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Abstract This paper examines the interaction between investment and financing decisions of a firm
using a real options approach. The firm is endowed with a perpetual option to invest in a project at
any time by incurring an irreversible investment cost at that instant. The amount of the irreversible
investment cost is directly related to the intensity of investment that is endogenously chosen by the
firm. At the investment instant, the firm can finance the project by issuing debt and equity, albeit
subject to an exogenously given credit constraint that prohibits the firm’s debt-to-asset ratio from
exceeding a prespecified threshold. The optimal capital structure of the firm is determined by the
trade-off between interest tax-shield benefits and bankruptcy costs of debt. Irrespective of whether
the exogenously given credit constraint is binding or not, we show that leverage has no impact on the
firm’s optimal investment intensity, thereby rendering the neutrality of debt in investment intensity.
Similar to earlier work, we show that debt is not neutral to investment timing in general, and the
levered firm invests earlier than the unlevered firm in particular.
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1 Introduction

Does debt financing affect a firm’s investment decisions? Under perfect capital market as-

sumptions, it is well-known from the seminal work of Modigliani and Miller (1958) that

corporate financing and investment decisions are independent and thus can be made sep-

arately. However, when market imperfections such as corporate taxes, bankruptcy costs,

and agency conflicts are introduced, the extant literature by and large establishes a linkage

between corporate financing and investment decisions such that they are no longer separa-

ble (see, e.g., Dotan and Ravid 1985; Dammon and Senbet 1988; Mauer and Triantis 1994;

Childs et al. 2005; Décamps and Djembissi 2007). In this paper, we use a real options

approach to examine how debt financing affects a firm’s investment decisions in general

and its investment intensity in particular, where optimal leverage is determined within a

standard trade-off model of capital structure à la Leland (1994) and Goldstein et al. (2001).

Our real options model features an owner-managed firm that operates in continuous

time. The firm is initially endowed with a perpetual option to invest in a project at any time

by incurring an irreversible investment cost at that instant. The amount of the irreversible

investment cost determines the intensity of investment, which is a choice variable of the firm.

The project generates a stream of stochastic cash flows that follow a lognormal diffusion

process and increase with the intensity of investment, as in Capozza and Li (1994, 2002)

and Bar-Ilan and Strange (1999). The firm makes three decisions regarding the undertaking

of the project: the timing, intensity, and financing of investment.

The firm’s investment timing decision is characterized by a threshold (the investment

trigger) such that the project is undertaken at the first instant when the cash flow from

the project reaches the investment trigger from below (see, e.g., McDonald and Siegel 1986;

Dixit and Pindyck 1994). The firm’s investment intensity decision affects the amount of

the irreversible investment cost according to a known technology that exhibits decreasing

returns to scale. At the investment instant, the firm makes its financing decision by issuing

debt and equity, where the debt issued is perpetual with a constant coupon payment per

unit time. There is an exogenously given credit constraint that prohibits the firm’s debt-to-
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asset ratio from exceeding a prespecified threshold, which defines the firm’s debt capacity.

The firm chooses the optimal coupon payment so as to trade off the interest tax-shields

against the bankruptcy costs of debt. The firm also chooses the optimal time to default on

the debt obligation. Upon default, shareholders get nothing and debt holders receive the

liquidation value.

Within our real options model, we show that debt financing has no impact on the firm’s

optimal investment intensity, irrespective of whether the exogenously given credit constraint

is binding or not. In other words, the firm’s decision on investment intensity is completely

neutral to debt financing. To understand the intuition of this seemingly surprising result,

we consider a benchmark case wherein the firm is unlevered. In this benchmark case, the

unlevered firm chooses the optimal investment intensity that equates the value of the firm

per unit intensity of investment to the marginal cost of investment at the investment instant.

This is the usual optimality condition that the marginal return on investment is equal to

the marginal cost of investment at the optimum. On the other hand, the unlevered firm

chooses the optimal investment trigger taking into account the opportunity cost arising

from killing the investment option when the project is undertaken, which is captured by

the option value multiple (see Abel et al. 1996). The optimal investment trigger as such

equates the value of the firm at the investment instant to the investment cost augmented

by the option value multiple. Combining these two optimality conditions implies that the

optimal investment intensity is the one at which the marginal cost of investment is equal

to the average cost augmented by the option value multiple.1

When the firm is allowed to issue debt, the exogenously given credit constraint comes

into play. The binding credit constraint makes the project less valuable and thus reduces the

marginal return on investment. A higher level of investment intensity, on the other hand,

relaxes the credit constraint and thus lowers the marginal cost of investment. The binding

credit constraint also reduces the option value multiple, thereby making the net present

value of the project at the investment instant less than that when the credit constraint

does not bind. Since the adjustment to the option value multiple and that to the marginal

1Indeed, Wong (2009) shows that this optimality condition remains intact when the investment cost
becomes partially reversible.
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cost of investment are exactly the same (both of them come from the shadow price of the

binding credit constraint), the firm’s optimal investment intensity is ultimately determined

by the optimality condition that is identical to that in the benchmark case. That is, the

optimal investment intensity is the one that equates the marginal cost of investment to the

average cost augmented by the option value multiple, thereby rendering the neutrality of

debt in investment intensity within our real options model. We further show that debt is

not neutral to investment timing in general, and the levered firm invests earlier than the

unlevered firm in particular. The non-neutrality of debt in investment timing is due entirely

to the interest tax-shield benefits of debt, net of bankruptcy costs, which induce the levered

firm to accelerate the undertaking of the project as compared to the unlevered firm.

Our real options model is a direct extension of Belhaj and Djembissi (2007) by endoge-

nizing the intensity of investment. In the absence of the exogenously given credit constraint,

it is well-known from the real options literature on capital structure (see, e.g., Goldstein et

al. 2001; Strebulaev 2007; Tserlukevich 2008) that there is a scaling property in that the

optimal coupon payment as well as the values of debt and equity are all linear functions of

the cash flow at the investment instant, which in turn is linearly related to the irreversible

investment cost. The optimal investment intensity as such depends only on the character-

istics of the project, and not on the factors that determine the optimal capital structure,

thereby rendering the neutrality of debt in investment intensity. The binding credit con-

straint destroys the scaling property.2 On the one hand, the binding credit constraint lowers

the marginal cost of investment and thus tends to raise the investment intensity. On the

other hand, it also lowers the value of the levered firm at the investment instant and thus

tends to reduce the investment intensity. Our contribution is to show that these two op-

posing tendencies exactly offset each other as far as the investment intensity is concerned.

The neutrality of debt in investment intensity as such is not just an obvious consequence

of the scaling property.

