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The optical constants of HgxCd12xTe as a function of energy and compositionx are modeled over
a wide spectral range from 1.5 to 6 eV. The model employed represents an extension of Adachi’s
model and incorporates the adjustable broadening function rather than the conventional Lorentzian
one. In this way, greater flexibility of the model is achieved, enabling us to obtain an excellent
agreement with the experimental data. The relative rms errors obtained for all compositions are
below 2.5% for the real part and below 6% for the imaginary part of the index of refraction. The
lowest rms errors are obtained forx50 ~0.6% for the real part and 0.7% for the imaginary part of
the index of refraction!, and the highest for thex50.91 ~2.4% for the real part and 5.8% for the
imaginary part!. © 1999 American Institute of Physics.@S0021-8979~99!05105-1#

I. INTRODUCTION

HgxCd12xTe represents a substitutional pseudobinary al-
loy. It has high electron mobility and its fundamental absorp-
tion edge can vary with compositionx over a substantial part
of the infrared spectrum. Therefore, the HgxCd12xTe alloy
systems are of great interest as far as applications in the
infrared detectors are concerned. Also, the study of the
HgxCd12xTe mixed compounds is an important source of
information regarding the electronic structure of semicon-
ductors, and it provides a better understanding of the in-
verted and direct band structures~a conversion from the in-
verted HgTe type to the direct CdTe type band structure at
room temperature appears forx50.1, see Ref. 1!. Further-
more, if the dependence of the optical constants on the alloy
composition is known, spectroscopic ellipsometry can be
used to monitor the alloy composition and the thickness dur-
ing growth.

There have been numerous experimental studies of the
optical properties of HgxCd12xTe.2–16 These experimental
studies have mostly been limited to the reflectance or absorp-
tion spectroscopy in the narrow spectral range. The spectral
ellipsometry data from Vin˜a et al.2 and Arwin and Aspnes7

provided the experimental values for the dielectric function
over a wide spectral range~1.5–6.0 eV! and for composi-
tions 0<x<1. However, the experimental dielectric function
data are not expressed as the analytical functions of the criti-
cal point energies or photon energy. This deficiency can be
overcome by modeling. Although HgxCd12xTe has been
very interesting, studies on the modeling of its optical prop-
erties have been scarce. Works on the modeling of the opti-
cal constants of HgxCd12xTe alloys, except for CdTe, have
mostly been limited to the empirical models of the absorp-
tion edge13,15,17–20or quantum-mechanical calculations of the
absorption coefficient at the fundamental absorption
edge.10,21 However, these approaches are valid only over a

very narrow spectral range. Furthermore, the Urbach rule and
its modifications give only the values of the absorption co-
efficient, i.e., they provide information only on the imaginary
part but not the real part of the index of refraction. There was
also a study of the critical points temperature dependence in
HgxCd12xTe, but it did not model the dielectric function
dependence on photon energy and composition.16 Modeling
for the optical constants in the wide spectral range has been
performed only for CdTe.22,23

The main aim of modeling the optical properties of a
ternary alloy is to make the calculation of the optical con-
stants for compositions with no available experimental data
possible. For that reason, the optical constants of
Al xGa12xAs have been extensively studied,24–26 but such
studies for HgxCd12xTe have been lacking. Therefore, in this
work, we present a model for the dielectric function of
HgxCd12xTe as a function of energyE5\v, for 1.5<E
<6.0 eV, and composition for 0<x<1. Also, we present a
method which can accurately and reliably determine the
model parameters as a function of compositionx. The em-
ployed model represents a modification of Adachi’s model
for the dielectric function~MDF!.27,28 MDF is a relatively
simple model which describes the optical dielectric function
with terms attributed to the four energy gaps (E0 ,E0

1D0 ,E1 ,E11D1) and damped harmonic oscillators describ-
ing the contributions from the higher lying transitions
@E08 ,E2(X),E2(S) etc.#. However, MDF is not very accu-
rate, and several modifications have been proposed
recently.24,29–35

