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(57) ABSTRACT

A defect detection method and system for the automated
visual inspection of web materials is provided. The inven-
tion utilize real Gabor function (RGF) filters with a non-
linear function for estimating the local energy. An example
method for quality assurance using automated visual inspec-
tion in accordance with the invention includes the steps of:
automated design of a bank of RGF filters; using these RGF
filters to sample the features of image under inspection;
using a non-linear function to compute local energy estimate
in the filtered images; combining all the filtered images
using image fusion; and finally thresholding the resultant
image to segment the defects in the inspection image.
Possible embodiments of the described invention include
detection of only a class of defects using a single tuned real
Gabor filter or a bank of real Gabor functions.
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DEFECT DETECTION SYSTEM FOR QUALITY
ASSURANCE USING AUTOMATED VISUAL
INSPECTION

CROSS-REFEREMCE TO RELATED
APPLICATIONS

[0001] This application claims priority to the provisional
U.S. patent application Ser. No. pb 60/260,520 filed on Jan.
9,2001 by Kumar et al. In addition, the disclosure of the U.S.
patent application Ser. No. 09/837,065 filed on Apr. 18, 2001
is incorporated herein in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to a method and
system for automated visual monitoring of surface charac-
teristics, and more particularly to automated optical inspec-
tion of textile characteristics to detect fabric defects and
anomalies.

BACKGROUND OF THE INVENTION

[0003] the development of a reliable automated visual
inspection system for quality assurance requires extensive
research and development effort. Human inspectors typi-
cally perform visual inspection for quality assurance in
industrial products. The disadvantage with the manual
inspection are: (1) low speed, (2) high cost, (3) inability to
perform real-time inspection and, (4) the serious limitations
on the range of detectable defects. Therefore, automation of
visual inspection process can improve the efficiency of
production lines by overcoming at least one of the aforesaid
drawbacks.

[0004] Automated visual inspection of industrial web
materials has extremely high requirements as compared to
other inspection problems. Generally the width of industrial
web is about pb 1.6-2.0 meters and requires an array of
CMOS/CCD photosensors to inspect the web that is moving
at the speed of 10-15 meters per minute. Consequently the
throughput for 100% inspection is tremendous (10-15 MB
image data per second when using line-scan cameras) and
therefore most feasible solutions require additional DSP
hardware components and reduction in computational com-
plexity.

[0005] Prior researchers have attempted to create visual
inspection systems using different approaches. Researchers
have frequently used textile web samples to model the
general problem of defect detection in various textured
materials. Segmentation of fabric defects from the inspec-
tion images using the edge detection, mean and standard
deviations of sub blocks, gray level co-occurrence matrix,
and autocorrelation of images and, Karhunen-Loeve trans-
form has been detailed in the literature. Solutions to defect
detection problems wusing various texture analysis
approaches include Gauss Markov Random Field (GMRF)
modeling, Gabor filters, Wavelet transform, and Optical
Fourier transform.

[0006] The periodic structure of woven web materials
provides valuable information, and therefore Fourier domain
features have been used in the fabric defect detection. This
approach is extensively detailed in U.S. Pat. No. 4,124,300
issued on Nov. 7, 1976. When defects cause global distor-
tions in woven web materials, Fourier analysis is most
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suitable. But this is not true for local fabric defects and
therefore techniques that can simultaneously measure in
spatial and spatial-frequency domain are more useful. U.S.
Pat. No.5,815,198 issued in Dec. 1998 discloses a multi-
scale wavelet decomposition of web images for fabric defect
detection. The disadvantage with the techniques based on
multiscale wavelet decomposition is that the wavelet bases
(unlike RGF) are shift variant. Therefore, it is difficult to
characterize a texture pattern from the wavelet coefficients
since the wavelet descriptors depend on pattern location.

[0007] Additional examples include the U.S. Pat. No.
5,665,907 issued on Sep. 9, 1997 to the University of
Chicago providing an ultrasonic system to detect fabric
defects. Another recent U.S. Pat. No. 6,023,334 issued on
Feb. 8, 2000 to Toshiba Engineering Corp. discloses an
alternative approach based on brightness information, suited
to inspection of homogenous surface like plain aluminum
sheet or plain glass.

[0008] The aforementioned approaches suffer from vari-
ous drawbacks such as the limited range of detectable
defects, the extent of required computational and other
resources as well as the need for further automation.

SUMMARY OF THE INVENTION

[0009] The present invention provides a new approach for
defect detection using real Gabor function (RGF) filters that
overcomes one or more of the drawbacks noted in the
context of previous approaches. Thus, some defects that
only alter the gray level arrangement of neighboring pixels
(such as mispick in textile web) cannot be detected with the
techniques based on mean and standard deviations of image
sub-blocks. In light of the preceding, a multi-channel filter-
ing approach to segment, i.e., identify, both fine and coarse
texture defects is found to be useful as is shown later. This
is achieved by segmenting the fine and coarse defects with
the RGF filters of different scales (multichannel).

[0010] In an aspect of the invention, an embodiment of the
invention uses real Gabor functions instead of complex
Gabor function, thus, halving the computational time for the
computation of the filtered images. Advantageously, the real
Gabor function acts as a blob detector. In many embodi-
ments of the invention, the real and imaginary parts of Gabor
function are Hilbert pairs, thus, reducing the need for the
imaginary part.

[0011] In another aspect, an embodiment of the invention
enables automated selection of center frequency of real
Gabor function using fast Fourier transform (FFT). Thus,
change in the texture background under the inspection
requires little or no manual tuning.

[0012] In another aspect, an embodiment of the invention
exhibits superior computational and performance gain by the
usage of non-linear function to estimate the local energy in
the course of detecting defects.

[0013] Moreover, many embodiments of the invention
employ the image fusion technique based on the Bemouli’s
rule of combination for integrating information from differ-
ent channels to improve the detection rate while reducing
false alarms.

[0014] In yet another aspect, the invention enhances com-
putational efficiency by a judicious choice of thresholds and
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convolution masks to reflect appropriate trade-offs. More-
over, a simple thresholding method removes isolated noisy
pixels without requiring any morphological operations.

LIST OF FIGURES

[0015] FIG. 1. Perspective view of real Gabor function in
spatial domain.

[0016] FIG. 2. Frequency domain representation of 16
Gabor filters on log-polar scale.

[0017] FIG. 3. Frequency domain parameters of a Gabor
filter.

[0018] FIG. 4. Sixteen Real Gabor functions in spatial
domain.

[0019] FIG. 5. Power spectral density from an example
reference image for automatic selection of center frequency
for real Gabor function.

[0020] FIG. 6. Calculation of off-line parameters from a
reference image.

[0021] FIG. 7. Flowchart illustrating processing and steps
in an on-line defect segmentation embodiment of the inven-
tion.

[0022] FIG. 8. Supervised defect segmentation: test
sample A with its corresponding Gabor filtered images B and
binarized filtered images with segmented defects C.

