airlines. Capital
of exiting airlines was four years older than the capital of surviving airlines and the
difference in the means is again highly significant. Surprisingly, perhaps, the U.S.
carriers operated older planes than the carriers based in other countries. A description
of the data is in the Appendix, but a summary is in Table 2:

U.S. World
Survivors Exiters Survivors Exiters

Average age (yrs) 10.4 17 9.8 13.7
Std. dev. of age 7.5 9.4 7.4 9.4
# of airlines 231 181 1140 659
# of plane-year obs. 95,147 530 213,650 2,092

Table 2 : The data in Figures 10 and 11.

As reported in the table, a plane is counted as one observation for each year of its life.
An airline is counted at most twice — as a survivor and then possibly as an exiter.
Three other pieces of evidence link exit decisions to the need to replace capital to

the decision to exit.
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1. Plant exit.–Salvanes and Tveteras (2004) find that old plants are (i) less likely
to exit, but (ii) more likely to exit when their equipment is old. Fact (i) they
attribute to the idea that plants gradually learn their productivity and exit if
the news is unfavorable as Jovanovic (1982) argued. Fact (ii) they attribute to
the vintage-capital effect on exit.

2. The trading of patent rights.–The renewal of a patent is similar to replacing a
piece of capital in the sense that a renewal cost must be paid if the owner of
the patent is to continue deriving value from it. If that owner sells the patent
right, he effectively exits the activity that the patent relates to. Serrano (2008)
finds that the probability of a patent being traded rises at its renewal dates,
indicating that the decision to exit is related to the wearing out of a patent
right.

3. Higher embodied technical progress raises exit.–A faster rate of decline in the
price of capital makes it optimal to replace capital more frequently. If re-
placement sometimes leads to exit, we should see more exit where there is more
embodied progress. Samaniego (forthcoming) indeed finds that in sectors where
the prices of machinery inputs fall faster, the firms using those machines expe-
rience higher rates of exit.
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5.0.3 Firm exit

A firm ‘exits’ in the GK data when it stops producing a product. In the theory
presented so far, firms can exit only at ages T, 2T, and so on. Pooling over products,
Agarwal and Gort (1996, Figure 2) show that hazard rates for firm exit tend to
rise once age exceeds 30 or 40 years, and perhaps this is because their capital is old
and needs replacing. It is conceivable that mixtures over industries could produce
downward-sloping hazards. The fact is, however, that firms in every industry can
and do fail at young ages and for reasons often unrelated to the age of their capital.
Thus as a theory of exit within a particular industry, the model as it stands is quite
inadequate. The object here is not to seek a general theory of firm exit but, rather,
only to show that our theory of the shakeout is robust to the introduction of other
reasons for exit.

We shall now show that the model can produce exit spikes every T periods, and
still have a realistic exit hazard. To do it, we shall assume that firms experience cost
shocks and that there is a frictionless used-capital market within the industry. This
market becomes active if firms have different c’s. We continue to assume that capital
has zero value to anyone outside the industry. Suppose, then, that c rises permanently
when the firm or plant is τ years old, and suppose further that the hazard, h (τ ), of
such an event is decreasing in τ , perhaps because of a positive effect that learning by
doing exerts on the firm’s production efficiency.

A firm that experiences a rise in c will immediately sell its capital to firms in the
industry that have not experienced such a rise, and extract the full value of the profits
that the machine will yield until its replacement date. The investment condition (5)
is then unchanged because the resale value of the capital fully captures what the
firm would have obtained for itself had its c remained at its original level. The new
owner of the capital would choose to retire it at the same date that the original owner
would have had he not experienced a rise in c and therefore the exit condition (4) also
remains unchanged, as does (6). Equilibrium is therefore exactly the same. However,
now there will be two kinds of exit: (i) When the firm’s capital is up for replacement
and that the firm’s implementation cost has gone up since the last time capital was
installed, and this hazard is zero except for spikes every T periods, (ii) When the
firm’s c has risen, which has the hazard h (τ). For τ < T , the exit hazard is just h
and it is decreasing in τ . At τ = T , (i) dominates (ii) since time is continuous. But
over a discrete time period, (ii) could dominate (i), in which case the exit hazard
would decrease monotonically.23

The general point is that the GK observations that Figure 1 portrays concern in-
dustry aggregates. Our model too is mainly about these aggregates and it is probably
consistent with a wide variety of assumptions about turbulence at the more micro
level.
23This applies only to a firm that enters with frontier technology. If an entrant were to come in

with used capital, he would replace it before his firm reached age T .
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6 Other explanations
Our paper explains the existence of investment spikes using a vintage-capital argu-
ment. Proposition 3 goes further and predicts a geometric decay of the spikes which
no other models generate in a natural way. On a general level, other forces have been
held to be possible causes of concentrated episodes of investment and exit. Since
our model omits these other forces, we now try to place our paper in a more general
context by briefly reviewing these arguments and assessing their ability to explain
the data at hand. It helps to divide them into demand-side and supply-side types of
explanations.