Sabarwal (2005), like Belhaj and Djembissi (2007) and us, establishes the non-neutrality

2This can be easily seen from Eq. (37) that the net present value of the project at the investment instant
depends not only on the irreversible investment cost but also on the shadow price of the binding credit
constraint.
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of debt in investment timing. His results, however, are driven by agency conflicts and not by

corporate income taxes and bankruptcy costs. Specifically, Sabarwal (2005) assumes that

debt holders, taking the firm’s investment trigger as given, choose the coupon payment and

determine the value of debt such that they break even for an exogenously given amount of

debt financing. The firm, on the other hand, chooses the investment trigger so as to maxi-

mize the ex-ante equity value, taking the coupon payment selected by debt holders as given.

This gives rise to the well-known risk-shifting problem of Jensen and Meckling (1976) that

shareholders have incentives to increase the riskiness of the firm by investing earlier so as to

transfer wealth from debt holders to themselves. In the rational expectations equilibrium,

debt holders fully anticipate the risk shifting incentive of shareholders, and the optimal

investment trigger is shown to be a strictly decreasing function of the debt-to-asset ratio

due to the agency conflicts. In contrast, we show numerically that the optimal investment

trigger in our real options model without any agency conflicts is non-monotonically related

to the debt-to-asset ratio. While the interest tax-shield benefits of debt encourage early

investment, the bankruptcy costs of debt deter the investment incentive. The former effect

dominates (is dominated by) the latter effect for low (high) debt-to-asset ratios, thereby

rendering a U-shaped pattern of the optimal investment trigger against the debt-to-asset

ratio (see also Belhaj and Djembissi 2007).

The rest of this paper is organized as follows. Section 2 delineates our continuous-time

model of an owner-managed firm that has a perpetual option to invest in a project under

uncertainty. The firm has to make three decisions: the timing, intensity, and financing of

its investment. Section 3 derives the values of debt and equity of the levered firm at the

investment instant. Section 4 examines the optimal timing and intensity of investment in the

benchmark case of all-equity financing. Section 5 characterizes the optimal investment and

financing decisions of the firm in the absence of any exogenous credit constraints. Section

6 imposes onto the firm an exogenously given credit constraint that prohibits the firm from

having a debt-to-asset ratio above a prespecified threshold. We analytically characterize the

optimal investment and financing decisions of the firm, and numerically demonstrate the

significance of the credit constraint on the behavior of the firm. The final section concludes.
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2 The model

Consider a risk-neutral, owner-managed firm that has monopoly access to a perpetual option

to invest in a project.3 The firm is infinitely lived and operates in continuous time, where

time is indexed by t ∈ [0,∞). The firm is subject to a symmetric corporate income tax

system with full loss-offset provisions and a constant tax rate, τ ∈ (0, 1). The default-free

term structure is flat with a known instantaneous rate of interest, r > 0.

The firm makes three decisions regarding the undertaking of the project: the timing,

intensity, and financing of investment. The firm’s investment intensity, q ≥ 0, affects the

stream of stochastic earnings before interest and taxes (EBIT), {qXt : t ≥ 0}, generated

from the project, where Xt > 0 is a state variable specifying the project’s EBIT at time t

per unit intensity of investment. The stochastic process, {Xt : t ≥ 0}, is governed by the

following geometric Brownian motion:

dXt = µXt dt + σXt dZt, (1)

where µ < r and σ > 0 are constant parameters, and dZt is the increment of a standard

Wiener process under the risk-neutral probability space, (Ω,F ,Q).4 Eq. (1) implies that

the growth rate of Xt is normally distributed with a mean, µ∆t, and a variance, σ2∆t, over

a time interval, ∆t. The initial value of the state variable, X0 > 0, is known at t = 0.

To undertake the project at endogenously chosen time, t ≥ 0, and intensity, q ≥ 0, the

firm has to incur an irreversible investment cost, I(q), at that instant, where I(0) ≥ 0,

I ′(0) = 0, and I ′(q) > 0 and I ′′(q) > 0 for all q > 0.5 We further assume that the elasticity

of the investment cost with respect to the intensity of investment, qI ′(q)/I(q), is strictly

increasing in q.6 It is well known that finding the optimal time to invest in the project

is tantamount to finding a threshold value, XI , of the state variable, Xt, such that the

3The assumption of risk neutrality is innocuous as long as there are arbitrage-free and complete financial
markets in which assets can be traded to span the state variable that determines the value of the firm.

4The assumption that µ < r is needed to ensure that the value of the firm is finite.
5We allow for I(0) > 0 to account for some fixed set-up costs that are required to initiate the project.

The strict convexity of I(q) implies that the project exhibits decreasing returns to scale.
6I would like to thank an anonymous referee for pointing out this technical condition on I(q), which

ensures a unique maximum solution to the investment intensity.
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firm optimally exercises the investment option at the first instant when Xt reaches XI from

below (see, e.g., McDonald and Siegel 1986; Dixit and Pindyck 1994). We refer to XI as the

investment trigger, which is a choice variable of the firm. Let TI = inf{t ≥ 0 : Xt = XI} be

the (random) first passage time of the state variable, Xt, to reach the investment trigger,

XI , from below, starting off at t = 0.

At the investment instant, TI , the firm can issue debt and equity to finance the invest-

ment cost, I(q), albeit subject to an exogenously given credit constraint. As in Belhaj and

Djembissi (2007), the firm is prohibited from having a debt-to-asset ratio that exceeds a

prespecified level, δ ∈ [0, 1]. We refer to δ as the firm’s debt capacity. In the extreme case

that δ = 0, the firm is restricted to be all-equity financed. The debt issued by the firm is

perpetual in that debt holders receive a constant coupon payment, C ≥ 0, per unit time

until default occurs, where C is a choice variable of the firm. The coupon payments to debt

holders are tax-deductible so that the interest tax-shield is τC per unit time.

Shareholders have limited liability and thus the option to default on their debt obliga-

tions. The optimal policy for shareholders is to default at the first instant when the value

of equity vanishes, which is equivalent to solving the default trigger, XD, at which the value

of equity vanishes as the state variable, Xt, reaches XD the first time from above (see, e.g.,

Leland 1994; Goldstein et al. 2001; Morellec 2001).7 Let TD = inf{t ≥ TI : Xt = XD} be

the (random) first passage time at which the default trigger, XD, is reached from above,

starting off at the investment instant, TI.

