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Abstract: In this paper we consider an equity-indexed annuity (EIA) investor who wants to determine
when he should surrender the EIA in order to maximize his logarithmic utility of the wealth at surrender
time. We model the the dynamic of the index using a geometric Brownian motion with regime switching.
To be more realistic, we consider a finite time horizon and assume that the Markov chain is unobservable.
This leads to the optimal stopping problem with partial information. We give a representation of the
value function and an integral equation satisfied by the boundary. In the Bayesian case which is a
special case of our model, we obtain analytical results for the value function and the boundary.
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1 Introduction

An equity-indexed annuity (EIA) is an equity-linked deferred annuity whose returns are based on the
performance of a stock index. The sales of EIAs have grown dramatically in recent years. Because of
their popularity, EIAs have received considerable attention in the actuarial literature.

There are two main topics in the study of EIAs. One is the valuation of EIAs. There is a vast
of literature on this topic, such as Tiong [19], Moore and Young [14], Lin and Tan [11] and Yuen
and Yang [20], among others. Since the EIA investors are entitled the right to surrender the product
prior to maturity. So it is important for the investors to determine the optimal surrender time. This
leads to the another topic, i.e., the optimal surrender strategies for the EIA investors. Considering a
geometric Brownian motion model and infinite horizon, Moore and Young [15] discusses the problem
for an investor who may surrender the product and invest directly in the index or banking account,
and seeks to maximize the expected utility of wealth at time of death. By including time-dependent
contract features, such as the minimum annual growth and the hazard rate, Moore [13] extends the work
of Moore and Young [15]. Cheung and Yang [1] studies this problem in a discrete-time model with
regime switching. For more discussions of guarantees embedded in insurance products and modeling
and pricing issues, we refer to the monograph by Hardy [6].

In this paper, we consider a finite horizon model. As the maturity of EIAs is very long in general, it is
more realistic to model the appreciation rate of the equity-linked index by a stochastic process. Similar to
Yuen and Yang [20] and Cheung and Yang [1], we capture this feature by considering a regime switching
model. In contrast to those papers, we consider a continuous-time model and the Markov chain is not
observable. This is more reasonable, since usually the investor can only observable the price of the index
directly but not the economic states.

∗School of Finance and Statistics, East China Normal University, Shanghai, 200241, China. E-mail: jiaqinwei@gmail.com
†School of Finance and Statistics, East China Normal University, Shanghai, 200241, China; School of Mathematics and

System Sciences, Shandong University, Jinan, 250100, China. E-mail: rmwang@stat.ecnu.edu.cn
‡Corresponding author. Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam Road,

Hong Kong, China. E-mail: hlyang@hkusua.hku.hk

1



The problem considered in this paper is an optimal stopping problem with partial information. There
are many papers on this topic in mathematical finance. Under the geometric Brownian motion model
with regime switching, Rishel [18] considers a stock holder who can only observable the price of the
stock and wants to determine a selling time to maximize logarithmic utility in an infinite time horizon.
The optimal stopping time given in Rishel [18] is that the first time the conditional probability process
(see Section 2) falls below a threshold whenever such threshold exists; or never stop it if the threshold
does not exist. In terms of mathematics, we are considering the same problem as that in Rishel [18],
but with a finite time horizon. As we all know, when the horizon is finite, the optimal stopping prob-
lem is analytically more difficult, and the optimal stopping time is the first time when the conditional
probability process falls below the value of a time-dependent boundary.

In this paper we give a representation of the value function and a integral equation satisfied by the
boundary. In the Bayesian case which is a special case of our model, we obtain analytical results for the
value function and the boundary. For more details on the optimal stopping under Bayesian model, we
refer the reader to Décamps et al. [2], Klein [10] and Ekström and Lu [3].

This paper is organized as follows. In Section 2, we present our model and a preliminary analysis of
the optimal stopping problem. In Section 3, we study the optimal stopping problem. We show that the
value function is the solution of a free boundary problem and the boundary satisfies a integral equation.
In Section 4, we consider the Bayesian case and obtain analytical results.

2 The Model

Let us consider the probability space (Ω,F ,P) and a finite time horizon T > 0 which is the maturity
time of the EIA. Let Jt be a Markov chain with two states {e1, e2}, where ei (i = 1, 2) are column vectors
with unity in the i-th position and zero elsewhere. The state of the chain represent hidden states of an
economy. The intensity matrix of Jt is given by

Q =

(
−q1 q1
q2 −q2

)
,

where q1, q2 > 0. We assume that Jt is unobservable.