6.1 Demand-side explanations

Some papers consider fluctuations in aggregate demand, others focus on shifts in
demand at the industry level. We take these up in turn.

6.1.1 Aggregate demand

Gourio and Kashyap (2007) find investment spikes to be procyclical, and other work
finds exits to be countercyclical. The concern this raises is that what we have termed
as ‘echoes’ are instead reflections of the business cycle.

Be they aggregate or industry demand shocks, however, it would seem that they
should produce an asynchronicity between entry and exit: Entry should occur when
demand is high and exits should happen when demand is low. Our clustering test
shows, however, that entry and exit spikes tend to go together. More directly we can
ask if entry spikes are less likely and exit spikes more likely to occur during NBER
recession years.24

This logic would seem to have been at work in the Phonograph industry in that, as
Figure 6 shows, that in the two of the four exit spikes — the 1913 and the 1974 spikes —
occurred during recession years and none of the entry spike dates did. However, this
asymmetry does not show up in other industries. When we consider all the industries
there is no correlation between recession years and spike dates. Our tests are simple
comparisons of means. Let τ j be the number of years of coverage of industry j, and
τRj the number of recession years contained in τ j. Similarly, let φj be the number of
24The NBER dates are in quarters but our spike dates are in years. We designate a given year a

recession year if any of the following criteria was met: (1) if a NBER recession was underway for
the whole year, (2) if a NBER recession started in the first 2 quarters of the year, or (3) if a NBER
recession ended in the last 2 quarters of the year. There are two exceptions. Both the 1918 and
1990 recessions started in the 3rd quater and ended in the 1st quater of the following year. They
are nonetheless considered recession years, for otherwise the two recessions would not show in the
data at all.
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spikes in industry j and φRj the number of those spikes that fall in a recession year.
25

Then we ask if either of the following inequalities is significant:P
j φ

R
jP

j φj
≷
P

j τ
R
jP

j τ j
.

The demand hypothesis implies that for exits the LHS should exceed the RHS and
that for entry the LHS should be less than the RHS. It turns out that the LHS is
smaller for both exit and entry, but neither difference is significant. We interpret
this as a test of differences in the means based on

P
j τ j independent samplings. See

Appendix Table 4.

6.1.2 Industry demand

We assumed that the demand curve is elastic enough and that large exogenous de-
mand shifts are ruled out (the details are in (3)). When this assumption fails, demand
can play a major role. This is shown by Caballero and Hammour (1994) who find
that if replacement of capital causes interruptions in production, it is optimal to re-
place capital when demand temporarily drops, for then the foregone sales are at their
lowest. Klenow (1998) finds that when, in addition, the productivity of new capital
rises with cumulative output, a firm will replace capital when the recovery is about
to start. This raises the productivity growth of the new capital.

If an exit spike is caused by a fall in industry demand, we should observe a fall
in output around the time of the spike. Moreover, a demand decline produces a
shakeout and a decline in p. If demand does not decline then there is no shakeout
and no decline in p. We divide the GK industries into those in which output fell during
the shakeout period, and into those in which output rose. For the analysis in Figure
4, among the industries where output fell during the shakeout,26 the average pair was³bg, bT´ = (0.07, 30.4), whereas among the industries where output rose,27 the average
pair

³bg, bT´ = (0.28, 13.3) . For the analysis in Figure 5, the corresponding figures

are
³bg, bT´ = (0.05, 17.3)28 and ³ĝ, bT´ = (0.21, 11.2) .29 Yet the demand hypothesis

25Take for example product 23, Phonograph Records. Here τ = 83. The coverage was from 1909

to 1991 during which 19 years were recession years. Thus
τRj
τj
= 19

83 . For exit spikes, the second and

the fourth spikes, in 1933 and 1973-74, respectively, were in recession years. Then φRj = 2 and
φRj
φj
= 2