At the default instant, TD, the firm is immediately liquidated and absolute priority is

enforced. Following Mello and Parsons (1992) and Morellec (2001), we assume that, after

default, the new owners continue to employ the asset in its current use to yield the unlevered

value, V U(q, XD):

V U (q, XD) = EXD

Q

[
∫ ∞

TD

e−r(t−TD)(1− τ)qXt dt

]

= (1 − τ)

(

qXD

r − µ

)

, (2)

where EXD

Q (·) is the expectation operator with respect to the risk-neutral probability mea-

7This stock-based definition of default implies that it is optimal for shareholders to inject capital in the
firm as long as the firm has positive economic net worth, and that the firm is insolvent on a flow basis at
the default instant.
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sure, Q, conditional on XD. The liquidation value of the firm at the default instant, TD,

is then given by (1 − b)V U(q, XD), where b ∈ [0, 1] is a parameter gauging the severity of

bankruptcy costs.8 Since absolute priority is enforced, shareholders get nothing and debt

holders receive the liquidation value upon default.

We summarize the firm’s investment and financing decisions by a triple, (q, XI, C), that

specifies the investment intensity, q, the investment trigger, XI, and the coupon payment,

C. The firm chooses the triple, (q, XI, C), so as to maximize the ex-ante value of equity prior

to the debt issuance, subject to the exogenously given credit constraint. Specifically, at the

investment instant, TI , the firm issues perpetual debt to raise D(q, XI, C) from debt holders,

where D(q, XI, C) ≤ δI(q). The difference, I(q)−D(q, XI, C) ≥ (1− δ)I(q), is raised from

shareholders whose claim right after the debt issuance is worth E(q, XI, C). The ex-ante

value of equity is therefore given by E(q, XI, C)− [I(q)−D(q, XI, C)] = V (q, XI, C)−I(q),

where V (q, XI, C) = D(q, XI, C) + E(q, XI, C) is the value of the firm at the investment

instant, TI . Hence, maximizing the ex-ante value of equity is tantamount to maximizing

the net present value of the project.

3 Valuation of corporate securities

In this section, we derive the values of debt and equity at the investment instant, TI,

taking the firm’s investment and financing decisions, (q, XI, C), as given. That is, we derive

D(q, XI, C) and E(q, XI, C), where q > 0, XI > X0, and C ≥ 0 are all fixed.

The value of equity at the investment instant, TI , is given by

E(q, XI, C) = EXI

Q

[
∫ TD

TI

e−r(t−TI )(1 − τ)(qXt − C) dt

]

, (3)

where TD is the default instant at which the state variable, Xt, reaches the optimal default

trigger, XD(q, C), from above, and EXI

Q (·) is the expectation operator with respect to the

8Even when b = 0, the firm will not entirely finance by issuing debt. Too much leverage risks bankruptcy
with the concomitant losses of the tax deductibility of coupon payments, thereby imposing limits on the
usage of debt in the absence of bankruptcy costs (see Brennan and Schwartz 1978; Leland 1994).
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risk-neutral probability measure, Q, conditional on XI . Rewrite Eq. (3) as

E(q, XI, C) = (1 − τ)

(

qXI

r − µ
−

C

r

)

+ EXI

Q

[
∫ ∞

TD

e−r(t−TI )(1− τ)(C − qXt) dt

]

. (4)

Using the strong Markov property of Ito diffusions, we can write the second term on the

right-hand side of Eq. (4) as

EXI

Q

[

e−r(TD−TI)
]

E
XD(q,C)
Q

[
∫ ∞

TD

e−r(t−TD)(1− τ)(C − qXt) dt

]

, (5)

where E
XD(q,C)
Q (·) is the expectation operator with respect to the risk-neutral probability

measure, Q, conditional on XD(q, C). It is well-known (see, e.g., Karatzas and Shreve 1988;

Dixit and Pindyck 1994) that

EXI

Q

[

e−r(TD−TI)
]

=

[

XD(q, C)

XI

]α

, (6)

if XI > XD(q, C), where α = µ/σ2 − 1/2 +
√

(µ/σ2 − 1/2)2 + 2r/σ2 > 0. Substituting

expression (5) and Eq. (6) into Eq. (4) yields

E(q, XI, C) = V U (q, XI) − (1 − τ)
C

r

+

{

(1 − τ)
C

r
− V U [q, XD(q, C)]

}[

XD(q, C)

XI

]α

, (7)

where V U (q, XI) is defined in Eq. (2) with XD replaced by XI and TD replaced by TI . The

last term on the right-hand side of Eq. (7) is the value of the default option. Differentiating

Eq. (7) with respect to XD(q, C) and solving the first-order condition yields the optimal

default trigger:

XD(q, C) =

(

r − µ

q

)(

α

α + 1

)

C

r
. (8)

It is evident from Eq. (8) that 0 < qXD(q, C) < C if C > 0, i.e., the firm is insolvent on a

flow basis at the default instant (see also Leland 1994; Goldstein et al. 2001; Morellec 2001).

If C = 0, it follows from Eqs. (7) and (8) that XD(q, 0) = 0 and E(q, XI, 0) = V U(q, XI).



K. P. Wong 10

The value of debt at the investment instant, TI , is given by

D(q, XI, C) = EXI

Q

{
∫ TD

TI

e−r(t−TI )C dt + e−r(TD−TI )(1 − b)V U [q, XD(q, C)]

}

, (9)

where V U [q, XD(q, C)] and XD(q, C) are given by Eqs. (2) and (8), respectively. Rewrite

Eq. (9) as

D(q, XI, C) =
C

r
− EXI

Q

[

e−r(TD−TI)
]{

C

r
− (1 − b)V U [q, XD(q, C)]

}

, (10)

where the second term on the right-hand side of Eq. (10) follows from the strong Markov

property of Ito diffusions. Substituting Eq. (6) into Eq. (10) and rearranging terms yields

D(q, XI, C) =
C

r

{

1 − τ

[

XD(q, C)

XI

]α}

−

{

(1 − τ)
C

r
− V U [q, XD(q, C)]

}[

XD(q, C)

XI

]α

−bV U [q, XD(q, C)]

[

XD(q, C)

XI

]α

. (11)

The first term on the right-hand side of Eq. (11) is the value of the coupon payments net

of the forgone interest tax-shield benefits due to default. The second term is the value of

the default option that is given to shareholders. The last term is the value of bankruptcy

costs. If C = 0, it follows from Eqs. (8) and (11) that D(q, XI, 0) = 0.

For all C > 0, the value of the levered firm at the investment instant, V (q, XI, C), is

given by the sum of the value of debt, D(q, XI, C), and the value of equity, E(q, XI, C).