Kim et al.23,25,36 have proposed an accurate but rather
complicated model, that can include either the Lorentzian or
Gaussian broadening effect. Different types of broadening
are accomplished by varying certain parameter in the expres-
sion of the frequency dependent damping constant. However,
Kim et al.’s23,25,36 model is rather intricate and employs a
large number of adjustable parameters. In spite of the accu-
rate functional form of the joint density of states~which re-
sults in complicated model equations!, the behavior of theira!Electronic mail: ehli@eee.hku.hk
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model with the Lorentzian broadening is very similar to that
of MDF, while their model with the Gaussian broadening
shows a significant improvement in the accuracy. This indi-
cates that the broadening function approximation is respon-
sible for the large discrepancies between the MDF and the
experiment in the vicinity of the fundamental band gap.35 If
we suppose that an improvement in accuracy is obtained
mainly through replacing the Lorentzian broadening function
with the adjustable broadening, we can retain the compara-
tive simplicity of the model equations inherent to the MDF,
while obtaining a better agreement with the experimental
data at the same time.

The fact that Lorentzian broadening does not accurately
describe the optical spectrum has already been recognized
and discussed.35–38 Rakić and Majewski35 have shown that
MDF with the adjustable broadening function describes ac-
curately the dispersion and absorption of GaAs and AlAs
even in the vicinity of theE0 , where the original model of
Ozaki and Adachi29 is highly inaccurate. Therefore, we in-
corporate the adjustable broadening function into MDF for
CdTe22 and apply it to modeling the optical constants of
HgxCd12xTe. Our model departs from the calculations of
Kimura and Adachi22 over two more important points: we
include the higher exciton states and not just the ground state
excitons, and we represent the contributions of the higher
lying gaps with three harmonic oscillators instead of one.

Two ways of model parameter determination of the ter-
nary compounds are compared. The first approach is to de-
termine the model parameters for particular compositions,
and then to find the optimal function describing the depen-
dence of the model parameters on the alloy compositionx.
The second approach is to simultaneously fit in the data sets
for all available compositions in order to minimize the dis-
crepancies between the calculated data and the experimental
data over the entire energy and composition range. Our re-
sults clearly show that simultaneous fitting is needed to pro-
vide accurate values for the optical functions.

In Sec. II, a description of the model employed is given.
In Sec. III, the model parameters of alloy HgxCd12xTe as a
function of compositionx are determined and a discussion of
the results obtained is given. Finally, conclusions are drawn.

II. MODEL OF THE DIELECTRIC FUNCTION

We shall briefly describe the applied model for the di-
electric function. The dielectric function is represented by
the sum of terms describing transitions at the critical points
~CPs! in the joint density of states.

A. E0 and E01D0 transitions

Under the parabolic band assumption, the contributions
of the three-dimensional~3D! M0 CPsE0 and E01D0 are
given by:

e I~v!5AE0
23/2F f ~x0!1

1

2S E0

E01D0
D 3/2

f ~x0s!G , ~1!

where

f ~y!5y22@22~11y!1/22~12y!1/2#, ~2!

x05
\v1 iG0

E0
, ~3!

x0s5
\v1 iG0

E01D0
, ~4!

whereA andG0 are the strength and the damping constants
of the E0 andE01D0 transitions, respectively. The exciton
contributions atE0 critical points are given by:

e0X~v!5 (
m51

` A0
ex

m3

1

E02~G0
3D/m2!2E2 iG0

, ~5!

whereA0
ex is the 3D exciton strength parameter, andG0

3D is
the 3D exciton binding energy.

B. E1 and E11D1 transitions

E1 andE11D1 are 3DM1 CPs, but since their longitu-
dinal effective mass is much larger than their transverse
counterparts, they can be treated as 2DM0 CPs.22 For the
contributions of these CPs, Adachi obtained the following
expression by taking the matrix element to be constant with
respect to energy:

e II~v!52B1x1
22 ln~12x1

2!2B1sx1s
22 ln~12x1s

2 !, ~6!

where

x15
\v1 iG1

E1
, ~7!

x1s5
\v1 iG1

E11D1
, ~8!