Let µ = (µ1, µ2), where µi is the appreciation rate of the index if the economy is in state i, for i = 1, 2.
Without loss of generality, we assume that µ1 > µ2. Let σ > 0 denote the constant volatility of the index.
The dynamic of the index is given by

dS t = µtS tdt + σS tdW̃t,

where W̃t is a standard Brownian motion on (Ω,F ,P), and µt = 〈µ, Jt〉.

We assume that the investor can only observe S t. Denote by F =
{
F S

t

}
0≤t≤T

the filtration generated
by S t. Now we can define the conditional probability process

Xt := P
(
Jt = e1

∣∣∣F S
t

)
, t ≥ 0

with initial value X0 = x0 ∈ (0, 1). Then we have (see, Lipster and Shiryaev [12] and Elliott [4], Chapter
18),

dXt =
[
−q1Xt + q2(1 − Xt)

]
dt + ω(1 − Xt)XtdWt, t ≥ 0, (2.1)

where ω = (µ1 − µ2)/σ, and Wt is the innovation process which is given by

dWt = dW̃t +
µt − µ1Xt − µ2(1 − Xt)

σ
dt.
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It can be shown that (Wt,F) is a standard P-Brownian motion. The dynamics of the index can be rewritten
as

dS t =
[
µ2 + (µ1 − µ2)Xt

]
S tdt + σS tdWt.

Similar to Cheung and Yang [1], for simplicity, the effect of mortality and other product features,
like the various embedded guarantees, will be ignored. Without loss of generality, we assume the par-
ticipation rate is one. Then the evolution of the EIA fund value is governed by

dYt =
[
µ2 + (µ1 − µ2)Xt

]
Ytdt + σYtdWt, (2.2)

with Y0 = y0 > 0 which is the initial deposit.

At the surrender time τ, the investor receives Yτ. The objective of the investor is to maximize the
expected logarithmic utility of the surrender value over all F-stopping time which is bounded by T . Then
the value function is given by

V0 = sup
0≤τ≤T

E [ln Yτ] . (2.3)

Applying Itô’s formula to ln Yt, using (2.2), we have

ln Yt = ln Y0 +

∫ t

0

(
µ2 + (µ1 − µ2)Xs −

1
2
σ2

)
ds + σWt.

Hence, the original problem (2.3) is equivalent to the problem

V = sup
0≤τ≤T

E
[∫ τ

0

(
µ2 + (µ1 − µ2)Xs −

1
2
σ2

)
ds

]
. (2.4)

Note that for all t ∈ [0,T ], the solution of (2.1) satisfies

P (0 < Xt < 1) = 1,

see, e.g. Rishel [18]. If σ2 ≥ 2µ1, then the expectation in (2.4) is nonpositive and it is optimal to
surrender immediately. If σ2 ≤ 2µ2, then the expectation in (2.4) is nonnegative and it is optimal to hold
the EIA to the maturity. To rule out both of these cases, in the following we assume that 2µ2 < σ

2 < 2µ1.

In order to solve problem (2.4), we are going to study the optimal stopping problem

V(t, x) = sup
0≤τ≤T−t

E
[∫ τ

0

(
µ2 + (µ1 − µ2)Xx

s −
1
2
σ2

)
ds

]
, (t, x) ∈ [0,T ] × (0, 1), (2.5)

where Xx
· is a solution of (2.1) with initial value X0 = x. Note that V = V(0, x0).

3 Analysis of the Optimal Stopping Problem

In this section, we are going to study the optimal stopping problem (2.5). The techniques used in this
section are similar to that in Jacka [7], Karatzas and Shreve [9], Section 2.7.

Proposition 3.1. The function V(·, ·) : [0,T ] × (0, 1)→ (0,∞) is continuous.

Proof. It follows from (2.1) that

E [Xt] = X0 + E
[∫ t

0
(q2 − (q1 + q2)Xs) ds

]
. (3.1)

Let 0 < x1 ≤ x2 < 1. By the comparison result (see Karatzas and Shreve [8], Chapter 5), we know that

P
(
Xx1

s ≤ Xx2
s ,∀s ∈ [0,T − t]

)
= 1.
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From the general theory of optimal stopping (see, e.g., Karatzas and Shreve [9], Appendix D and Peskir
and Shiryaev [17]), there is an optimal stopping time τ for V(t, x2) in the sense that

V(t, x2) = E
[∫ τ

0

(
µ2 + (µ1 − µ2)Xx2

s −
1
2
σ2

)
ds

]
.