Using Eqs. (7) and (11), we have

V (q, XI, C) = V U(q, XI) +
τC

r

{

1−

[

XD(q, C)

XI

]α}

−bV U [q, XD(q, C)]

[

XD(q, C)

XI

]α

, (12)

where V U(q, XI) is defined in Eq. (2) with XD replaced by XI and TD replaced by TI , and

XD(q, C) is given by Eq. (8). The first term on the right-hand side of Eq. (12) is the value
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of the firm should it be unlevered. The second term is the value of the interest tax-shield

benefits of debt. The last term is the value of bankruptcy costs.

4 Benchmark case of all-equity financing

In this section, we consider a benchmark wherein the firm is restricted to finance the project

solely with equity. This is the case when the firm has zero debt capacity, i.e., δ = 0. This

is also the case studied by Capozza and Li (1994, 2002) and Bar-Ilan and Strange (1999).

The value of the unlevered firm at t = 0 is given by

FU (X0) = max
q>0,XI>X0

EX0

Q

{

e−rTI [V U (q, XI) − I(q)]

}

, (13)

where TI is the investment instant, EX0

Q (·) is the expectation operator with respect to the

risk-neutral probability measure, Q, conditional on X0, and V U(q, XI) is defined in Eq. (2)

with XD replaced by XI and TD replaced by TI . It is well-known (see, e.g., Karatzas and

Shreve 1988; Dixit and Pindyck 1994) that

EX0

Q

(

e−rTI

)

=

(

X0

XI

)β

, (14)

if XI > X0, where β = 1/2 − µ/σ2 +
√

(µ/σ2 − 1/2)2 + 2r/σ2 > 1. Substituting Eqs. (2)

and (14) into Eq. (13) yields

FU (X0) = max
q>0,XI>X0

[

(1− τ)

(

qXI

r − µ

)

− I(q)

](

X0

XI

)β

. (15)

The first-order conditions for the optimization problem on the right-hand side of Eq. (15)

are given by

(1− τ)

(

XU
I

r − µ

)

= I ′(qU), (16)

and

(1− τ)

(

qUXU
I

r − µ

)

=

(

β

β − 1

)

I(qU), (17)
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where qU and XU
I are the optimal investment intensity and trigger of the unlevered firm,

respectively.

Solving Eqs. (16) and (17) yields our first proposition.

Proposition 1 The unlevered firm’s optimal investment intensity, qU , is the unique solu-

tion to

I ′(qU) =

(

β

β − 1

)

I(qU)

qU
, (18)

and the unlevered firm’s optimal investment trigger, XU
I , is given by

XU
I =

(

r − µ

1 − τ

)(

β

β − 1

)

I(qU)

qU
. (19)

Proof Dividing Eq. (17) by qU and substituting the resulting equation into Eq. (16) yields

Eq. (18). The uniqueness of qU follows from the fact that qI ′(q)/I(q) is strictly increasing

in q. Rearranging terms of Eq. (17) yields Eq. (19). 2

To see the intuition of Proposition 1, we use Eq. (2) to write Eqs. (16) and (17) as

V U (qU , XU
I )

qU
= I ′(qU), (20)

and

V U (qU , XU
I ) − I(qU) =

(

β

β − 1
− 1

)

I(qU), (21)

respectively. Eq. (20) states that the optimal investment intensity, qU , equates the value of

the unlevered firm per unit intensity of investment, V U (qU , XU
I )/qU , to the marginal cost

of investment, I ′(qU ), at the investment instant. The literature on irreversible investment

under uncertainty refers to the expression, β/(β − 1) > 1, as the option value multiple (see

Abel et al. 1996). It measures the wedge between the value of the project at the investment

instant, V U (qU , XU
I ), and the investment cost, I(qU), which captures the opportunity cost
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arising from killing the investment option when the project is undertaken, as is evident

from Eq. (21). Combining Eqs. (20) and (21) yields Eq. (18). That is, at the optimal

investment intensity, qU , the marginal cost of investment, I ′(qU), is equal to the average

cost, I(qU)/qU , augmented by the option value multiple, β/(β − 1).

5 The case of no exogenous credit constraints

In this section, we consider the case that the exogenously given credit constraint does not

exist. In this case, the firm issues perpetual debt to raise D(q, XI, C) from debt holders

at the investment instant, TI . The difference, I(q)− D(q, XI, C), is raised from (paid to if

negative) shareholders. The ex-ante value of equity prior to the debt issuance is therefore

given by E(q, XI, C) − [I(q)− D(q, XI, C)] = V (q, XI, C) − I(q).

The value of the levered firm at t = 0 is given by

F (X0) = max
q>0,XI>X0,C≥0

EX0

Q

{

e−rTI [V (q, XI, C)− I(q)]

}

, (22)

where EX0

Q (·) is the expectation operator with respect to the risk-neutral probability mea-

sure, Q, conditional on X0, and V (q, XI, C) is defined in Eq. (12). Substituting Eqs. (2),

(8), (12), and (14) into Eq. (22) yields

F (X0) = max
q>0,XI>X0,C≥0

{

(1 − τ)

(

qXI

r − µ

)

+
τC

r
−

[

τ + b(1− τ)

(

α

α + 1

)]

×

(

α

α + 1

)α(

r − µ

qXI

)α(

C

r

)α+1

− I(q)

}(

X0

XI

)β

. (23)

We solve the optimization problem on the right-hand side of Eq. (23) in two steps. First, we

derive the optimal coupon payment, C(q, XI), for a given pair of q > 0 and XI > X0. Then,

we derive the optimal investment intensity and trigger, qL and XL
I , taking the schedule of

the optimal coupon payments, C(q, XI), as given. The solution to the optimization problem

on the right-hand side of Eq. (23) is therefore given by qL, XL
I , and CL = C(qL, XL

I ).
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For a given pair of q > 0 and XI > X0, the first-order condition for the optimization

problem on the right-hand side of Eq. (23) is given by

τ − [τ(α + 1) + b(1− τ)α]

(

α

α + 1

)α(

r − µ

qXI

)α[

C(qXI)

r

]α

= 0, (24)

where C(qXI) is the optimal coupon payment, which, from Eq. (24), is a function of the

EBIT at the investment instant, qXI . Solving Eq. (24) for C(qXI) yields

C(qXI) = rφ

(

α + 1

α

)(

qXI

r − µ

)

. (25)

where φ = {τ/[τ(α + 1) + b(1− τ)α]}1/α ∈ (0, 1). Substituting Eqs. (24) and (25) into the

right-hand side of Eq. (23) yields

F (X0) = max
q>0,XI>X0

{

[1− τ(1− φ)]

(

qXI

r − µ

)

− I(q)

}(

X0

XI

)β

. (26)

Inspection of Eqs. (15) and (26) reveals that the effect of the optimal leverage on firm value,

i.e., F (X0)−FU (X0), is equivalent to that of a reduction in the corporate income tax rate

from τ to τ(1− φ) on the value of the unlevered firm. The following proposition is thus an

immediate consequence of Proposition 1.