B1(B1s) andG1 are the strength and the damping constants
of the E1 and E11D1 transitions, respectively. The contri-
bution of the Wannier type 2D excitons~discrete series of
exciton lines at theE1 andE11D1 CPs! is given by:

e III ~v!5 (
n51

1`
1

~2n21!3S B1x

E12@G1 /~2n21!2#2\v2 iG1

1
B2x

~E11D1!2@G1s /~2n21!2#2\v2 iG1
D , ~9!

whereB1x andB2x are the strengths andG1 andG1s are the
Rydberg energies ofE1 andE11D1 exciton, respectively. A
summation of the excitonic terms is performed until the con-
tribution of the next term is less than 1024.

C. Higher lying transitions

The origin of higher lying transitions is not completely
known, since these transitions do not correspond to a single,
well defined CP. There are four CPs which can contribute to
the dielectric function in the investigated spectral region.7

Kim and Sivananthan23 considered two of these CPs, while
Kimura and Adachi22 consider only one. However, electrore-
flectance data indicate that three critical point structures are
dominant in the 4–6 eV region,39 and hence we employ three
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damped harmonic oscillators, characterized by energyEj ,
oscillator strengthf j5ACjEj

2 and damping constantG j , j
52,3,4:

e IV~v!5(
j 51

3 f j
2

Ej
22~\v!22 i\vG j

. ~10!

D. The frequency dependent damping

Let us discuss the lifetime broadening effect. The dielec-
tric function of a solid , with its broadening described by a
damping functiong(s), is given as follows:23

e~v!511 i
2\2e2

e0m2 (
c,v

E Jcv~E!dES Pcv~E!

E D 2

3S E
0

`

dsexp$ i @\v2E1 ig~s!#s%

2E
0

`

dsexp$ i @\v1E1 ig~s!#s% D , ~11!

where subscriptsc andv indicate the conduction and valence
bands, respectively,Jcv(E) is the joint density of states, and
Pcv(E) is the weighted-average matrix element of the mo-
mentum operator. If a damping functiong(s) is expanded
into a power series ins5t/\, where t is time, g(s)5G
1s2s1 . . . , one usually retains only the first term~Lorent-
zian broadening! or the second term~Gaussian broadening!.
In the former case, the broadening functionF is given by:35

FL52 i E
0

`

dsexp@ i ~\v6E1 iG!s#5
1

\v6E1 iG
.

~12!

In the latter case, the broadening function takes the fol-
lowing form:35

FG52 i E
0

`

dsexp@ i ~\v6E1 is2s!s#

52 i
Ap

2s
exp@2~\v6E!2/4s2#

3F11erfS i
\v6E

2s D G . ~13!

Gaussian broadening represents a much better approxi-
mation for the broadening caused by electron–phonon and
electron–impurities scattering.23,35 In this case, though, the
integration in equation Eq.~11! cannot be performed over
the energy domain in an analytically closed form. This prob-
lem can be overcome by replacing the damping constantG j

with the frequency dependent expressionG j8(v):23,25,36

G j8~v!5G j expF2a j S \v2Ej

G j
D 2G , ~14!

whereEj is the energy of a critical point at which transition
occurs, anda j and G j are adjustable model parameters. In
this way, the shape of the line varies with the ratio of param-
etersa j andG j . This is illustrated in Fig. 1, which shows the
real and imaginary parts of the optical dielectric function

versus energy for several different ratiosa j /G j . Line shapes
range from purely Lorentzian~for a50) to nearly Gaussian
(a50.3), while for largea j /G j ratios, the wings of the peak
in the imaginary part of the dielectric functione2(v) are
even narrower, thus enabling the elimination of the extended
absorption tails ine2 characteristics of the Lorentzian line
shape. In all cases, the integration in the Eq.~11! can be
performed analytically. Furthermore, in an experimentally
established absorption line, the broadening mechanism, is
often not clear beforehand. Therefore, one should take into
account a convolution of the possible contributions of differ-
ent broadening mechanisms to the shape of the absorption
line.38 Such an approach, though, would lead to a consider-
ably involved numerical procedure. On the other hand, the
frequency dependent damping concept represents a simple
yet effective method to model the experimental dielectric
function accurately regardless of the broadening mechanism.
As there are fewer adjustable model parameters in the em-
ployed model compared with Kimet al.’s23,25,36 there is no
need to fix thea j values. In the study of Kimet al.23,25,36

parametersa j were fixed to the value providing Gaussian
broadening. Since no broadening mechanism is seta priori
~botha j andG j are adjustable model parameters!, the model
employed in this work is very flexible.