19 . Because of time aggregation, demand fluctuations can induce a spike in that x(t) reacts
positively to changes in demand.
26DDT, Electic shavers, Phonograph records, TV, and Zippers.
27Fluorescent lamps, Penicillin, and Styrene.
28The industries in note 26 plus Auto tyres and CRT.
29The industries in note 27 plus Freezers and Transistors. GK did not report whether output fell

or rose during the shakeout for Computers and Streptomycin.
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implies the opposite: Prompted by the decline in output, ĝ (the measured decline in
p) should have been higher and T̂ should have been lower in the first sample than in
the second. Thus demand shifts do not seem to explain the patterns in GK’s sample.

6.2 Supply-side explanations

Echo effects were first discussed in the growth literature. In a one-consumption-good
GE model, for the interest rate to remain constant in the face of variations in the rate
of investment that inevitably occur along the transition path from arbitrary initial
conditions, the instantaneous utility of consumption must be linear. Then, if the
rate of technological progress is also constant, the investment echoes will have the
constant periodicity that they also have in our model, but they will not be damped.
Rather, the investment profile simply repeats itself every T periods — see Mitra et al.
(1991) and BGL. Johansen (1959) and Arrow (1962) assume a production function
for the sole final good that is Leontieff in capital and labor. In that case the effective
maintenance cost is the wage multiplied by the labor requirement per machine. Since
wages rise at the same rate as the rate at which the labor requirement declines, and
the maintenance rate is then constant in units of the consumption good. Thus our
maintenance cost, c, has an exact counterpart in these models. Since these models
have no costs of rapid adjustment, the infinitely-elastic supply of capital that we
assume amounts to the same thing.

Endogenous technological change.–Our model assumes that technological change
is exogenous. Klepper (1996) assumes firms do research, and his model appears to
imply that leading firms would squeeze out the inefficient fringe more quickly in
industries where there is more technological opportunity and, hence, faster-declining
product prices. The difference between our model and his concerns the fate of the
firms in the first cohort of entrants: In our model the first cohort is the least efficient,
whereas in Klepper’s model, the first cohort is the most efficient because it has done
the most research. In Grossman and Helpman (1991) and Aghion and Howitt (1992),
monopoly incumbents are periodically replaced by more efficient entrants. Tse (2001)
extends the model to allow for more than a single producer.

Exit after learning through experience.– GK observed that a shakeout usually
comes after a wave of entry. Horvath, Schivardi and Woywode (2003, ‘HSW’) argue
that if a run-up in entry occurs at some point in the industry’s life, then some time
later, a fraction of the entrants will have found themselves unfit to be in that industry
— a type of learning that Jovanovic (1982) stresses — and will then exit en masse.
The argument of HSW would measure the learning period by T . After exactly T
periods, a firm discovers whether it has high costs and should exit. To develop
this argument fully one would have to somehow to show first that a firm’s learning
about productivity is likely to take place all at once and not gradually as one usually
assumes. And, second, one would need to explain why learning should occur sooner
in those industries where p is declining rapidly. Nevertheless, HSW get some support
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from the results in Table 7 of DRS where they find that at the industry level, the
number of entering and exiting firms (as opposed to their market shares) is not
positively correlated but that, rather, entry leads exit at a five-year frequency. In our
data, however, the causality runs the other way: Exit appears to cause entry. For
each industry, i, in Table 3 we define the dummy variables xi,t (exit) and yi,t (entry)
taking on the value of unity if our procedure detects a spike at date t, and the value
of zero if no spike is detected. Now we have a pair of sequences of dummy variables
for each industry. We then run Probit regressions of the form

Pr (xi,t = 1) = Φ

Ã
α+

SX
s=0

αsyi,t−s +
SX
s=1

βsxi,t−s

!
(18)

and

Pr (yi,t = 1) = Φ

Ã
α+

SX
s=0

αsxi,t−s +
SX
s=1

βsyi,t−s

!
(19)

where Φ is the normal probability function. We pool the observations over (i, t).
We report the results in Appendix, with S ranging from zero to five, and with and
without restricting the coefficients. Generally, the contemporaneous relation is always
positive — the estimate of α0 is positive and significant at the 5% level in both (18)
and (19) regardless of what other lags are included in them. The tendency is for exit
to cause entry and not the other way around. This, however, was to be expected
given the outcome of the coincidence test. Causality, on the other hand, tends clearly
to run from exit to entry. Tables 5a and 5b tell the story in greater detail.