Proposition 2 If the exogenously given credit constraint does not exist, the optimal in-

vestment intensity of the levered firm, qL, is identical to that of the unlevered firm, qU .

Furthermore, the optimal investment trigger of the levered firm, XL
I , is given by

XL
I =

[

r − µ

1 − τ(1− φ)

](

β

β − 1

)

I(qL)

qL
, (27)

which is strictly less than that of the unlevered firm, XU
I , the optimal coupon payment of

the levered firm, CL, is given by

CL =

[

rφ

1 − τ(1 − φ)

](

α + 1

α

)(

β

β − 1

)

I(qL), (28)

and the optimal debt-to-asset ratio of the levered firm, δL, is given by

δL =

[

φ

1 − τ(1 − φ)

][

τ(α + 2 − τ) + b(1− τ)(α + 1− τ)

τ(α + 1) + b(1− τ)α

](

β

β − 1

)

, (29)
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where φ = {τ/[τ(α + 1) + b(1− τ)α]}1/α ∈ (0, 1).

Proof Using Eqs. (15) and (26), we apply the results in Proposition 1 to get qL = qU and

Eq. (27). Substituting Eq. (27) into Eq. (25) yields Eq. (28). Substituting Eqs. (2), (8),

(27), and (28) into Eq. (11) yields D(qL, XL
I , CL) = δLI(qL), where δL is defined in Eq.

(29). 2

The intuition of Proposition 2 is as follows. It is evident from Eq. (24) that the schedule

of the optimal coupon payments, C(qXI), is linear in the EBIT at the investment instant,

qXI . The values of equity and debt, evaluated at C(qXI), are thus also linear in qXI, as

is evident from Eqs. (7) and (11). This is referred to as the scaling property in the real

options literature on capital structure (see, e.g., Goldstein et al. 2001; Strebulaev 2007;

Tserlukevich 2008). As is shown on the right-hand side of Eq. (26), the value of the interest

tax-shield benefits of debt, net of bankruptcy costs, is equal to τφqXI/(r − µ), which is

tantamount to the case of a reduction in the corporate income tax rate from τ to τ(1 − φ)

faced by the unlevered firm (see also Belhaj and Djembissi 2007). From Proposition 1, we

know that reducing the corporate income tax rate has no effect on the unlevered firm’s

optimal investment intensity, qU , but decreases its optimal investment trigger, XU
I , thereby

invoking Proposition 2.

Substituting Eq. (27) into the expression inside the curly brackets on the right-hand

side of Eq. (26) yields

V (qL, XL
I , CL) − I(qL) =

(

β

β − 1
− 1

)

I(qL). (30)

Since qU = qL, it follows from Eqs. (21) and (30) that the net present value of the unlevered

project at the investment instant, TU
I = inf{t ≥ 0 : Xt = XU

I }, is exactly equal to that of

the levered project at the investment instant, TL
I = inf{t ≥ 0 : Xt = XL

I }. Using Eqs. (15)

and (26) and Propositions 1 and 2, we have

F (X0) − FU (X0) =

{[

1 − τ(1 − φ)

1 − τ

]β

− 1

}

FU (X0) > 0. (31)
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That is, the value of the levered firm at t = 0, F (X0), exceeds that of the unlevered firm,

FU (X0), by the value of the interest tax-shield benefits of debt (net of bankruptcy costs),

which is given by the right-hand side of Eq. (31). These results are the same as the findings

in Belhaj and Djembissi (2007).

While debt is neutral to the intensity of investment, it is not neutral to the timing of

investment, as is shown in Proposition 2.9 Such non-neutrality of debt in investment timing

is due entirely to the interest tax-shield benefits of debt, net of bankruptcy costs, which

induce the levered firm to accelerate the undertaking of the project as compared to the

unlevered firm. Indeed, in the absence of corporate income taxes and bankruptcy costs,

i.e., τ = b = 0, it follows from Eqs. (19) and (27) that XU
I = XL

I , thereby rendering the

Modigliani-Miller theorem.

Unlike us, Sabarwal (2005) establishes the non-neutrality of debt in investment timing

without relying on corporate income taxes and bankruptcy costs.10 His results are driven by

agency conflicts. Specifically, Sabarwal (2005) assumes that debt holders, taking the firm’s

investment trigger as given, choose the coupon payment and determine the value of debt

such that they break even in their investment. The firm, on the other hand, chooses the

investment trigger so as to maximize the ex-ante equity value, taking the coupon payment

selected by debt holders as given. For an exogenously given amount of debt financing, the

perpetual debt contract is correctly priced by rational expectations in equilibrium. To see

how Sabarwal’s (2005) assumptions affect our results, we fix the investment intensity at qL,

and suppose that debt holders naively believe that the firm would choose the investment

trigger XL
I , given by Eq. (27). Debt holders as such demand the coupon payment, CL,

given by Eq. (28), and pay the amount, D(qL, XL
I , CL) = δLI(qL), to the firm, where δL is

defined in Eq. (29). The firm then chooses the investment trigger, XI, so as to maximize

9It is well known (see, e.g., Sarkar 2000; Shackleton and Wojakowski 2002; Wong 2007, 2008; Thijssen
2009) that the expected time to exercise the investment option (the investment timing) is given by EX0

Q (TI) =
ln(XI/X0)/(µ − σ2/2), whenever µ > σ2/2. Hence, the investment trigger and the investment timing are
positively related.