E. Complete model for the dielectric function

The dielectric function is obtained by summing up the
contributions of all the critical points described above, with
G i being replaced byG i8(v), i 50,1,2,3,4:

e~v!5e`1e I~v!1e0X~v!1e II~v!1e III ~v!1e IV~v!,
~15!

wheree` is the dielectric constant arising from the contribu-
tions of higher lying transitions.

III. RESULTS AND DISCUSSION

The position of theE0 , E1 and E11D1 CPs and their
variation with compositionx is well established. The depen-

FIG. 1. Illustration of the influence of frequency dependent damping on
optical constants.
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dence of the fundamental band gap on the compositionx and
temperatureT is given by the empirical formula proposed by
Hansenet al.:40

E0~x,T!520.30211.93x15.35~122x!~1024!T

20.81x210.832x3. ~16!

Variations of E1 and E11D1 with the compositionx are
given by the empirical relations suggested by Vin˜a et al.:2

E1~x!52.14710.44x10.7x2, ~17!

E11D1~x!52.77810.47x10.6x2. ~18!

The energies of these CPs do not represent the adjustable
parameters of the model. For other model parameters, each
parameter is assumed to be a cubic polynomial of composi-
tion x in the form of a0i(12x)1(a1i1a2ix)x(12x)
1a3ix. No attempt was made to constrain the values during
the fitting procedure, except for the added penalty function
when the resulting parameter value was negative. The fol-
lowing objective function was employed:

F5 (
j 51

j 5Nx

(
i 51

i 5Np S Ue1~v i ,xj !2e1
expt~v i ,xj !

e1
expt~v i ,xj !

U
1Ue2~v i ,xj !2e2

expt~v i ,xj !

e2
expt~v i ,xj !

U D 2

, ~19!

where Np is the number of experimental points,Nx is the
number of different compositions ande1(v i ,xj ), e2(v i ,xj )
are the calculated values of the real and imaginary parts of
the dielectric constant at frequencyv i for compositionxj ,
while e1

expt(v i ,xj ), e2
expt(v i ,xj ) are the corresponding ex-

perimental values. The experimental data employed for the
model parameter determination are tabulated in Ref. 41, and
they consist of the room temperature spectral ellipsometry
data measured by Vin˜a et al.2 and Arwin and Aspnes.7 The
objective function was minimized by acceptance probability
controlled simulated annealing algorithm with the adaptive
move-generation procedure.42,43

The details of the fitting procedures are as follows. In
this work, we compare two approaches: the determination of
the optimal cubic polynomial describing the composition de-
pendence of model parameters obtained by fitting in the data
for each composition separately and by fitting in all available
compositions simultaneously. In the first case, the experi-
mental data for individual compositions were fitted in sepa-
rately, and the model parameters obtained are given in Table
I. A comparison with the calculations of Kimura and
Adachi22 for CdTe is shown in Fig. 2. It can be observed that
our model ~solid line! is superior to that of Kimura and
Adachi22 ~broken line! in terms of the agreement with the
experimental data~circles! obtained. Then, the optimal cubic
polynomial describing the composition dependence of each
parameter was determined. However, it was found that such
a method can significantly degrade the accuracy of the esti-
mated dielectric function. This has already been pointed out
by Terry,26 who then used the simultaneous fitting method to
determine the parameters of the damped harmonic oscillator
model for AlxGa12xAs. Still, most other authors prefer the

approach of finding the optimal cubic polynomial after esti-
mating the parameters for each composition separately, as
this is less time-consuming and demands fewer computer
resources.