[0023] FIG. 9. Supervised defect segmentation: test
sample A with its corresponding Gabor filtered images B and
binarized filtered images with segmented defects C.

[0024] FIG. 10. Fabric sample for test: without defect (A),
segmented defects, (B) with defects (C).

[0025] FIG. 11. Synthetic test fabric for evaluation: with-
out defect (A), with defect (B) and, segmented defects (C).

[0026] FIG. 12. Fabric sample with defects (A) with its
corresponding segmented defects at low (B), medium (C),
and high sensitivity (D).

[0027] FIG. 13. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).

[0028] FIG. 14. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).

[0029] FIG. 15. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).

[0030] FIG. 16. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).

[0031] FIG. 17. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).

[0032] FIG. 18. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).

[0033] FIG. 19. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).

[0034] FIG. 20. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).

[0035] FIG. 21. Fabric sample with defects (A) and its
corresponding binarized segmented defect (B).
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[0036] FIG. 22. Performance Analysis as a function of
defect size.

DETAILED DESCRIPTION OF THE
INVENTION

[0037] Two of the elements in the present invention,
namely Real Gabor function and nonlinearity, are similar, in
some respects, to the mechanisms in the visual cortex of
mammals. This is not surprising since, for instance, phy-
chophysically observed spatial-frequency channels and neu-
rophysiologically observed blob-, bar- and edge-sensitive
neurons have been used to explain texture perception in
human vision. Some researchers have attempted to model
for pretentative texture discrimination based on human
visual mechanism. They have shown that the odd-symmetric
(imaginary Gabor function) and even-symmetric (real Gabor
function) filters differ in texture discrimination. For instance,
odd-symmetric filters are not useful in texture discrimination
unlike even-symmetric filters. Thus, they excluded odd-
symmetric filters since they could not find any texture pair
for which odd-symmetric mechanism was necessary.

[0038] Defect detection by human visual system depends
on its nonlinearity. This nonlinearity, due to retinal adapta-
tions, follows a simple-cell response (Gabor shaped) stage,
thus, enabling human visual system to respond to local
contrast over ten log units of illumination changes. There are
at least two physiologically plausible explanations for this
nonlinearity. First, non-linear contrast response function that
typically has sigmoid shape with neurons that exhibit a
threshold effect for low contrast and a saturation effect for
higher contrast. Second, intra-cortical inhibition occurring
within and among responses in different channels. Unlike
prior researchers’ preference for intra-cortical inhibition, we
find that the non-linear contrast response function is well
suited for defect detection.

[0039] Notably in the following description, ‘complex
Gabor function’ or ‘Gabor function’ or ‘Gabor filter’ refers
to the combined real and imaginary parts of Gabor function.
Accordingly, ‘real Gabor function’ represents the real part of
Gabor function and ‘imaginary Gabor function’ represents
the imaginary part of Gabor function.

[0040] A Gabor function is a complex exponential modu-
lated by a Gaussian function in the spatial domain, and is a
shifted Gaussian in the frequency domain. In general, n-di-
mensional Gabor function is expressed as:

hp)=fp)m(p) @
[0041] where f(p) is a Gaussian function (aperture) given
by
! L e, 2)
fip) = W@Xp[ S =P Cp Po)]
[0042] and m(p) is a complex modulating function
m(p)=exp|jo" (p—po)] ©)

[0043] where p,po,mwo €RY C is an qxq positive definite
covariance matrix, and |Cl=detC.

[0044] For the two dimensional (hereinafter “2-D”), the
horizontal and vertical spatial coordinates are represented by
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the vector p=[x,y]". The shape of the Gaussian function f(p)
is controlled by the matrix C, and the vector po=[Xo, Vo |"
stands for the translation of its origin. If o, and o, are
variances of the Gaussian function along the x and y axes
respectively, then

o2 0 } @)

[0045] where the constants o, and o, determine the scale
and the width/aspect ratio, which is used to adjust the
orientation sensitivity of the Gabor function. The vector
w=[u,v] represents two axial frequencies along two coordi-
nates. The vector w,=[u,, v,]* represents the overall trans-
lation frequency of the Gabor function. In two dimensions,
the Gabor filter is a 2-D Gaussian envelope, modulating a
sinusoid, tuned to the orientation 8=tan™"(v,/uy)from the u
axis, with radial frequency is (vo+uy)”. In the frequency
domain, the Gabor function acts as a 2-D bandpass filter
represented as a shifted Gaussian, frequency-centered at
wo=[uy,v,]". FIG. 1 shows a typical perspective plot of the
real component of a Gabor function. In the frequency
domain, a Gabor function is a 2-D bandpass filter, repre-
sented as a shifted Gaussian function centered at (u, vo):

1 5
Hw) = exp[— 5 (w—wy) Clw — wo)]. )

[0046] Equation (1) can be interpreted as the sum of two
Gaussian functions that are cosine (real) and sine (imagi-
nary) modulated. The impulse responses of these odd (real)
and even (imaginary) Gabor functions approximate Hilbert
pairs. This approximation is more exact when their ampli-
tudes are close, and this can be ensured by choosing a Gabor
filter with small half-peak bandwidth.

[0047] In the spatial domain, an image is classically
described as a collection of pixels, and as a sum of sinusoids
of infinite extent in the frequency domain. A fabric image
can be represented, wholly or in part, either in the frequency
or spatial domain. Both are relevant in a vision system
entailing frequency sampling localized in space. The defect
segmentation involves identification of regions with uniform
textures in a given image. Appropriate measures of texture
are required for deciding whether a given region has uniform
texture. Defect segmentation in texture requires simulta-
neous measurements in both the spatial and spatial-fre-
quency domain. Filters with small bandwidths in the fre-
quency domain are more desirable for making fine
distinctions among different textures. On the other hand,
accurate localization of texture boundaries requires filters
that are localized in spatial domain. However, effective
width of the filter in the spatial domain and its bandwidth in
the frequency domain are inversely related. In this sense,
Gabor filters achieve an effective joint resolution in both the
spatial and frequency domains.

[0048] Accordingly, in an embodiment of the invention,
only real Gabor function is used while ignoring correspond-
ing imaginary Gabor function. Real Gabor functions are
useful as blob detectors while imaginary Gabor functions
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can function as proven edge detectors. As previously men-
tioned, some researchers have shown that odd-symmetric
mechanisms (imaginary Gabor function here) are not useful
in texture discrimination. While analyzing defects against
texture background, we found that the contribution from
imaginary Gabor functions is insignificant but they account
for nearly 50% of the total computation time. In other words,
by approximating the impulse response of real and imagi-
nary Gabor functions as Hilbert pairs we can dispense with
the imaginary part of Gabor functions. The analytical form
of a 2-D real Gabor function in the spatial domain is given
by

©)

1
B, V) = €08ty (P = P)eXP| =5 (Pn = po)! € (pn = po)

1
2r|CI12

[0049] where m is the index for scale and n is an index for
orientation. The spatial modulation frequency w,,, is only in
one direction since we use Gabor function to detect only
height and width. The vector p, shifts the origin of the real
Gabor function, so that the output for each input position is
shifted by p,. The real Gabor functions for different orien-
tations are obtained by the coordinate transformation

p=J,p, and Po=J P,, with

cosf,, —sinf, @
h= [ ]

sinf, cosf,

[0050] The angle 6, rotates the real Gabor function for any
desired orientation. The parameters m,, and 0, represent the
angular frequency and orientation for the mn channel. The
parameters o, and o, which define the matrix C, control the
bandwidth of the function.