10The real options model of Sabarwal (2005) is a straightforward extension of Pindyck (1988, 1991).
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the ex-ante value of equity:

max
XI>X0

EX0

Q

{

e−rTI{E(qL, XI, C
L) − [I(qL)− D(qL, XL

I , CL)]}

}

= max
XI>X0

[V (qL, XI, C
L) − I(qL)]

(

X0

XI

)β

+[D(qL, XL
I , CL)− D(qL, XI, C

L)]

(

X0

XI

)β

, (32)

where we have used Eq. (14) and V (qL, XI, C
L) = D(qL, XI, C

L) + E(qL, XI, C
L). Differ-

entiating the right-hand side of Eq. (32) with respect to XI , and evaluating the resulting

derivative at XI = XL
I yields

−
∂D(qL, XI, C

L)

∂XI

∣

∣

∣

∣

XI=XL

I

(

X0

XL
I

)β

= −
α

XL
I

[

CL

r
− D(qL, XL

I , CL)

](

X0

XL
I

)β

< 0, (33)

where we have used the fact that XL
I is the investment trigger that maximizes the value of

the levered firm, i.e., the first term on the right-hand side of Eq. (32). Eq. (33) implies

that the firm has incentives to lower the investment trigger from XL
I so as to reduce the

value of debt from D(qL, XL
I , CL). This is the well-known risk-shifting problem of Jensen

and Meckling (1976) that shareholders have incentives to increase the riskiness of the firm

(in our case to invest in the project earlier) so as to transfer wealth from debt holders

to themselves. Debt holders are, of course, rational and fully anticipate the risk-shifting

problem. In the rational expectations equilibrium, debt holders break even and the firm

chooses the optimal investment trigger that is less than XL
I .11

6 The case of exogenous credit constraints

In this section, we resume the original case that the exogenously given credit constraint,

D(q, XI, C) ≤ δI(q), prevails, where δ ∈ (0, 1] is the maximum debt-to-asset ratio. In this

11See Mauer and Sarkar (2005) for the complete analysis that incorporates both the agency and trade-off
considerations.
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case, the value of the firm at t = 0 is given by

F (X0) = max
q>0,XI>X0,C≥0

EX0

Q

{

e−rTI [V (q, XI, C)− I(q)]

}

s.t. D(q, XI, C) ≤ δI(q), (34)

where TI is the (random) investment instant, EX0

Q (·) is the expectation operator with re-

spect to the risk-neutral probability measure, Q, conditional on X0, and D(q, XI, C) and

V (q, XI, C) are defined in Eqs. (11) and (12), respectively.

We form the Lagrangian for the optimization problem on the right-hand side of Eq.

(34):

L =

{

(1− τ)

(

qXI

r − µ

)

+
τC

r
−

[

τ + b(1− τ)

(

α

α + 1

)]

×

(

α

α + 1

)α(

r − µ

qXI

)α(

C

r

)α+1

− I(q)

}(

X0

XI

)β

+ λ

{

δI(q)−
C

r

+

[

1 − (1 − b)(1− τ)

(

α

α + 1

)](

α

α + 1

)α(

r − µ

qXI

)α(

C

r

)α+1}

, (35)

where we have substituted Eqs. (2), (8), (11), (12), and (14) into Eq. (34), and λ ≥ 0

is the Lagrange multiplier to the exogenous credit constraint, D(q, XI, C) ≤ δI(q). Let

(qL, XL
I , CL) be the solution to the optimization problem on the right-hand side of Eq.

(34), and λL ≥ 0 be the optimal Lagrange multiplier.

Solving the Kuhn-Tucker conditions for the Lagrangian in Eq. (35) yields the following

proposition.

Proposition 3 Irrespective of whether the exogenously given credit constraint is binding

or not, the optimal investment intensity of the levered firm, qL, is identical to that of the

unlevered firm, qU . Furthermore, the optimal investment trigger of the levered firm, XL
I , is

strictly less than that of the unlevered firm, XU
I .

Proof See Appendix A. 2
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The intuition of Proposition 3 is as follows. The Kuhn-Tucker conditions for the La-

grangian in Eq. (35) imply the following pair of optimality conditions (see Appendix A for

the derivation):

V (qL, XL
I , CL)

qL
− λLδ

(

XL
I

X0

)β I(qL)

qL
=

[

1 − λLδ

(

XL
I

X0

)β]

I ′(qL), (36)

and

V (qL, XL
I , CL) − I(qL) =

[

1 − λLδ

(

XL
I

X0

)β](

β

β − 1
− 1

)

I(qL). (37)

When λL = 0, the exogenously given credit constraint does not bind at the optimum so that

Proposition 2 holds. Indeed, Eqs. (36) and (37) with λL = 0 reduce to Eqs. (20) and (21)

in the benchmark case of all-equity financing. The more interesting case is the one in which

the exogenously given credit constraint is binding at the optimum so that λL > 0. This is

the case when 0 < δ < δL, where δL is defined in Eq. (29). Inspection of Eqs. (36) and (37)

reveals that we need to take into account the shadow price of the binding credit constraint,

i.e., λLδ(XL
I /X0)

β > 0. The binding credit constraint makes the project less valuable and

thus reduces the marginal return on investment by an amount, λLδ(XL
I /X0)

βI(qL)/qL, as is

evident from the left-hand side of Eq. (36). On the other hand, a higher level of investment

intensity relaxes the credit constraint and thus lowers the marginal cost of investment by

the fraction, λLδ(XL
I /X0)

β, as is shown on the right-hand side of Eq. (36). Eq. (37)

implies that the binding credit constraint reduces the option value multiple by the same

fraction, λLδ(XL
I /X0)

β . The net present value of the project at the investment instant,

V (qL, XL
I , CL)− I(qL), is therefore less than that under the non-binding credit constraint,

which is equal to that with all-equity financing.12 Since the adjustment to the option value

multiple and that to the marginal cost of investment are exactly the same and given by the

fraction, λLδ(XL
I /X0)

β, the firm’s optimal investment intensity is ultimately determined by

the optimality condition identical to that in the benchmark case.13 That is, at the optimal

12Indeed, Belhaj and Djembissi (2007) offer a numerical example that shows a U-shaped pattern of the
value of the levered firm at the investment instant against the debt capacity, δ, which is consistent with our
results. See also Table 1.

13Of course, if the the adjustment to the option value multiple and that to the marginal cost of investment
are not the same, which may be the case for some variant models of ours (see, e.g., Sarkar and Zapatero
2003; Sarkar 2008; Wong and Wu 2009), debt is no longer neutral to investment intensity.
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investment intensity, qL, the marginal cost of investment, I ′(qL), is equal to the average

cost, I(qL)/qL, augmented by the option value multiple, β/(β − 1). Proposition 3 thus

extends the neutrality of debt in investment intensity, as is shown in Proposition 2, to the

more general case of exogenous credit constraints within our real options model.

Using Eqs. (15), (34), and (37) and Propositions 1 and 3, we have

F (X0) − FU (X0) =

[(

XU
I

XL
I

)β

− 1− λLδ

(

XU
I

X0

)β]

FU (X0), (38)

where the right-hand side of Eq. (38) is the value of the interest tax-shield benefits of debt

net of bankruptcy costs. When the exogenously given credit constraint does not bind at

the optimum, i.e., δ ≥ δL, we have λL = 0 so that Eq. (38) reduces to Eq. (31). In the

case that 0 < δ < δL, it is clear from the fact that the optimal choice of the unlevered firm

is feasible to, but is not chosen by, the levered firm (XL
I < XU

I from Proposition 3) so that

F (X0) > FU (X0).