Then we have

0 ≤ V(t, x2) − V(t, x1)

≤ E
[∫ τ

0

(
µ2 + (µ1 − µ2)Xx2

s −
1
2
σ2

)
ds

]
− E

[∫ τ

0

(
µ2 + (µ1 − µ2)Xx1

s −
1
2
σ2

)
ds

]
= E

[∫ τ

0
(µ1 − µ2)(Xx2

s − Xx1
s )ds

]
. (3.2)

Thus, using (3.1), we have

0 ≤ V(t, x2) − V(t, x1)

≤ −
µ1 − µ2

q1 + q2

(
E

[
Xx2
τ − Xx1

τ

]
− (x2 − x1)

)
(3.3)

≤
µ1 − µ2

q1 + q2
(x2 − x1),

which implies that V is Lipschitz continuous (uniformly) in x.

Let 0 ≤ t1 ≤ t2 ≤ T and x ∈ (0, 1). Let τ1 be an optimal stopping time for V(t1, x), and define
τ2 = τ1 ∧ (T − t2). It is easy to see that 0 ≤ τ1 − τ2 ≤ t2 − t1. We then have

0 ≤ V(t1, x) − V(t2, x)

≤ E
[∫ τ1

0

(
µ2 + (µ1 − µ2)Xx

s −
1
2
σ2

)
ds

]
− E

[∫ τ2

0

(
µ2 + (µ1 − µ2)Xx

s −
1
2
σ2

)
ds

]
= E

[∫ τ1

τ2

(µ1 − µ2)Xx
s ds + (µ2 −

1
2
σ2)(τ1 − τ2)

]
≤ (µ1 − µ2)(t2 − t1) + (µ2 −

1
2
σ2)(t2 − t1)

= (µ1 −
1
2
σ2)(t2 − t1).

Recall that we are considering the case with 2µ1 > σ
2. So, we have proved that V is Lipschitz continuous

(uniformly) in t. This finishes the proof. �

Now, define the continuation region C to be

C = {(t, x) ∈ [0,T ) × (0, 1) : V(t, x) > 0} ,

and the stopping regionD to be

D = {(t, x) ∈ [0,T ) × (0, 1) : V(t, x) = 0} .

According to the general theory for optimal stopping problems, the stopping time

τD = inf
{
0 ≤ s ≤ T − t : (t + s, Xx

s ) ∈ D
}

is an optimal stopping time in (2.5). Therefore, in the following, we are going to determine the stopping
regionD.
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Remark 3.1. It is easy to see that

V(t, x) ≥ E
[∫ T−t

0

(
µ2 + (µ1 − µ2)Xx

s −
1
2
σ2

)
ds

]
=

(
µ2 −

1
2
σ2

)
(T − t) + (µ1 − µ2)(T − t)E

[
Xx

s
]
,

where 0 ≤ s ≤ T − t. Then, from (3.1), we have

V(t, x) ≥
(
µ2 −

1
2
σ2

)
(T − t) + (µ1 − µ2)(T − t)

[
x − q1(T − t)

]
.

Therefore, if x > b∗ + q1(T − t) where b∗ =
σ2−2µ2

2(µ1−µ2) , we have V(t, x) > 0.

Proposition 3.2. There exists a non-decreasing and right continuous function b(·) : [0,T ) → [0, b∗],
such that

C = {(t, x) ∈ [0,T ) × (0, 1) : x > b(t)} .

Proof. For some fixed t ∈ [0,T ), and 0 < x1 ≤ x2 < 1, suppose that (t, x1) ∈ C. To prove the existence
of b(t), it is sufficient to show that (t, x2) ∈ C. Indeed, since V(t, x) is increasing in x, it is easy to show
that (t, x2) ∈ C.

Moreover, for 0 ≤ t1 ≤ t2 < T and x ∈ (0, 1), we have V(t1, x) ≥ V(t2, x). If x > b(t2) which implies
V(t2, x) > 0, we have V(t1, x) ≥ V(t2, x) > 0 and x > b(t1). Thus, we have proved that b(t) is increasing.

Since V(t, x) is continuous, C is open. ThusD is closed. If we take a sequence {tn} ↘ t, we see that
∀n ≥ 1, (tn, b(tn)) ∈ D. Thus b(t+) ≤ b(t). By the increasing nature of b, we conclude that b is right
continuous.