[0051] In the illustrated scheme, the power-spectrum of an
input image is sampled at different scales and orientations.
The complete set of self-similar Gabor functions used to
sample the input image is obtained by rotation (varying )
and scaling (varying o, ) of the basic Gabor function.
Sixteen example Gabor filters that sample the input image in
the Fourier domain in a log-polar scheme at four orientations
and four scales are shown in FIG. 2. The circles in FIG. 2
represent the bandwidth of the corresponding Gabor filters at
half-peak magnitude. Four spatial frequencies (f_,, £ ../2,
fnax/¥ fmaxe/8) shown in FIG. 2 are distributed in octaves,
each of which is further rotated in steps of 45° (0°, 45°, 90°,
135°). Thus, a bank of real Gabor functions corresponding
to the 16 channels shown in FIG. 2 capture features from the
input image. In an embodiment of the invention, as a
compromise between computational load and performance,
the total number of channels is limited to 16. Interestingly,
there is psychophysical evidence that the human visual
system uses a similar number of channels. For an input
image i(x,y) and a real Gabor function h(x,y),,,, of size NxN,
the filtered image I,.(X,y) is obtained as

Ln (X, ) = B(Xy )y, # 6K, ) ®
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-continued

N
B (ks Dix =k, y = D).
k=

1=

1k

[0052] where ‘*’ denotes the convolution operation. The
above operation requires half the computational time for the
calculation of feature vectors as compared to the case in
which complex Gabor functions are used.

[0053] An appropriate filter design with small convolution
masks allows an efficient implementation of real Gabor
functions in the spatial domain. The size of this real-Gabor-
function mask determines, in part, the computational effi-
ciency with tradeoffs. For instance, reliable measurements of
texture features call for large mask sizes. On the other hand,
large mask size significantly increases the computational
load that is undesirable for online inspection. This follows
from the total number of real operations (additions and
multiplications) for each of the sixteen channels being
proportional to N*, where NxN is the filter mask size (or
simply the mask parameter). An embodiment of the inven-
tion employed with little degradation in performance 7x7
filter masks instead of 9x9 filter masks to achieve about 40%
saving of computational load per frame. Similarly, with
some marginal and acceptable degradation in performance,
another embodiment of the invention employed 5x5 filter
masks resulting in about 70% saving (as compared with 9x9
masks) of computational load per frame. Preferably, 5x5
filter mask, even more preferably a 9x9 filter mask and most
preferably a 7x7 filter mask is used in most embodiments of
the invention. However, these preferences are not intended
to limitations on the scope of the invention.

[0054] The performance of this algorithm as a function of
mask size for various defects is discussed later. For obtain-
ing the values with a particular mask, every image pixel of
fabric under inspection is convolved with the real Gabor
function mask (equation (6)) to obtain the filtered pixel
value. This operation provides a set of 16 images from each
of the sixteen channels for use as a feature vector for defect
segmentation.

[0055] In order to identify defects against a textured
background, it is necessary to select a set of suitable channel
filters. Gabor filters, acting as bandpass filters, with appro-
priate parameter choices, can be tuned to discriminate local
fabric defects. Accordingly, in an embodiment of the inven-
tion, the choice of particular filters is described in greater
detail next.

[0056] FIG. 1 illustrates real Gabor functions having a
spatial modulation frequency so as to produce one large
positive lobe and two smaller negative lobes on either side.
Such Gabor filters function as blob detectors. The illustrated
filters exhibit circular symmetry (0,=0,=0) and a spatial
bandwidth proportional to spatial frequency. For Gabor filter
defined by equation (1), the half-peak magnitude axial (B,)

May 1, 2003

and orientation bandwidths (Bg, shown in FIG. 3, are
defined as

v ©
B, = 10g2[M]’ By = Ztanfl[ 2In2 ]
W0 — V2102 WmT
V2In2 V2In2
B, = logz[w], By = Ztan’l[ ]
W — ¥ 21n2 W T
[0057] Interestingly, experiments show that frequency

bandwidth of cells in visual cortex is about one octave. This
is in accord with the choice for fixing axial bandwidth as one
octave. Equation (9) shows that this can be achieved by
setting

322 (10)

[0058] Thus, radial and angular bandwidths are constant
on log-polar scale at one octave and 36.87° respectively. The
spatial frequency plane of acquired fabric image is divided
into four different orientations (0°, 45°, 90° and 135°). A
common method of decomposing the frequency band, moti-
vated by human vision model, has been to use octave band
(dyadic) decomposition. Therefore, the radial axis of spatial
frequency plane is divided into four equal octave bands
(centered at f,, f,, f5, and £,). As is known, in a bandwidth
of one octave, spatial frequency increases by a factor of two.
The highest central frequency for each direction is located at
Nyquist frequency to avoid ringing and noise. The resultant
filter bank performs log-polar sampling of acquired fabric
image.

[0059] The width of the thinnest yarn of this fabric,
expressed in terms of number of pixels, determines the
maximum frequency of interest. Let f; be this maximum
frequency, also denoted by fax. This choice of radial fre-
quency guarantees that the passband of the filter with highest
radial frequency (i.e. f,,,) falls inside the image array. Thus
the next radial frequency of the Gabor filter, f, is selected at
the next lower octave channel (one octave away), i.c.
f,=f_./2. Similarly, f =f, .2 (m=1, 2, 3, 4). For a
particular fabric, if the thinnest yarn occupies 12 pixels, then
f ..="12 cycle/pixel. With a maximum frequency of this
order, few defects whose sizes are approximately that of one
yarn are expected to be detected. The larger defects can be
located with filters of lower frequencies. That is, the greater
is the extent of the defect, the lower is the filter frequency
required for its detection. The contour location of sixteen
example Gabor filters along with their respective center
frequencies is shown in FIG. 2. FIG. 4 illustrates the sixteen
real Gabor functions in the spatial domain.

[0060] In an other aspect, an embodiment of the invention
enables automated selection of the central frequency, thus,
reducing the need for manual tuning. The selection of f___
requires calibration whenever the fabric type (texture) or
image acquisition conditions are varied. This calibration is
proportional to the width of thinnest yarn in the fabric,
which is a function of frequency-domain parameters. There-

fore, the spectral analysis on a defect-free (reference) fabric
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image allows automatic selection of the magnitude of f,__..

Due to the nature of fabric structure, the dominant spectral
peaks lies along the two axes of the frequency spectrum.