To gain more insight into how the severity of the exogenously given credit constraint

affects the levered firm, we conduct the following numerical analysis with respect to different

values of the debt capacity, δ ∈ [0, 1]. We set the investment cost function, I(q) = 10 + q4,

the annualized riskless rate of interest, r = 8%, the corporate income tax rate, τ = 15%,

and the bankruptcy cost parameter, b = 30%. The state variable, Xt, takes on the initial

value, X0 = 1, with the annualized growth rate, µ = 2%, and the annualized standard

deviation, σ = 30%. Table 1 reports our numerical results.

(Insert Table 1 here)

The first row in Table 1 gives the optimal investment intensity and investment trigger

of the unlevered firm, qU = 2.0551 and XU
I = 2.4508, respectively. The value of the

unlevered firm at t = 0 is FU (X0) = 10.006, and the net present value of the unlevered

project at the investment instant is V U (qU , XU
I ) − I(qU) = 43.517. When the firm is

allowed to have positive debt capacity, i.e., δ ∈ (0, 1], the optimal investment intensity of

the levered firm remains unchanged and equal to qL = 2.0551. The exogenously given credit
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constraint is always binding at the optimum for all δ ∈ (0, 1] such that the optimal coupon

payment, CL, and the value of the levered firm, F (X0), are both strictly increasing in δ.14

The last row in Table 1 reports the numerical solution to the case of no exogenous credit

constraints. In this unconstrained scenario, the optimal debt-to-asset ratio is δL = 1.2885

and the value of the levered firm is the highest, F (X0) = 10.839. Table 1 shows that

both the optimal investment trigger, XL
I , and the net present value of the project at the

investment instant, V (qL, XL
I , CL) − I(qL), exhibit U-shaped patterns against the debt

capacity, δ, such that the former reaches a minimum at δ = 0.9 while the latter reaches

a minimum at δ = 0.7. Table 1 also shows that XL
I < XU

I = 2.4508, which is consistent

with the results in Propositions 2 and 3. Relaxing the severity of the exogenously given

credit constraint (i.e., increasing the debt capacity, δ) does not always hasten investment by

lowering the investment trigger, particularly when δ is sufficiently high. While the interest

tax-shield benefits of debt encourage early investment, the bankruptcy costs of debt deter

the investment incentive. The former effect on the investment trigger, XL
I , dominates (is

dominated by) the latter effect for low (high) values of δ, thereby rendering the U-shaped

pattern of XL
I against δ. These results are consistent with the findings in Belhaj and

Djembissi (2007).

7 Conclusion

In this paper, we have examined the interaction between investment and financing decisions

of an owner-managed firm using a real options approach. The firm is endowed with a

perpetual option to invest in a project at any time by incurring an irreversible investment

cost at that instant. The amount of the irreversible investment cost determines the intensity

of investment with decreasing returns to scale. The project generates a stream of cash

flows that is stochastic over time and increases with the intensity of investment. The firm

can finance the project by issuing debt and equity, albeit subject to an exogenously given

14Belhaj and Djembissi (2007) use a much smaller value of the annualized standard deviation, σ = 5%.
In their numerical example, the optimal debt-to-asset ratio in the unconstrained case is δL = 0.96 so that
the exogenously given credit constraint does not bind at the optimum for all δ ∈ [0.96, 1].
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credit constraint that prohibits the firm’s debt-to-asset ratio from exceeding a prespecified

threshold. The optimal capital structure of the firm is determined by the trade-off between

interest tax-shield benefits and bankruptcy costs of debt.

Within our real options model, we have established the neutrality of debt in investment

intensity. Irrespective of whether the exogenously given credit constraint is binding or not,

we have shown that debt financing does not affect the firm’s optimal investment intensity.

Debt financing, however, has real effect on investment timing. Specifically, the optimal

investment trigger of the levered firm is strictly smaller than that of the unlevered firm,

thereby implying that the former undertakes the project earlier than the latter.

In this paper, we have employed the standard real options model in which the state

variable follows a geometric Brownian motion. It is of great interest to see whether the

neutrality of debt in investment intensity is robust to alternative stochastic processes. For

example, Sarkar and Zapatero (2003) develop a trade-off model of capital structure with

mean reverting earnings (see also Sarkar 2003). They show that the scaling property no

longer holds even in the absence of any exogenous credit constraints. It is thus an interesting

extension to examine how debt financing affects a firm’s investment decisions in the context

of Sarkar and Zapatero (2003). We leave this challenge for future research.

Appendix A

Proof of Proposition 3 The Kuhn-Tucker conditions for the Lagrangian in Eq. (35) are

given by

{

(1− τ)

(

qLXL
I

r − µ

)

− I ′(qL)qL

+[τ(α + 1) + b(1− τ)α]

(

α

α + 1

)α+1( r − µ

qLXL
I

)α(

CL

r

)α+1}(

X0

XL
I

)β

+λL
{

δI ′(qL)qL − [1 + τα + b(1− τ)α]

(

α

α + 1

)α+1( r − µ

qLXL
I

)α(

CL

r

)α+1}

= 0, (A.1)
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{

(1− τ)

(

qLXL
I

r − µ

)

−

(

β

β − 1

)[

I(qL) −
τCL

r

]

−

(

α + β

α

)[

τ(α + 1) + b(1− τ)α

β − 1

](

α

α + 1

)α+1( r − µ

qLXL
I

)α(

CL

r

)α+1}(

X0

XL
I

)β

+λL
[

1 + τα + b(1− τ)α

β − 1

](

α

α + 1

)α+1( r − µ

qLXL
I

)α(

CL

r

)α+1

= 0, (A.2)

{

τ − [τ(α + 1) + b(1− τ)α]

(

α

α + 1

)α(

r − µ

qLXL
I

)α(

CL

r

)α}(

X0

XL
I

)β

−λL
{

1 − [1 + τα + b(1− τ)α]

(

α

α + 1

)α(

r − µ

qLXL
I

)α(

CL

r

)α}

= 0, (A.3)

and

λL
{

δI(qL) −
CL

r
+

[

1 + τα + b(1− τ)α

α + 1

](

α

α + 1

)α(

r − µ

qLXL
I

)α(

CL

r

)α+1}

= 0, (A.4)

where (qL, XL
I , CL) is the solution to the optimization problem on the right-hand side of

Eq. (34), and λL ≥ 0 is the optimal Lagrange multiplier. If λL > 0, the exogenously given

credit constraint must be binding, as is evident from Eq. (A.4).