Technological advances by incumbents.–When a new technology raises the effi-
cient scale of firms, it crowds some of them out of the industry; so argue Hopenhayn
(1993) and Jovanovic and MacDonald (1994). The assembly-line technology, e.g.,
probably raised the optimal scale of auto-manufacturing plants and caused a large
reduction in the number of auto producers. Klepper (1996) argues that larger firms
do more R&D than small firms because they can spread its results over a larger num-
ber of units; because they invent at a faster rate, large firms then drive smaller firms
out, often by acquiring them.

Consolidations for other reasons.–Some shakeouts no doubt occur because of the
standardization of products so that some of the variants fall by the wayside and their
producers exit. The focus on the diesel technology was one reason for the mass exodus
of automobile producers that relied on other technologies as a source of power for the
models they built. The winning model forces out other models and their producers.
Utterback and Suarez (1993) argue that a dominant design emerges: More generally,
consolidations and merger waves can occur for reasons unrelated to drops in demand
and to advances in technology. Deregulation, for instance, has led to merger waves
in the airlines and banking industries (Andrade et al. 2001) and to a sharp fall in the
numbers of producers.
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Evidence shows there are investment spikes — Cooper and Haltiwanger (1996),
Gourio and Kashyap (2007). Repeated echo effects in entry and exit seem to be
present in the data and they are clear indications that a vintage-capital replacement
motive is one of their causes.

7 Conclusion
This paper started out with a graphical display of evidence that industry shake-
outs of firms occur earlier in industries where technological progress is faster. We
argued that other models of shakeouts were not able to explain this fact, whereas
our vintage-capital model does so by predicting earlier replacement when capital-
embodied technological progress is fast. We supported this claim with evidence from
the airline industry that showed firm exits to be positively related to the age of the
capital stock.
By inferring technological progress in the inputs from the decline in the price

of the output as our model predicted, we found that the model fits fairly well the
negative relation between technological progress and the onset of the shakeout. More-
over, we found that subsequent investment spikes, too, are also more frequent where
technological progress is fast.
To study further the role of the vintage model in explaining industry dynamics,

more can be done with richer data sets. First, the age of a firm’s capital stock and
the pressure that replacement of that stock places on the firm to exit should be
linked empirically more firmly; we have studied only the airline industry. Second,
the vintage-capital model that we have presented is primarily a theory of investment
at the level of an industry, and could just as well be tested with data on industry-
level gross and net investment; spikes should occur in the gross-investment series
only, provided the quality of capital is properly measured. Third, we have abstracted
entirely from mergers, yet horizontal mergers provide a way for exiting firms to be
absorbed by those firms that remain; industry-level time series of horizontal mergers
should, on these grounds, also exhibit echoes.
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EXIT    ENTRY 

 
spike dates 

 
spike dates 

  

 
Product & 

yr of comm  
intr. 

 
 
 

Length of 
raw series  

in yrs since 
comm intro 

in 
calendar 

yr 

in yrs 
since 
comm 
intro 

in 
calendar 

yr 

Corr btw 
smoothed 
entry and 
exit rates 

Corr btw 
entry and 

exit 
residuals 

 
 
 

Corr 
btw 

entry 
and 
exit 
rates  

 
 
 
 

G-K  
Stage 4 

1 Antibiotics 44 7 1955 2 1950 -0.46 -0.04 -0.30 not in G-K 
  1948   19 1967 39 1987         

      32 1980             

2 
Artificial 
Christmas Trees 

54 
8 1946 35 1973 -0.52 -0.02 -0.21 1968-1969 

  1938   18 1956 49 1987         
      43 1981             

      45 1983             

3 Ball-point Pens 44 23 1971  9-10 1957-58 0.81 -0.32 0.55 S4 not reached 

  1948       26 1973-74         

4 Betaray Gauges 36 7 1963 7* 1963 0.18 0.34 0.26 1973- 

  1956       33 1989         

5 
Cathode Ray 
Tubes 

57 
54 1989 10 1945 0.92 0.55 0.79 1963-1967 

  1935       15 1950         

          52 1987         

6 

Combination 
Locks 

80 

13 1925 21 1933 0.41 0.01 0.21 not in G-K 
  1912   16 1928 29 1941         
      65 1977 53 1965         