[0061] From a defect-free fabric image i, (X,y), a vector
consisting of complete row of pixels i,(y) (preferably from
the center of image) is selected for spectral analysis since
experimental results show that the location of vector i,(y)
(position of x) has little effect on the desired magnitude of
f.x Then signal i(y) is adjusted to have a zero mean by
removing the mean value.

121 (1)
£ = i) - 52 ()

R

[0062] where the size of reference image i(X,y) is PxQ
pixels. This signal i,'(y) is converted to frequency domain by
taking the discrete Fourier transform of signal i,(y) using a
512-point fast Fourier transform (FFT).

N-1 12)
Lk = Z LGY for k=0,1,2,... .0~ 1.
y=0

[0063] where Q is the length of vector i(y), and Go=¢~
jzea. From I(Kk), the power spectral density (PSD) of signal
1'(y) is computed as follows:

PR=L0Lk)/Q 13

[0064] where I (k)* is the complex conjugate of I (k). The
power distribution in P(k) reflects the frequency components
associated with the main background texture of the defect-
free image. The normalized frequency at which the peak of
power spectral density P(k) occurs can be chosen as f, .

The selection of f___ for a typical fabric sample used in this
work is shown in FIG. 5.

[0065] The above-described method computes f___ from
the horizontal row of pixels along the warp direction, i.e.
i(y). Since the yam density (warpxweft, per inch) of the
reference image used is known in advance, and therefore
(warp>weft) the row of pixels only from the warp direction
is used. This choice is also supported by experiments, i.e. the
magnitude of £, computed from a column of pixels 1(x)
was found to be smaller than when it is computed from a row
of pixels i,(y). However, in situations where the yarn density
of the fabric is not known, the magnitude of f,___ is com-
puted from both, i.e. i(x) and i(y), and the highest of £___
from these two magnitudes is used. A rather accurate but
computationally expensive method utilizes 2-D power spec-
tral density of the defect-free reference image to compute
the magnitude of £, . However, the accurate selection of
f s not critical and the approximate method presented in
this invention computes f,_ .., which serves as a good mea-

sure of the highest frequency of interest.

[0066] If a priori knowledge regarding the orientation and
size of local fabric defect is made available, it can be
regarded as supervised defect segmentation. In such cases,
segmentation can be performed using just one (or few)
appropriately tuned Gabor filter instead of bank of Gabor
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filters. FIG. 8 clearly depicts successful supervised defect
segmentation using a Gabor filter. From the visual exami-
nation of fabric sample in FIG. 8(A) it can be observed that
the defect is approximately one yarn wide and is located at
about 90° in spatial plane. Since one yarn in this image
occupies 24 pixels (approximately), therefore a Gabor filter
located at f=Y%4 cycle/pixel is chosen. A 15x15 Gabor filter
mask with f=1%4, 8=90°, and half-peak bandwidth of one
octave [equation (10)] was found to be appropriate for
attenuation of background and accentuation of defects. Fur-
ther a 9x9 median filter suppresses the specle-like noise
from the filtered image and the resulting image of FIG. 8(B)
was thresholded to obtain binary image of segmented defect
shown in FIG. 8(C). The thresholding value is obtained
from equation (18). The median filtering attenuates irrel-
evant spectral features that do not contribute to an efficient
segmentation using thresholding operation. FIG. 9(A)
shows another fabric sample in which observed defect is
approximately 2 yarns wide and is oriented at 90° in the
spatial plane. A similar processing of this image yields the
image in FIG. 9(B) followed by segmented defect shown in
FIG. 9(C). For the fabric sample images shown in FIGS.
8-9, defect segmentation can also be achieved with convo-
Iution mask smaller than 15x15 however with some degra-
dation in performance as the segmented defect is not clear as
shown in results in FIGS. 8-9.

[0067] A supervised approach naturally has additional
limitations as compared to the flexibility of unsupervised
approach. However, in many industrial inspection applica-
tions it can be assumed that the orientation and resolution of
defects are fixed. Supervised defect segmentation then can
be economically implemented on general-purpose hardware
for inspection of defects of known sizes in a known direc-
tion. However, unsupervised defect segmentation is a more
critical task and is more suitable for automated visual
inspection of local defects in industrial web materials. This
approach is detailed next.

[0068] In another aspect, an embodiment of the invention
enables integration of images corresponding to different
filters. A desirable fabric defect detection system integrates
defects captured at different orientations and resolution
levels of Gabor filter. The desired output is a binary image
of local defects in the fabric. A desired robust, automatic and
flexible procedure for fabrics with different structures is
described in an embodiment of the invention.

[0069] Before the system is ready for on-line inspection a
defect free sample of fabric is required to compute off-line
parameters. Vibration free images of the fabric under test are
acquired using backlighting in step 600 of FIG. 6 followed
by geometric correction for lighting artifacts during step
605. As shown in FIG. 6, three offline parameters are
pre-computed from reference samples during steps 610, 615,
and 620 to obtain frequency f ., the mean and standard
deviations from each of the 16 blob descriptors (R; to R;4)
and, the thresholding limit respectively. An example block
diagram for online inspection procedure is shown in FIG. 7.

[0070] The block diagram for online inspection system of
FIG. 7 starts T step 700 with acquisition of image of fabric
i(x,y) to be inspected for defects. The acquired images
exhibited artifacts of brightness gradient due to non-homog-
enous lighting. These artifacts are corrected during step 705
by subtracting acquired images with a reference image. This
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reference image of plain white paper was acquired under the
same illumination condition. The set of real Gabor functions
are applied to this corrected image to obtain the set of 16
filtered images (F, to F,.) during step 710. A non-linear
operator on these images (F to F, ) generates corresponding
blob descriptors (T, to T, ) during step 715. A similar set of
operations on a defect-free fabric sample (reference) gener-
ates blob descriptors (R; to R,4) for a reference fabric
sample. As shown in FIG. 7, the mean and standard devia-
tions from each of the sixteen blob descriptors (R; to R;4)
are computed at the beginning and stored before the begin-
ning of the fabric inspection (offline) during step 720. This
set of mean and standard deviations are utilized to generate
feature difference array (TDD,, . .., TDD, ) during step 725.
Sensitivity control 735 enables monitoring of noise along
with generation of sixteen images (S; to S;,) during step
730. As shown in FIG. 7, these images (S; to S;4) are
subjected to image fusion and a set of four images (N to N,))
corresponding to each of the four scales (m) is obtained
during step 740. These images (N, to N,) are combined
during steps 745 and 750 to a single image output N so as
to further reduce false alarms. This image N is subjected to
calibration during step 755 (described later) and the result in
step 760 is a final image of segmented defects (if any) in the
fabric sample under inspection.

[0071] For reliable defect segmentation, it is necessary to
have a set of feature vectors that can characterize the texture.
These texture features form the basis for defect segmenta-
tion. A transform/function for enhancing the changes in each
of 16 images (F, to F, ), possibly corresponding to a defect,
in such a way that a thresholding operation can segment the
defect from the textured background is described next.