From Remark 3.1, we know that b(t) ≤ b∗ + q1(T − t). Since b(t) is increasing, for all t ∈ [0,T ), we
have b(t) ≤ b∗. �

Theorem 3.1. The value function V(t, x) is the unique solution of the initial-boundary value problemLv(t, x) = 0, if x > b(t),
v(t, x) = 0, if x ≤ b(t), or t = T,

(3.4)

where
Lv = µ1x + µ2(1 − x) −

1
2
σ2 + vt +

[
−q1x + q2(1 − x)

]
vx +

1
2
ω2(1 − x)2x2vxx.

In particular, the partial derivatives Vt,Vx and Vxx exist and are continuous in C.

Proof. Obviously, V satisfies the second relation of (3.4). In order to verify the first relation for V , we
follow the proof of Theorem 2.7.7 of Karatzas and Shreve [9]. Let us take a point (t, x) ∈ C and a
rectangle R = (t1, t2) × (x1, x2) with (t, x) ∈ R ⊂ C. Denoted by ∂0R = ∂R\ [{t1} × (x1, x2)] the parabolic
boundary of R. Now consider the initial value problemLv(t, x) = 0, if (t, x) ∈ R,

v(t, x) = V(t, x), if (t, x) ∈ ∂0R.

By Theorem 3.6 of Friedman [5], Chapter 6, there exists an unique solution v to this problem, with vt, vx

and vxx continuous. If we show that V(t, x) = v(t, x) in R, then the first relation of (3.4) follows.

Let (t0, x0) ∈ R be given, define the stochastic process

Nt0
t := v(t0 + t, Xx0

t ) +

∫ t

0

(
µ2 + (µ1 − µ2)Xx0

s −
1
2
σ2

)
ds, t ∈ [0,T − t0],
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and define the stopping time

τ := inf
{
s ∈ [0,T − t0] : (t0 + s, Xx0

s ) ∈ ∂0R
}
.

Applying the Itô’s formula yields that Nt∧τ is a bounded martingale. Thus

v(t0, x0) = Nt0
0 = E

[
Nt0
τ

]
= E

[
Mt0
τ

]
,

where

Mt0
t := V(t0 + t, Xx0

t ) +

∫ t

0

(
µ2 + (µ1 − µ2)Xx0

s −
1
2
σ2

)
ds.

Define the stopping time
τt0 := inf

{
s ∈ [0,T − t0] : Xx0

s ≤ b(t0 + s)
}
.

From the general theory of optimal stopping, we know that Mt0
t is martingale in [0, τt0]. Since (t0, x0) ∈

C, we have τ ≤ τt0 . The optimal sampling theorem yields that

v(t0, x0) = Mt0
0 = V(t0, x0).

Therefore, v and V agree on R, and hence Vt,Vx and Vxx are defined, continuous, and satisfies the first
relation of (3.4) at the arbitrary point (t, x) ∈ C.

For uniqueness, let v be a solution of (3.4). Clearly, v is bounded on C̄. For any t0 ∈ [0,T ] and
x0 > b(t0), applying Itô formula yields that Nt0

t∧τt0
is a martingale. Thus,

v(t0, x0) = Nt0
0 = E

[
Nt0
τt0

]
= E

[∫ τt0

0

(
µ2 + (µ1 − µ2)Xx0

s −
1
2
σ2

)
ds

]
= V(t0, x0),

where the last quality follows from that τt0 is the optimal stopping time for V(t0, x0). �

Proposition 3.3. The function V is C1 in x.

Proof. It is sufficient to show that Vx(t, x) is continuous at b(t). Since Vx(t, b(t)−) = 0, we only need to
show Vx(t, b(t)+) = 0. For any ε > 0, let

τε := inf
{
0 ≤ s ≤ T − t : Xb(t)+ε

s ≤ b(t + s)
}
.

From (3.2), we have

0 ≤ V(t, b(t) + ε) − V(t, b(t))

≤ E
[∫ τε

0
(µ1 − µ2)

(
Xb(t)+ε

s − Xb(t)
s

)
ds

]
= E

[
τε(µ1 − µ2)

(
Xb(t)+ε

sε − Xb(t)
sε

)]
,

where sε ∈ [0, τε]. It follows from (3.3) that

0 ≤ V(t, b(t) + ε) − V(t, b(t)) ≤ εE
[
τε(µ1 − µ2)

]
. (3.5)

Since b(t) is increasing, we have

τε ≤ τ
∗
ε := inf

{
0 ≤ s ≤ T − t : Xb(t)+ε

s ≤ b(t)
}
.