      75 1987             

7 Contact Lenses 56 10 1946 6 1942 0.09 -0.15 -0.13 not in G-K 

  1936   29 1965 12 1948         
      35 1971 30 1966         

          39 1975         

8 Electric Blankets 76 3 1919  6-7 1922-23 -0.13 0.07 -0.09 1962-1973 
  1916   35 1951 30 1946         
      41 1957 46 1962         
      63 1979 70* 1986         

      69-70 1985-86             

9 Electric Shavers 55 36 1973 36-39* 1973-76 0.22 -0.09 -0.11 1938-1945 
  1937       49 1986         

                      

10 

Electrocardiograp
hs 

50 

6 1948 6* 1948 0.25 0.41 0.37 1964-1969 

  1942   32 1974 48 1990         

11 Freezers 46 27 1973 40 1986 0.41 -0.13 0.23 1947-1957 

 
1946   

                
italics -  Is or may be in GK Stage 4                    * - Within 1 year of exit spike 

 

Table 3: Entry and Exit Statistics in Agarwal’s data 
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EXIT   ENTRY 
 

spike dates 
 

spike dates 

  

 
Product & 

yr of comm  
intr. 

 
 
 

 
Length of 
raw series  

in yrs 
since 
comm 
intro 

in 
calendar 

yr 

in yrs 
since 
comm 
intro 

in 
calendar 

yr 

Corr btw 
smoothed 
entry and 
exit rates 

Corr btw 
entry and 

exit 
residuals 

 
 

Corr 
btw  

entry 
and 
exit 
rates  

 
 

G-K stage 
4 

12 
Freon 
Compressors 

57 
5 1940 3 1938 -0.21 -0.12 -0.17 1971-1973 

  1935   37 1972 46 1981         

      52 1987             

13 Gas Turbines 48 20 1964 2 1946 -0.42 0.00 -0.22 1973- 
  1944       36 1980         

          41 1985         

14 Guided Missiles 41 2 1953 8 1959 -0.32 -0.43 -0.41 1965-1973 
  1951       35 1986         

                      

15 Gyroscopes 77 10 1925 4 1919 0.36 0.10 0.24 1966-1973 
  1915   31-32 1946-47 30-32* 1945-47         

          39-40 1954-55         

16 Heat Pumps 38 5 1959 25 1979 -0.42 -0.08 -0.24 1970-1973 
  1954   16 1970             

      32 1986             

17 Jet Engines 44 6 1954 6* 1953-54 -0.26 0.42 0.07 1960-1962 
  1948   22 1970 32 1980         

          35 1983         

18 
Microfilm 
Readers 

52 
 5-6 1945-46 8 1948 0.37 -0.24 -0.12 

S4 not 
reached 

  1940   16 1956 22-23 1962-63         
          33 1973         

          45 1985         

19 Nuclear Reactors 37 30 1985 30* 1985 -0.57 0.12 -0.38 1965-1973 

  1955   33 1988 35 1990         

20 Outboard Motors 79 22 1935  2-4 1915-17 -0.18 0.07 -0.08 1921-1923 

  1913   67 1980 28 1941         
          34 1947         

          72 1985         

21 Oxygen Tents 60 41 1973 4 1936 -0.32 -0.17 -0.26 1967-1973 
  1932   48 1980 56 1988         

      52-53 1984-85             

22 Paints 58 39 1973 13-14 1947-48 -0.41 0.04 -0.20 1967-1973 

  1934   43 1977 20 1954         
italics -  Is or may be in GK Stage 4                    * - Within 1 year of exit spike 

 

 
 

Table 3, continued 
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EXIT    ENTRY 

 
spike dates 

 
spike dates 

  

 
Product & 

Yr of 
Comm  

Intr. 