[0072] As noted previously, the energy distribution in
frequency domain identifies a texture or a defect. Based on
this assumption, a local energy function calculates texture
blob descriptors. The objective of the local energy function
is to estimate the energy in the sixteen filtered images in the
local region, preferably with the aid of non-linear local
energy functions to enhance computational efficiency. Some
well-known non-linear functions are magnitude |x|,squaring
|x|, and the rectified sigmoid "tanh Bx|. The rectified sigmoid
is an important non-linear function similar to sigmoidal
activation function commonly used in artificial neural net-
works. In contrast to rectified sigmoid, magnitude and
squaring non-linear functions do not require any tuning
parameters. However, such a parameter is an advantage in
many situations because the parameter 3 can be tuned.
Therefore, this local energy function is appropriate for our
application. Accordingly, T, is obtained as

Ty y)F o), fo)=tanh(Bo). 14

[0073] Similarly, a new set of sixteen images, described
here as texture blob descriptors (T, to T, ) are obtained. The
parameter [3, which gives saturation characteristics of this
function, depends on the dynamic range of gray levels in the
acquired images. Empirically, this is fixed at 0.3 to give fast
saturating, threshold-like function. The application of local
energy function transforms the sinusoidal modulations in the
filtered image to square modulations. Therefore, this opera-
tion can be interpreted as blob detector. Since non-linear
function used for each of sixteen the filtered image (F; to
F,s) is odd-symmetric, the texture blob descriptors (T, to
T16) are accompanied by both dark and light blobs.
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[0074] Individual blobs in (T, to T,4) are identified and
their attribute to defect or defect-free texture is assigned.
Texture descriptors for the reference or defect-free fabric
sample (R, to R, ) are also obtained in a similar manner. For
each of these sixteen texture descriptors corresponding to
the defect free sample, we obtain the mean and standard
deviation, e.g., step 725 of FIG. 7. This set of means and
standard deviations is used for further characterization of
each pixel from the texture blob descriptors (T, to T, o), ¢.g.,
steps 725 and 730 of FIG. 7.

[0075] Texture features characterized by enhanced local
gray-level statistical distribution [equation (14)] are asymp-
totically uniform for defect-free fabric (in sufficiently large
image areas). Given a prototype of fabric under test, defect
segmentation requires identification of proper distance
among such distributions. Classical approaches based on
estimation of some statistical moments (e.g. mean value,
standard deviation, etc.) or other statistical parameters allow
a very quick characterization of image pixels. On the other
hand, methods based on higher-order statistics (e.g. co-
occurrence matrix, run-length metrics and statistical feature
matrices) provide more information but are highly demand-
ing in terms of both computational and memory require-
ments. Furthermore, processing texture blob descriptors T,
to T,; by using first order statistical analysis avoids a
possible computational bottleneck in the online fabric defect
detection system.

[0076] The set of texture blob descriptors (T, to T,4) forms
the basis for defect segmentation. From these descriptors, a
comparison for each pixel of defective fabric with that of
defect free fabric is made. If the difference is small, prob-
ability of a pixel corresponding to the defect-free sample is
high. Alternatively, when the difference is large, it is highly
probable that this pixel corresponds to a defect. For each of
the texture blob descriptors, texture descriptor difference
(magnitude) TDD can be written as:

TDD(x,)=|T(%y)~Mgegecr-sreel (15)

[0077] where m, g .. 1S the mean of corresponding
texture blob descriptor for defect free fabric (R; to Riy).
Next, the standard thresholding operation to reduce the noise
is performed, e.g., step 730 of FIG. 7. For each of the pixels
in TDD, we find corresponding pixel in S:

TDD(x, y) if TDD(x, y) = 7-sd (16)

S, y) =
) {0 Otherwise.

[0078] The thresholding is thus proportional to the stan-
dard deviation (sd). This standard deviation is calculated
from each of its sixteen texture blob descriptors of defect
free fabric, i.e. R; to Ry, The magnitude of the coefficient
T depends on the sensitivity as fixed by the user. The
motivation behind the introduction of ‘sensitivity control’ in
our algorithm is twofold. When we increase the size of
image per frame in an attempt to increase the performance,
the mean gray level variation in the resulting image tends to
be uniform. Now the thresholding limit has to be much
smaller (highly sensitive) to discriminate the defective pix-
els. We have found that a thresholding limit equal to one
standard deviation increases the sensitivity and is most
suitable for large area images with uniform mean gray level.
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Secondly, when the image size per frame is small so that
gray level variations are considerably non-uniform, a thresh-
olding limit of twice the standard deviation (medium sen-
sitivity) is appropriate. On the other hand, when the number
of yarn impurities in the fabric is high, the sensitivity has to
be kept low (thrice of standard deviation) to discriminate the
defects against the noisy background. Thus the sensitivity
control largely depends on fabric texture and image acqui-
sition conditions, and must be adjusted accordingly.

[0079] Evaluating the reliability of texture difference pix-
els from different channels is helpful when the texture
difference images reveal inconsistencies. A number of fusion
algorithms have been developed in the literature and used to
reduce false alarm while maintaining high probability of
detection. One approach for target detection involves delib-
erate generation of unwanted output (clutter) followed by its
subtraction from detection output. Binary fusion algorithm
uses logic AND of outputs obtained from several detection
outputs. However binary fusion algorithm does not weigh
different confidence level in different detection outputs. Not
surprisingly, analog and hierarchical fusion algorithms have
produced better results i.e. lower false alarm rate. Analog
and hierarchical fusion algorithm uses a mapping function to
convert different detection outputs into a common range.
This step, similar to the fuzzification function used in fuzzy
logic, is also used in a fusion algorithm based on Bernoulli’s
rule of combination, however with different membership
function.

[0080] The main function of image fusion module in an
embodiment of the invention is to attenuate background
pixels and accentuate defective pixels from four directions.
Bernoulli’s rule of combination, which is special case of
Dampster’s rule of combination, is extended here for inte-
grating images from four directions. For each of the four
images in every scale m, following mapping function con-
verts pixel values into a common output range of 0-1.

Son (% ¥) = min] Sy (. ¥)] an
Max[Syy (¥, ¥)] — min[Spp, (%, ¥)]

Opinx, y) =

[0081] where the image input S, (X,y) in equation (17) is
same as S(x,y) from equation (16), but has been subscripted
with index for scale m and orientation n [equation (6)]. Thus
for equation (17) the feature difference images S, to S, are
denoted by S;;(x,y) to S;4(x,y) to illustrate that the images
have originated from real Gabor functions at scale m=1 and
orientation n=1, 2, 3, 4 (0°, 45°, 90°, and 135°). Next, a
fused output N_(x,¥) is generated for every scale m, by
fusion of normalized images [equation (17)] from four
directions, e.g., during step 740 of FIG. 7.