Simultaneous fitting for all the available compositions
was employed next. This procedure was obviously more de-
manding on the optimization algorithm and also more com-
putationally intensive. The number of data points has been
increased by an order of magnitude, while the number of

TABLE I. Model parameter values obtained by individual fitting.

Composition 0.0 0.2 0.29 0.43 0.76 0.86 0.91 1.0

e` 1.665 1.512 1.710 1.938 1.260 1.544 1.404 1.252
A ~eV1.5) 3.100 0.188 0.799 1.003 2.753 4.818 5.696 5.098
103G0 ~eV! 0.025 0.435 0.039 0.358 0.134 0.033 0.471 0.487
a0 3.561 6.184 3.286 0.585 7.314 7.100 6.090 1.531
B1 ~eV! 1.320 1.414 1.882 1.726 1.285 1.689 1.672 1.816
B1s ~eV! 0.240 0.407 0.300 0.156 1.788 1.561 1.713 1.055
B1x ~eV! 0.453 0.751 0.785 0.746 0.697 1.415 1.345 1.029
B2x ~eV! 0.248 0.401 0.448 0.356 0.549 0.807 0.821 0.666
103G1 ~eV! 1.349 2.017 2.276 2.307 2.465 3.027 3.055 1.904
a1 0.090 0.012 0.040 0.123 0.030 0.046 0.024 0.013
f 2 ~eV! 4.526 6.252 5.648 4.407 4.618 3.660 3.894 5.232
G2 ~eV! 1.167 1.412 1.296 1.082 0.945 0.722 0.715 0.734
a2 0.397 0.058 0.039 0.029 0.014 0.002 0.377 0.022
E2 ~eV! 4.559 4.717 4.778 4.798 4.959 5.028 5.004 5.089
f 3 ~eV! 6.147 6.114 3.238 4.422 3.401 1.982 0.439 1.861
G3 ~eV! 1.946 1.804 0.696 3.726 2.266 0.925 0.139 0.087
a3 0.173 0.070 0.001 0.081 0.079 0.096 0.018 0.160
E3 ~eV! 6.499 6.772 6.427 5.432 2.286 4.714 14.00 6.356
f 4 ~eV! 8.750 6.555 8.424 8.122 3.673 1.644 1.728 2.033
G4 ~eV! 4.146 3.027 5.491 4.854 1.365 0.830 1.056 0.929
a4 0.797 0.069 0.399 0.066 0.001 3.102 3.999 0.014
E4 ~eV! 2.919 3.053 3.882 3.905 2.816 2.584 2.807 2.890
A0

ex ~eV! 0.003 0.020 0.001 0.011 0.002 0.001 0.001 0.010
G0

3D ~eV! 0.002 0.005 0.003 0.013 0.030 0.018 0.022 0.001
G1 ~eV! 0.054 0.005 0.001 0.0001 0.027 0.076 0.010 0.001
G1s ~eV! 0.057 0.026 0.001 0.001 0.120 0.143 0.069 0.013
E01D0 ~eV! 0.654 0.946 1.567 1.544 1.910 1.945 2.119 2.456

FIG. 2. The real and imaginary parts of the index of refraction of CdTe:
~circles! experimental data,~solid line! this work, ~dotted line! Ref. 22.
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fitting parameters has been increased four times at the same
time. Nevertheless, this computational effort is justified by
the improved accuracy of the cubic polynomial describing
parameter dependence on compositionx. This is illustrated
in Fig. 3, which depicts three different calculated curves: the

solid line is the result for the best simultaneous fit across all
material compositions; the dotted line shows the best fit for
that particular composition. The broken line is obtained us-
ing the cubic polynomial~cubic polynomial fit to parameters
determined in individual fits! instead of the parameters ob-
tained for a particularx. A deterioration of the fit quality will
result if the optimal cubic polynomial is found after the pa-
rameters for each composition are estimated separately. For
that reason, the simulatenous approach to model the param-
eter estimation for the ternary alloy should be favored.