 
 
 
 

Length of 
raw series  

in yrs 
since 
comm 
intro 

in 
calendar 

yr 

in yrs 
since 
comm 
intro 

in 
calendar 

yr 

Corr btw 
smoothed 
entry and 
exit rates 

Corr btw 
entry and 

exit 
residuals 

 
 
 
 

Corr 
btw 

entry 
and 
exit 
rates  

 
 

G-K 
stage 4 

23 

Phonograph 
Records 

84 

5 1913 9 1917 -0.23 0.08 -0.07 1923-1934 
  1908   25 1933 13 1921         
      51 1959 40 1948         

      65-66 1973-74 67* 1975         

24 

Photocopying 
Machines 

52 

34 1974 42 1982 -0.30 -0.20 -0.25 1965-1973 

  1940   39 1979             

25 

Piezoelectric 
Crystals 

51 

13 1953 3 1943 -0.28 -0.06 -0.21 1955-1957 

  1940   40 1980 45 1985         

26 Polariscopes   64 15 1943 18 1946 0.20 -0.26 -0.03 1964-1967 

  1928   45 1973 23 1951         
          25 1953         

          44* 1972         

27 
Radar Antenna 
Assemblies  

40 
15 1967 4 1956 -0.50 -0.10 -0.32 1957-1968 

  1952   21 1973 33 1985         

28 

Radiant Heating 
Baseboards   

45 

25 1972 27 1974 -0.42 0.02 -0.19 1972-1973 

   1947   37 1984             

29 Radiation Meters 43 6 1955 -0.28 0.20 -0.13 not in G-K 

  1949   37 1986         

      no spike dates 41 1990         

30 Recording Tapes 40 11 1963 33 1985 -0.53 0.06 -0.31 1973- 

  1952   28 1980             

31 Rocket Engines 34 32 1990 7 1965 -0.34 -0.08 -0.19 1973- 

  1958       33* 1991         

32 Styrene 54 17 1955  4-5 1942-43 -0.55 -0.09 -0.27 1966-1973 

  1938       20-1 1958-59         

33 

Video Cassette 
Recorders   

18 

7 1981 -0.33 -0.18 -0.11 not in G-K 

  1974   no spike dates 11 1985         

  average 51.94         -0.11 -0.01 -0.07   
  max 84.00         0.92 0.55 0.79   
  min 18.00         -0.57 -0.43 -0.41   

  std deviation 14.97         0.40 0.22 0.27   
italics -  Is or may be in GK Stage 4                    * - Within 1 year of exit spike 
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8 Appendix

8.1 The aircraft data

The data that Figures 10 and 11 portray come from a file, complied by a producer of a
computer based aviation market information system and safety management software,
that records the history of every non—military aircraft manufactured. They are de-
scribed by Gavazza (2009, Sec. 5.1) and at http://www.flightglobal.com/StaticPages/Acas.html
. Coverage begins in 1942 and ends at April 2003. For each aircraft, it records the
usual identification information, such as the manufacturer, the model, etc., and (most
important for our purposes) the first and the last date that each aircraft was operated
by individual carriers. We aggregate such information at the level of an individual
carrier to calculate the average age of capital of the carrier at a given point in time.
The analysis is restricted to narrow-body (100 seats +) and wide—body passenger
jets.

Measurement of entry and exit.–We say that a carrier has “entered” in the year in
which it was first recorded as having operated a passenger jet. A carrier has “exited”
in the year in which it was last recorded as having operated a passenger jet. A carrier
has “survived” a certain year if it entered before that year and if it has not exited by
the end of the year. The data contain information on mergers; a company that was
acquired is not counted as an exit.

Measurement of age.–The age of a jet at a point in time is the time elapsed since
the jet was first delivered. The average age of a carrier’s capital is the average age of
all the jets that it operated on January 1 of the year.

8.2 Proofs and derivations

Proof of Proposition 2.–Rewrite (9) as

ge−rT + regT −
µ
r + c

c

¶
(r + g) ≡ Φ (T, g, c, r) = 0.

We have ∂Φ
∂T
= rg

¡
egT − e−rT¢ > 0. Therefore (11) follows if ∂Φ

∂g
> 0. Now

∂Φ

∂g
= e−rT + rTegT − r + c

c
and, by eliminating e−rT ,

=

µ
r + c

c

¶
r + g

g
− r
g
egT + rTegT − r + c

c

=

µ
r + c

c

¶
r

g
− r
g
egT + rTegT =

r

g

µ
r + c

c
− egT

¶
+ rTegT

=
r

g

µ
r + c

c
+ (gT − 1) egT

¶
> 0.
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The strict inequality follows because (i) The function (gT − 1) egT is increasing in gT,
with derivative egT [1 + (gT − 1)] = gTegT , and because (ii)As gT → 0, (gT − 1) egT →
−1, so that at its smallest point, ∂Φ

∂g
= r2

gd
> 0. Then, since ∂T

∂g
= −∂Φ

∂g
/∂Φ
∂T
, and since

∂Φ
∂T
> 0, (11) follows. ¥
Proof of Proposition 4.–(i)We showed that ΦT > 0 in the proof of Proposition 2.