Non(x, y) =
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[0082] Thus, for every scale m=1, 2, 3, 4, we obtain one
fused image output N_(x,y) from the four images S_,(x,y),
So(XY)s Sms(x,y) and S, 4(x,y) using (17) and (18). These
fused outputs tend to follow one of the inputs closely, if the
other inputs possess low values. On the other hand, the input
with very high values tends to dominate the outputs, regard-
less of the values of the other inputs. Thus, the pixels from
the defects captured in any of the four orientations will
dominate in the final fused image for each scale and the
fusion suppresses the noise and combines sixteen images (S,
to S,4) into four images (N, to N,,).

[0083] Due consideration to reduce false alarm should be
given when the information gathered from four different
resolution levels (N; to N,;) is combined. It is reasonable to
assume that a defect will appear in at least two adjacent
resolution levels, otherwise it is highly unlikely that it is a
defect. This consideration has been found to reduce false
alarms without affecting defect identification e.g., during
step 745 of FIG. 7. This is ensured by computing geometric
means of every adjacent level in an embodiment of the
invention. For example, N, is computed as

Nao(oy)=[N1xyINo ()] (19
[0084] Next, a set of three images N5, N,5, and N5, are
obtained. An arithmetic mean combines defects captured by
them e.g., during step 750 of FIG. 7. Notably, this image
N(x,y) contains contribution from all sixteen texture
descriptors (T, to Ty4):

1 (20)
Nix, y) = §[N12(Xa )+ Nz (x, y) + Nag(x, y)l.

[0085] Finally, the image is subjected to thresholding
based on a calibrated value e.g., during step 755 of FIG. 7.
A thresholding value is selected such that values below this
limit are considered as belonging to regular texture in the
fabric, and values above are contributed from the defects.
Advantageously, this value is suitably obtained by calibra-
tion of the system at the beginning of the operation using a
fabric sample without any defects and yarn impurities. With
the use of this reference image, the Ny o pec(X,y) is
obtained from equation (20). The threshold value m, is
obtained by:

N = MaX ANgefecr— free (X, ¥} (21)
x,yeW

[0086] where ‘W’ is a window centered at the image. Thus
the threshold value v, is the maximum amplitude of gray

(18)

241 O 3) { Omi(Xs Y)Om2(X, ¥) + Op2 (X, Y)0m3(X, Y) + Oz (X, Y)Omy(x, ¥) +}
e Y Ot Xy 3) O (%5 ¥) + Oppa (%5 ¥)O0p2(X5 ) + Op3(x, )0 (%, ¥)
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levels, within a window ‘W, in the image Ny seci greel(X,¥)
obtained from the reference image. The choice of the
window size avoids the effect from border distortion. This is
obtained by removing ten pixels (ad hoc) from each side of
the image Ny.fewsree(X,¥)- This window size depends on the
mask size of real Gabor functions; as for 7x7 mask, at least
seven pixels from the border have to be ignored. The
magnitude of n,, is such that isolated noisy pixels in N(X,y)
are isolated in the output binary image. Binarization based
on this threshold limit suppresses noise, although this opera-
tion also suppresses some of the defects captured at different
orientations and frequencies.

[0087] Another, less preferred, approach for computing
the threshold value is based on the mean and standard
deviation of final image (N . ¢..;_greo(X,¥) here). Experimental
results show that this threshold value generates large noise
in the output and requires opening operation with a convo-
lution mask (typically 3x3) to eliminate the noise. With the
usage of threshold value suggested in equation (21) opening
operation is not needed and this results in reduction of
computational load, which is critical for real time imple-
mentation of this algorithm.

[0088] This defect segmentation algorithm has been tested
on both synthetic and real test fabric images. The reason for
testing this algorithm on synthetic images was to ensure that
the algorithm is able to discriminate difficult fabric defects,
which humans can discriminate preattentively. The image
acquisition subsystem developed at the Industrial Automa-
tion Laboratory at the University of Hong Kong has been
used to capture gray level images of defective test fabrics.
All non-synthetic images during testing were acquired using
back lighting. Samples of the most commonly occurring
fabric defects (e.g. mixed filling, waste, mispicks, kinky
filling, misreed etc.) were gathered from a loom and their
gray level images were used to evaluate the algorithm
described. Some example results are presented here.

[0089] FIGS. 11(A) and (B) show synthetic binary images
of test and reference fabric respectively. The second row of
the test image has two more pixels than other rows. This
simulated defect of thick yam can be seen segmented in the
final image in FIG. 11(C). FIGS. 10(A) and (B) show the
real fabric images, with defect segmented in FIG. 10(C).
The border effect in the segmented image is localized and
the border distortion can be ignored.

[0090] An accurate segmentation of defect is limited by
the rather poor yam quality. Impurities that are naturally
present in fabric yams tend to obscure more subtle defects.
This effect can be seen in FIG. 12. The fabric image A in
FIG. 12 has defects along with large yam impurities. The
defects are segmented at three different sensitivities namely
low (B), medium (C) and high (D) as shown in FIG. 12. As
seen from results in FIG. 12, low sensitivity (B) helps to
suppress the yam impurities but at the expense of some
pixels from the defect. However, while segmenting defect
from fabric with large impurities, sensitivity is reduced to
avoid yam impurities appearing as defect in output.

[0091] The image acquisition sub-system was adjusted to
acquire large size images while fabric is in motion with the
velocity of 30 cm/sec. The acquired images were digitized in
385x287 pixels, with eight-bit resolution (256 gray levels).
Nine images of fabric with defects were chosen to have large
characteristic variability in terms of composition and struc-
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ture. It is assumed that these sample images are represen-
tative of fabric defects in textile industry. All these images
covered a 10 cm width and 7.5 em height of actual fabric.
FIGS. 13-21 illustrate the defect segmentation achieved with
the proposed algorithm. Due to the increase in the area of
fabric per frame, we have increased the sensitivity (t=2).
FIG. 20(A) shows fabric sample, with defects in which are
visible only with difficulty. The defects appear only alter the
spatial arrangement of neighboring pixels instead of mean
gray level. Real Gabor functions register this change with
enhanced discrimination enabled by the choice of the local
energy function resulting in successful segmentation as
shown in FIG. 20(B).

TABLE 1

Mask
Size L M H L M H L M H

Sample 13(A) Sample 14(A) Sample 15(A)

S5x5 598 4211 39.66 0.23 0.10 0.14 0.02 0.03 0.04

7x7 061 3492 37.83 033 0.14 0.28 0.00 022 0.05

9x9 230 1440 3002 042 1.63 070 0.00 0.03 002
Sample 16(A) Sample 17(A) Sample 18(A)

5x5 001 043 280 013 029 021 189 392 428
7x7 004 017 257 006 084 025 1.60 1.67 2.69
9x9 003 008 075 013 033 0.04 1.02 1.81 334

Sample 19(A) Sample 20(A) Sample 21(A)

5x5 068 128 214 010 176 1.79 258 530 5.69
7x7 008 053 342 011 076 9.34 1.07 1.41 3.13
9x9 096 056 381 0.01 019 487 040 1.58 3.63

Percentage of Misclassified Defective Pixels

[0092] The lack of appropriate quantitative measures for
the goodness of segmentation makes it difficult to evaluate
and compare different defect detection methods. A simple
criterion that has been used in many texture segmentation
algorithms is the percentage of misclassified pixels. In
defect segmentation problem, defective pixels are of interest
and therefore percentage of total defective pixels misclas-
sified are reported in TABLE 1 for several samples at
different levels of sensitivity ranging from low (“L”) to
medium (“M”), to high (“H”). The sample numbers in
TABLE 1 correspond to the figures. Thus, e.g., sample 19(A)
is depicted in FIG. 19(A).