Multiplying CL/r to Eq. (A.3) and adding the resulting equation to Eq. (A.1) yields

[V (qL, XL
I , CL) − I ′(qL)qL]

(

X0

XL
I

)β

+ λL
{

δI ′(qL)qL −
CL

r

+

[

1 + τα + b(1− τ)α

α + 1

](

α

α + 1

)α(

r − µ

qLXL
I

)α(

CL

r

)α+1}

= 0, (A.5)

where we have used Eq. (35) for V (qL, XL
I , CL). Substituting Eq. (A.4) into Eq. (A.5)

yields Eq. (36). Multiplying CL/r(β − 1) to Eq. (A.3) and subtracting the resulting

equation from Eq. (A.2) yields

[

V (qL, XL
I , CL) −

(

β

β − 1

)

I(qL)

](

X0

XL
I

)β

+
λL

β − 1

{

CL

r
−

[

1 + τα + b(1− τ)α

α + 1

](

α

α + 1

)α(

r − µ

qLXL
I

)α(

CL

r

)α+1}

= 0, (A.6)
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where we have used Eq. (35) for V (qL, XL
I , CL). Substituting Eq. (A.4) into Eq. (A.6)

yields Eq. (37). Subtracting Eq. (36) from Eq. (37) yields

[

1− λLδ

(

XL
I

X0

)β][

I ′(qL) −

(

β

β − 1

)

I(qL)

qL

]

= 0. (A.7)

Define the following coupon payment:

Ĉ = r

(

α + 1

α

)[

τ

τ(α + 1) + b(1− τ)α

]1/α(

qLXL
I

r − µ

)

. (A.8)

If we evaluate the left-hand side of Eq. (A.3) at CL = Ĉ, the left-hand side of Eq. (A.3)

becomes

−
λL(1− τ)[τ + b(1− τ)]α

τ(α + 1) + b(1− τ)α
≤ 0, (A.9)

where the equality holds only when λL = 0, i.e., only when the credit constraint is not

binding. By the concavity of the optimization problem on the right-hand side of Eq. (34),

Eqs. (A.3) and (A.9) imply that CL = Ĉ if λL = 0 and CL < Ĉ if λL > 0. Hence, if λL > 0,

it follows from either Eq. (A.3) or Eq. (A.8) that

1− [1 + τα + b(1− τ)α]

(

α

α + 1

)α(

r − µ

qLXL
I

)α(

CL

r

)α

> 0. (A.10)

Eq. (A.3) implies that

[

τ

(

X0

XL
I

)β

− λL
]{

1 − [1 + τα + b(1− τ)α]

(

α

α + 1

)α(

r − µ

qLXL
I

)α(

CL

r

)α}

> 0. (A.11)

It follows from Eqs. (A.10) and (A.11) that λL < τ(X0/XL
I )β if λL > 0. Since 0 ≤ λL <

τ(X0/XL
I )β, we have λLδ < (X0/XL

I )β. Eq. (A.7) as such reduces to

I ′(qL) =

(

β

β − 1

)

I(qL)

qL
. (A.12)

It then follows from Eqs. (18) and (A.12) that qL = qU .

Multiplying CL/r to Eq. (A.3) and adding the resulting Substituting Eqs. (A.3) and

(A.4) into Eq. (A.2) yields

[

(1− τ)

(

qLXL
I

r − µ

)

−

(

β

β − 1

)

I(qL) +

(

α

α + 1

)

τCL

r

](

X0

XL
I

)β
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+λL
[(

β

β − 1

)

δI(qL) −

(

α

α + 1

)

CL

r

]

= 0. (A.13)

If λL > 0, Eqs. (A.4) and (A.10) imply that

δI(qL) −

(

α

α + 1

)

CL

r
> 0. (A.14)

Eq. (A.13) implies that

XL
I ≤

(

r − µ

1 − τ

)[(

β

β − 1

)

I(qL)

qL
−

(

α

α + 1

)

τCL

rqL

]

<

(

r − µ

1 − τ

)(

β

β − 1

)

I(qU)

qU
= XU

I , (A.15)

where the first inequality follows from the fact that λL ≥ 0 and Eq. (A.14) holds if λL > 0,

the second inequality follows from Eq. (A.3) that CL > 0 and qL = qU , and the equality

follows from Eq. (19). 2
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Table 1 Behavior of the firm facing the exogenously given credit constraint for different

values of the debt capacity

Debt Investment Investment Default Coupon Project Firm

capacity intensity trigger trigger payment NPV value

0 2.0551 2.4508 0 0 43.517 10.006

0.1 2.0551 2.4150 0.0426 0.2247 42.885 10.102

0.2 2.0551 2.3814 0.0862 0.4540 42.304 10.197

0.3 2.0551 2.3506 0.1308 0.6889 41.784 10.289

0.4 2.0551 2.3231 0.1766 0.9301 41.342 10.378

0.5 2.0551 2.2995 0.2238 1.1786 40.987 10.463

0.6 2.0551 2.2803 0.2725 1.4353 40.738 10.543

0.7 2.0551 2.2665 0.3229 1.7010 40.612 10.616

0.8 2.0551 2.2587 0.3752 1.9766 40.631 10.681

0.9 2.0551 2.2578 0.4296 2.2629 40.817 10.737

1 2.0551 2.2647 0.4861 2.5604 41.192 10.782

1.2885 2.0551 2.3342 0.6609 3.4816 43.517 10.839

The risk-neutral owner-managed firm has an option to invest in a project. The firm’s

investment decisions are characterized by the investment trigger, XI, at which the invest-

ment option is exercised, and by the investment intensity, q, according to the investment

cost function, I(q) = 10+ q4. At the investment instant, the firm has to choose the coupon

payment, C, to raise the amount, D(q, XI, C), from debt holders subject to the exogenously

given credit constraint, D(q, XI, C) ≤ δI(q), where δ ∈ [0, 1] is the debt capacity (i.e., the

maximum debt-to-asset ratio). The net present value of the project is V (q, XI, C) − I(q)

at the investment instant. The value of the firm is equal to the value of the investment

option at t = 0. The parameter values are as follows: the riskless rate of interest, r, is 8%;

the corporate income tax rate, τ , is 15%; the bankruptcy cost parameter, b, is 30%; and

the state variable, Xt, takes on the initial value, X0 = 1, with the annualized growth rate,

µ = 2%, and the annualized standard deviation, σ = 30%.