Moreover, ∂Φ
∂c
> 0 because the ratio r+c

c
is decreasing in c. Therefore ∂T

∂c
= −∂Φ

∂c
/∂Φ
∂T
<

0. (ii) When gc < r2, ∂T
∂r
= −∂Φ

∂r
/∂Φ
∂T

∂Φ

∂r
= −Tge−rT + egT −

µ
r + g

c

¶
−
µ
r + c

c

¶
and, by eliminating egT ,

= −Tge−rT − ge
−rT

r
+

µ
r + c

c

¶
(r + g)

r
−
µ
r + g

c

¶
−
µ
r + c

c

¶
= −Tge−rT − ge

−rT

r
+

µ
r + c

c

¶
g

r
−
µ
r + g

c

¶
=

g

r

¡
1− e−rT¢− ³r

c
+ Tge−rT

´
<
g

r
− r
c
.

so that then ∂T
∂r
= −∂Φ

∂r
/∂Φ
∂T
> 0. ¥

Derivation of the Likelihood Function for the estimates in Figures 4, 5, 7, and
8–. For each industry i, if we know ci and bgi, we know eTi = eT (r, ci, bgi). We would
like to solve eTi as a function of ci, so that we can derive the distribution of eTi from the
assumed log—normal distribution on ci. But since eT (r, ci, bgi) does not admit a closed
form solution, the exact functional relationship between eTi and ci is unknown, and
we linearize it in x = ln c. After substituting xi ≡ log ci and g = ĝi into (9), it reads³ r

exi
+ 1
´
(r + ĝi) = ĝie

−r eTi + reĝi eTi . (20)

Taking total derivatives at xi = x, gives

−re−x (r + ĝi) dxi = rĝi
³
eĝiT i − e−rT i

´
dTi

where T̄i ≡ T̃ (r, ex, ĝi). Then

−dTi
dxi

= e−x
r + ĝi
ĝi

1

eĝiT̄i − e−rT̄i ≡ βi

Hence Ti ' T̃ (r, x, ĝi) − (xi − x) βi. If xi ∼ N (x, σ2), then approximately, Ti ∼
N
¡
T̄i,β

2
iσ
2
¢
. The density of Ti is f (Ti) = 1√

2πβiσ
exp

µ
−1
2

h
Ti−T i
βiσ

i2¶
. When there

are no censored observations, the likelihood is

L =
nY
i=i

fTi (Ti) ;
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otherwise
L =

Y
i/∈C
fTi (Ti)

Y
i∈C
(1− FTi (Ti)) ,

where C is the set of censored observations and FTi (Ti) the CDF of f (Ti).
Conditional Expectation in Figure 5.–Take the Nylon observation for exam-

ple. The observation is truncated at 21. As we showed in the previous paragraph,
Ti ∼ N

¡
T̄i, β

2
iσ
2
¢
approximately. By setting x and σ equal to their respective point

estimates of -2.56 and 2.27, we obtain estimates of T̄i and β2iσ
2. Then we calculate

the expected value of Ti conditional on Ti ≥ 21.

8.3 Tests

8.3.1 NBER recessions tests

The dates come from http://www.nber.org/cycles/cyclesmain.html. Table 4 summa-
rizes our findings on the incidences of exit and entry spikes during the recessions:

Exit Spikes Entry SpikesP
j τ j 1681

P
j φj 72

P
j φj 95P

j τ
R
j 364

P
j φ

R
j 14

P
j φ

R
j 15P

j τ
R
jP

j τj
0.22

P
j φ

R
jP

j φj
0.19

P
j φ

R
jP

j φj
0.16

Table 4 : Spikes and recessions

For both exit and entry spikes then
P

j φ
R
j /
P

j φj <
P

j τ
R
j /
P

j τ j. The differences
however are not significant at even the 10% level in chi-square tests of independence
in both cases.