[0093] In TABLE 1 as sensitivity increases from low to
high, the percentage of misclassified pixels increases for
every image sample (for 7x7 mask). However sample in
FIG. 14(B) is an exception. Another effect on performance
due to with the variation in mask size can be observed. At
the medium sensitivity, indicated by the heading “M” in
TABLE 1, as the mask size is increased from 5x5 to 9x9,
there is a decrease in percentage of misclassified pixels for
every image sample with the exception of the samples in
FIGS. 14(B) and 17(B).

[0094] In TABLE 1 image sample from FIG. 17(B) reg-
istered highest increase in performance (9.26 times) with the
increase in mask size from 5x5 to 9x9 at the medium
sensitivity. For the image samples shown in FIGS. 13-21 the
percentage of misclassified pixels is below 2%, however one
sample in FIG. 13(B) provides an exception. A conclusion
drawn from TABLE 1 is that there is an overall reduction in
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percentage of pixels misclassified as defects, with increase
in mask size and decrease in sensitivity. FIG. 22 shows the
percentage of pixels occupied by fabric defects in an
acquired image plotted against percentage of misclassified
pixels from the defect. This plot illustrates a general
decrease in false alarms with increase in defect per frame.

[0095] The criterion used in TABLE 1, percentage of
misclassified pixels, does not accurately reflect the ability of
the algorithm to segment the defect. Low percentage of
misclassified pixels does not necessarily mean good defect
segmentation, unless a large number of pixels showing
defect in defective region accompany it. Therefore, some of
the results from TABLE 1 are elaborated in TABLES 2, 3,
and 4.

TABLE 2

Total Sx5 7x7 9x9

Pixels L M H L M H L M H

P1 44 100 92 61 124 104 66 104 93
P2 653 653 653 653 653 653 653 653 653
P3 39 275 259 4 228 247 15 94 196

Performance Analysis for the Sample Shown in
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tive pixels (P1). However, this is accompanied by an
increase in pixels appearing outside the defective region
(P3) i.e. noise. With increase in mask size, output defective
pixels (PI) also increase. But, this small increase often
requires about 50(70)% more computation when mask size
is increased from 5x5 to 7x7 (9x9). Thus, in view of these
experimental results, the 7x7 mask is well suited for many
applications without any significant deleterious change in
output. Similarly, 5x5 masks can be used with a marginal
compromise in the output corresponding to smaller sized
defects.

[0099] This invention provides improvements in by two
considerations - computational complexity and perfor-
mance. For adequate real time performance, a successful
algorithm reduces computational complexity without com-
promising performance. Accordingly, the taught combined
feature vectors described herein reduce the probability of
false alarm while maintaining high probability of detection.

[0100] It is well known in the textile industry that the
majority of weaving defects occur either in the direction of
motion (warp direction) or perpendicular to it (pick direc-
tion). Popular air-jet looms predominantly present defects
such as end-outs (missing or broken warp yarns), stubs
(excess yarn) and mispicks (missing or broken pick yarns).

FIG. 13(A) All these defects have been successfully segmented as
[0096] illustrated in the accompanying FIGURES. This algorithm
TABLE 3
Total S5x5 Ix7 9x9
Pixels L M H L M H L M H
P1 5890 9780 11629 5442 9675 12811 5362 8541 12649
P2 23609 23609 23609 23609 23609 23609 23609 23609 23609
P3 2 101 660 10 39 607 7 18 177
Performance Analysis for the Sample Shown in has been evaluated with some of the less commonly occur-
FIG. 16(A) ring defects, which are caused by machine malfunction, such
[0097] as holes in FIG. 13 and oil spots in FIG. 14.
TABLE 4
Total Sx5 Tx7 9x%x9
Pixels L M H L M H L M H
P1 4898 16987 19660 3822 15934 22548 2167 10001 17952
P2 40957 40957 40957 40957 40957 40957 40957 40957 40957
P3 28 526 876 32 216 1402 21 56 1684

Performance Analysis for the Sample shown in
FIG. 19(A)

[0098] In the examples summarized in TABLES 1-4
above, P1: Defective pixels identified; P2: Actual defective
pixels (obtained by visual examination); P3: Noise, pixels
appearing as defects in defect free region, sensitivity: L
(low), M (medium), H (high) and the total number of pixels
in image window is 97,455. As seen in TABLES 2-4, the
increase in sensitivity results in a general increase in defec-

[0101] Moreover, the method and system disclosed herein
are also useful in detecting defects in opaque textured
materials like timber, metal, plastic, etc. illuminated with
front lightning.

[0102] The filtering and feature extraction operations
account for most of the computational requirements. These
operations, suitable for parallel computing, require a high
performance digital signal processor. An example processor
is TMS320C80. Notably, real Gabor functions have also
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been implemented using cellular neural networks (CNN’s).
The advantage of CNNs is that they can be implemented
using analog VLSI alongside photosensors (CMOS or CCD
array) integrated with camera hardware. Thus the real Gabor
function filtered outputs can be read off the chip directly.
This approach drastically relieves the computational bottle-
neck and makes the use of DSP processor redundant in
alternative embodiments of the invention.

[0103] A technique for the automated visual inspection
using multi-channel filtering approach is disclosed. This
technique utilizes image fusion for combining features from
different channels. Moreover, the technique is susceptible to
performance enhancement by varying sensitivity, in pres-
ence of yarn impurities and low spatial sampling rate.
Furthermore, considerable computational saving are enabled
by the disclosed technique. These computational savings are
attributed to the use of real Gabor function, smaller filter
masks, and better local energy functions.

[0104] This technique is susceptible to various applica-
tions including quality assurance methods for inspecting a
surface of an object for defects against a texture background
in uniform and textured web products using automated
visual inspection. Possible steps include imaging a web
material to obtain an image; detecting, automatically, at least
one frequency component associated with the background
texture of a reference image; applying a pre-designed set of
real Gabor function based filters associated with the at least
one frequency component and a mask parameter to evaluate
features of the image under inspection and generate a
plurality of derived images corresponding to the pre-de-
signed set of real Gabor function based filters; estimating
energy in a local region by computing a local energy
function from at least one of the plurality of derived images
to generate a blob-detecting image; combining at least two
blob-detecting images with the aid of an image fusion rule
to obtain a resultant image; and thresholding the resultant
image to further segment at least one defect. In addition, the
aforementioned steps benefit from employing image fusion
using Bernoulli’s rule of combination; generating a set of
pixels corrected for illumination irregularities; using a rec-
tified sigmoid in the step of estimating energy to enable
tuning and in particular adjusting 3 to be 0.3 in the course
of tuning the local energy function.