The model parameter estimation is performed as follows.
Model parametersa0i anda1i corresponding to compositions
x50.0 andx51.0, respectively, are first obtained by mini-

FIG. 3. The real and imaginary parts of the index of refraction forx
50.29 as a function of energy;~circles! experimental data,~solid line! re-
sults obtained by simultaneous fit to all compositions,~dotted line! best
individual fit for x50.29, ~dashed line! results corresponding to model pa-
rameters calculated by optimal cubic polynomial approximating points ob-
tained by fitting each composition separately.

FIG. 4. The real part of the index of refraction as a function of energy for
compositionsx50.0, 0.29, 0.76, and 0.91.

FIG. 5. The imaginary part of the index of refraction as a function of energy
for compositionsx50.0, 0.29, 0.76 and 0.91.

TABLE II. Parameter values obtained by simultaneous fitting method.

Parameter a0i a1i a2i a3i

e` 1.665 0.644 21.339 1.252
A eV1.5 3.100 26.988 1.974 5.098
103G0 ~eV! 0.025 6.119 21.784 0.487
a0 3.561 24.310 3.143 1.531
B1 ~eV! 1.320 5.542 23.599 1.816
B1s ~eV! 0.240 4.289 24.040 1.055
B1x ~eV! 0.453 2.604 20.066 1.029
B2x ~eV! 0.248 1.100 0.373 0.666
103G1 ~eV! 1.349 3.421 10.095 1.904
a1 0.090 20.461 0.614 0.013
f 2 ~eV! 4.526 6.421 29.926 5.232
G2 ~eV! 1.167 0.873 0.481 0.734
a2 0.397 20.010 0.119 0.022
E2 ~eV! 4.559 0.506 20.856 5.089
f 3 ~eV! 6.147 6.139 28.472 1.861
G3 ~eV! 1.946 0.808 20.944 0.087
a3 0.173 21.905 4.202 0.160
E3 ~eV! 6.499 1.564 1.374 6.356
f 4 ~eV! 8.750 ¯ ¯ 2.033
G4 ~eV! 4.146 214.678 7.230 0.929
a4 0.797 8.128 213.712 0.014
E4 ~eV! 2.919 3.472 26.331 2.890
A0

ex ~eV! 0.003 2.505 23.000 0.010
G0

3D ~eV! 0.002 3.084 23.589 0.001
G1 ~eV! 0.054 20.378 0.664 0.001
G1s ~eV! 0.057 20.212 0.384 0.013
E01D0 ~eV! 0.654 0.778 22.626 2.456
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mizing the discrepancy between the calculated and experi-
mental data for those compositions. The main reason for es-
timating these parameters separately is that the optical
properties of the binary materials~HgTe and CdTe! have
been more extensively studied, hence the data can be consid-
ered to be more reliable. After determinateda0i and a1i ,
parametersa2i and a3i are obtained by minimizing the dis-
crepancies between the calculated data and the experimental
data for all available compositions 0,x,1. The resulting
coefficients are given in Table II.

Figures 4 and 5 show the real and imaginary parts of the
index of refraction versus energy, respectively, for composi-
tions 0.0, 0.29, 0.76 and 0.91. Figures 6 and 7 depict the

respective energy dependence ofn and k for compositions
x50.2, 0.43, 0.86 and 1.0. The relative rms errors obtained
for the real and imaginary parts of the index of refraction for
different fitting methods~1—best individual fit; 2—cubic
polynomial fit to parameters obtained in individual fits; 3—
simultaneous fit! are given in Table III. An excellent agree-
ment with the experimental data is obtained for the entire
investigated spectral region and for all compositions. Results
obtained by the simultaneous fitting method are similar to
those obtained by the best individual fit, except forx
50.91, where the simultaneous fit produces a slightly higher
discrepancy from the experimental data.

IV. CONCLUSION

The optical properties of HgxCd12xTe are modeled in
the 1.5–6 eV range for all compositions 0<x<1. An exten-
sion of the Adachi’s model employing the adjustable broad-
ening function rather than the conventional Lorentzian one is
used. Two different approaches for modeling the optical con-
stants of ternary alloys are compared and discussed. Using
the simultaneous fitting method and a global optimization
routine, an excellent agreement with the experimental data is
obtained for all compositions.
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