8.3.2 Causality tests

The tables below present the results of Granger causality tests of exit by entry (Table
5a) and of entry by exit (Table 5b). All regressions are Probit regressions. In each set
of results, the first table presents the results where the coefficients are not restricted,
whereas the second table presents the results where the coefficients of the various lags
of each variable are restricted to be equal. Note how the results in general support
exit causing entry but not the other way around.
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Dep var = xit     
 

S 0 1 2 3 4 5 

       

Constant -1.75* -1.74* -1.71* -1.69* -1.65* -1.66* 

 (0.057) (0.059) (0.061) (0.064) (0.065) (0.069) 

yit 0.37† 0.38† 0.40† 0.41† 0.44† 0.46† 

 (0.193) (0.196) (0.199) (0.201) (0.204) (0.206) 

yit-1  -0.25 -0.24 -0.23 -0.24 -0.17 

  (0.268) (0.277) (0.278) (0.282) (0.289) 

yit-2   -0.101 -0.07 -0.07 -0.24 

   (0.247) (0.238) (0.259) (0.327) 

yit-3    -0.56‡ -0.53‡ -0.49‡ 

    (0.383) (0.386) (0.390) 

yit-4     -0.57‡ -0.55‡ 

     (0.391) (0.394) 

yit-5      -0.08 

      (0.265) 

xit-1  0.23 0.23 0.22 0.20 0.22 

  (0.236) (0.237) (0.238) (0.238) (0.238) 

xit-2   -0.51‡ -0.52‡ -0.55‡ -0.52‡ 

   (0.394) (0.395) (0.398) (0.400) 

xit-3    -0.15 -0.18 -0.16 

    (0.311) (0.313) (0.325) 

xit-4     -0.20 -0.19 

     (0.319) (0.325) 

xit-5      -0.19 

      (0.322) 
 

Dep var = xit     
 

S 0 1 2 3 4 5 

       

Constant -1.75* -1.96* -1.68* -1.61* -1.55* -1.57* 
 (0.057) (0.226) (0.108) (0.233) (0.254) (0.148) 

∑
=

−

S

s
sity

0

 
0.37† 0.12 0.06 -0.20 -0.08 -0.08 

 (0.193) (0.139) (0.118) (0.120) (0.123) (0.101) 

∑
=

−

S

s
sitx

1

 
 0.22 -0.03 -0.07 -0.10 -0.10 

  (0.208) (0.087) (0.202) (0.216) (0.116) 
 * significant at the 1% level 
 †   significant at the 5% level 
 ‡  significant at the 10% level 
 

Table 5a: Causality Tests: Entry causes exit 
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Dep var = yit      

S 0 1 2 3 4 5 

       

Constant -1.61* -1.67* -1.68* -1.70* -1.73* -1.74* 

 (0.051) (0.056) (0.059) (0.062) (0.067) (0.069) 

xit 0.39† 0.37† 0.40† 0.41† 0.44† 0.48† 

 (0.203) (0.207) (0.208) (0.210) (0.210) (0.211) 

xit-1  0.21 0.20 0.24 0.27 0.28 

  (0.22) (0.220) (0.222) (0.223) (0.222) 

xit-2   0.22 0.20 0.25 0.25 

   (0.220) (0.227) (0.225) (0.228) 

xit-3    0.45† 0.46† 0.48† 

    (0.207) (0.208) (0.209) 

xit-4     0.32‡ 0.32‡ 

     (0.221) (0.222) 

xit-5      0.32‡ 
      (0.225) 

yit-1  0.68* 0.71* 0.68* 0.65* 0.61* 
  (0.164) (0.167) (0.171) (0.177) (0.183) 

yit-2   -0.21 -1.53 -0.23 -0.23 

   (0.245) (0.244) (0.270) (0.269) 

yit-3    -0.47‡ -0.43‡ -0.42‡ 

    (0.322) (0.319) (0.322) 

yit-4     -0.11 -0.13 

     (0.266) (0.255) 

yit-5      -0.02 

      (0.148) 
 

Dep var = yit     
 

S 0 1 2 3 4 5 

       

Constant -1.61* -2.34* -2.01* -1.84* -1.78* -1.76* 
 (0.051) (0.190) (0.156) (0.131) (0.137) (0.084) 

∑
=

−

S

s
sitx

0

 
0.39† 0.29† 0.28† 0.33* 0.37* 0.38* 

 (0.203) (0.146) (0.122) (0.106) (0.097) (0.091) 

∑
=

−

S

s
sity

1

 
 0.67* 0.33* 0.14‡ 0.05 0.02 

  (0.165) (0.126) (0.100) (0.099) (0.042) 
 * significant at the 1% level 
 †   significant at the 5% level 
 ‡  significant at the 10% level 
 

Table 5b: Causality Tests: Exit causes entry 
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