[0105] It will be appreciated that the various features
described herein may be used singly or in any combination
thereof. Thus, the present invention is not limited to only the
embodiments specifically described herein. While the fore-
going description and drawings represent a preferred
embodiment of the present invention, it will be understood
that various additions, modifications, and substitutions may
be made therein without departing from the spirit and scope
of the present invention as defined in the accompanying
claims. In particular, it will be clear to those skilled in the art
that the present invention may be embodied in other specific
forms, structures, and arrangements, and with other ele-
ments, and components, without departing from the spirit or
essential characteristics thereof. One skilled in the art will
appreciate that the invention may be used with many modi-
fications of structure, arrangement, and components and
otherwise, used in the practice of the invention, which are
particularly adapted to specific environments and operative
requirements without departing from the principles of the
present invention. The presently disclosed embodiment is
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therefore to be considered in all respects as illustrative and
not restrictive, the scope of the invention being indicated by
the appended claims, and not limited to the foregoing
description.

We claim:

1. A quality assurance method for inspecting a surface of
an object for defects against a texture background in uniform
and textured web products using automated visual inspec-
tion comprising the steps of:

imaging a web material to obtain an image;

detecting, automatically, at least one frequency compo-
nent associated with the background texture of a ref-
erence image;

applying a pre-designed set of real Gabor function based
filters associated with the at least one frequency com-
ponent and a mask parameter to evaluate features of the
image under inspection and generate a plurality of
derived images corresponding to the pre-designed set
of real Gabor function based filters;

estimating energy in a local region by computing a local
energy function from at least one of the plurality of
derived images to generate a blob-detecting image;

combining at least two blob-detecting images with the aid
of an image fusion rule to obtain a resultant image; and

thresholding the resultant image to further segment any

possible defect(s).

2. The method according to claim 1 wherein the combin-
ing step employs image using Bernoulli’s rule of combina-
tion.

3. The method according to claim 1 wherein the combin-
ing step further employs image fusion using vector addition
of pixels.

4. The method according to claim 1 wherein the step of
imaging includes generating a set of pixels corrected for
illumination irregularities

5. The method of claim 1 wherein the local energy
function is a rectified sigmoid in the step of estimating
energy.

6. The method of claim 5 wherein the rectified sigmoid is
tuned by adjusting {3 in the range 0.2-0.3.

7. The method according to claim 1, wherein image
correction compensates for illumination irregularities by
comparison with a reference.

8. The method according to claim 1, further including the
step of computing the threshold by estimating at least one
maximum value for a pixel in an integrated image generated
from the reference image.

9. The method according to claim 1 wherein the surface
under inspection is that of a textile.

10. The method according to claim 1 wherein the surface
under inspection is that of wood.

11. The method according to claim 1 wherein the surface
under inspection is that of a metal.

12. The method according to claim 1 wherein the surface
under inspection is that of a paper.

13. The method according to claim 1 wherein the mask
parameter is 5x5.

14. The method according to claim 1, wherein the mask
parameter is 9x9.

15. The method according to claim 1, wherein the mask
parameter is 7x7.
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16. A method for quality assurance in uniform and tex-
tured web products with known yam density using auto-
mated visual inspection comprising the steps of:

imaging a web material to obtain an image of a surface;

applying a pre-designed Gabor filter to the image to
generate a filtered image;

applying a nonlinear function to a pixel in the filtered
image to generate a resultant image; and

thresholding the resultant image to segment at least one

defect;

17. The method according to claim 16, wherein the
nonlinear function is a median filter.

18. The method according to claim 16, wherein the
nonlinear function is a squaring function.

19. The method according to claim 16, wherein comput-
ing the threshold includes estimating a maximum value for
a pixel in an integrated image generated from a defect-free
web material.

20. The method according to claim 16, wherein the
surface is a textile surface.

21. The method according to claim 16, wherein the
surface is a wood surface.

22. The method according to claim 16, wherein the
surface is a metal surface.

23. The method according to claim 16, wherein the
surface is a paper surface.

24. A method for quality assurance in uniform and tex-
tured web products with known yam density using auto-
mated visual inspection comprising the steps of:

imaging a defect-free web material by generating a set of
pixels corrected for illumination irregularities to obtain
an image;

selecting at least one frequency component associated
with the background texture of the image;

designing at least one real Gabor function based filter
using the at least one frequency component associated
with the background texture of the image; and

computing, automatically, a threshold associated with the
at least one real Gabor function based filter using the
image.

25. The method according to claim 24 wherein image
correction compensates for illumination irregularities by
comparison with a reference.

26. The method according to claim 24 wherein the step of
selecting includes automatically determining the at least one
frequency component associated with the background tex-
ture of the image from a set of pixels in the warp direction
whereby reducing the need for manual tuning.

27. The method according to claim 24 wherein the mask
parameter is 5x5.

28. The method according to claim 24 wherein the mask
parameter is 9x9.

29. The method according to claim 24 wherein the mask
parameter is 7x7.

30. The method according to claim 24 wherein the surface
under inspection is that of a textile.
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31. A method for quality assurance in the uniform and
textured web products using automated visual inspection
comprising the steps of:

imaging a defect-free web material by generating a set of
pixels corrected for illumination irregularities to obtain
an image;

detecting, automatically, a first frequency component
associated with the background texture of the image
from a set of pixels in the warp direction and a second
frequency component associated with the background
texture of the image from a set of pixels in the weft
direction;

selecting a highest frequency component following com-
parison of at least the first and the second frequency
components;

designing at least one real Gabor function based filter
using the selected frequency component associated
with the background texture of the image; and

computing, automatically, a threshold associated with the
at least one real Gabor function based filter using the
image.

32. The method according to claim 31, wherein image
correction compensates for illumination irregularities by
comparison with a reference.

33. The method according to claim 31, wherein the
surface under inspection is that of a textile.

34. The method according to claim 31, wherein the step
of computing the threshold includes estimating a maximum
value for a pixel in an integrated image generated from the
defect-free web material.

35. The method of claim 34 wherein the integrated image
is generated from a plurality of real Gabor functions that
include the at least one real Gabor function.

36. A system for automatically detecting defects against a
textured background in a surface of a material, the system
comprising:

image acquisition means;

at least one processor configured to execute the steps for

detecting, automatically, at least one frequency com-
ponent associated with the background texture of a
reference image, applying a pre-designed set of real
Gabor function based filters associated with the at least
one frequency component and a mask parameter to
evaluate features of the image under inspection and
generate a plurality of derived images corresponding to
the pre-designed set of real Gabor function based
filters, estimating energy in a local region by computing
a local energy function from at least one of the plurality
of derived images to generate a blob-detecting image,
combining at least two blob-detecting images with the
aid of an image fusion rule to obtain a resultant image,
and thresholding the resultant image to further segment
any possible defect(s); and

a memory for storing at least one mean and standard
deviation value for a blob detecting image, and at least
one threshold based on a defect-free image.
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