However, τ∗ε → 0, as ε→ 0. Dividing (3.5) by ε and letting ε→ 0, we obtain Vx(t, b(t)+) = 0. �
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Proposition 3.4. The boundary b(t) is continuous on [0,T ), and b(T−) = b∗.

Proof. It follows from Proposition 3.2 that b is right continuous and increasing on [0,T ). In order to
prove the left continuity, define b(T ) = b∗. We shall suppose that b(t0−) < b(t0) for some t0 ∈ (0,T ],
and obtain a contradiction.

Under the assumption b(t0−) < b(t0), there exits δ > 0 such that b(t0−) < b1 < b(t0), where

b1 = b∗ −
δ

µ1 − µ2
.

Let t ∈ [0, t0) and x ∈ (b(t), b1) be given. Noting that V(t, x) is non-increasing with respective to t, it
follows from Theorem 3.1 that

1
2
ω2(1 − x2)x2Vxx(t, x) ≥ −

[
µ1x + µ2(1 − x) −

1
2
σ2

]
+

[
q1x − q2(1 − x)

]
Vx(t, x)

≥ δ − q2Vx(t, x).

Since 0 < b(t) < x < b1 < 1, we have

Vxx(t, x) ≥
2δ

ω2(1 − x2)x2 −
2q2

ω2(1 − x2)x2 Vx(t, x)

≥
2δ
ω2 −

2q2

ω2(1 − b2
1)b(t)2

Vx(t, x).

Therefore for x0 ∈ (b(t0−), b1),

V(t, x0) =

∫ x0

b(t)

∫ y

b(t)
Vxx(t, z)dzdy

≥

∫ x0

b(t)

∫ y

b(t)

 2δ
ω2 −

2q2

ω2(1 − b2
1)b(t)2

Vx(t, z)
 dzdy

=
δ

ω2 (x0 − b(t))2 −
2q2

ω2(1 − b2
1)b(t)2

∫ x0

b(t)
V(t, y)dy.

Letting t ↗ t0 and using the continuity of V , we obtain

V(t0, x0) ≥
δ

ω2 (x0 − b(t0−))2 −
2q2

ω2(1 − b2
1)b(t0−)2

∫ x0

b(t0−)
V(t0, y)dy

=
δ

ω2 (x0 − b(t0−))2

> 0,

which implies that (t0, x0) ∈ C. But x0 < b1 < b(t0), and we obtain a contradiction. Therefore b(t) is
continuous on [0,T ), and b(T−) = b∗. �

The following proposition characterizes the value function V(t, x) and the boundary b(t). For sim-
plicity, we assume V is regular enough to apply the Itô’s formula (see Peskir [16] and Ekström and Lu
[3]). However, without this assumption, a proof can be given by using similar method as that in Karatzas
and Shreve [9], Theorem 2.7.9.

Proposition 3.5. The function V(t, x) admits the representation

V(t, x) =

∫ T−t

0
E

[
1{Xx

s>b(t+s)}

(
(µ1 − µ2)Xx

s + µ2 −
1
2
σ2

)]
ds, (3.6)

where the boundary b(t) satisfies

0 =

∫ T−t

0
E

[
1{

Xb(t)
s >b(t+s)

} ((µ1 − µ2)Xb(t)
s + µ2 −

1
2
σ2

)]
ds. (3.7)
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Proof. Fix a t ∈ [0,T ] and X0 = x ∈ (0, t). Applying Itô’s formula to V(t + s, Xx
s ) yields

V(T, Xx
T−t) − V(t, x)

=

∫ T−t

0
Vt(t + s, Xx

s )dt +

∫ T−t

0

[
−q1Xx

s + q2(1 − Xx
s )
]
Vx(t + s, Xx

s )ds

+

∫ T−t

0
ω(1 − Xx

s )Xx
s Vx(t + s, Xx

s )dWs +
1
2

∫ T−t

0
ω2(1 − Xx

s )2(Xx
s )2Vxx(t + s, Xx

s )ds.

By Theorem 3.1, taking the expected value of the above equation gives

V(t, x) =

∫ T−t

0
E

[
1{Xx

s>b(t+s)}

(
(µ1 − µ2)Xx

s + µ2 −
1
2
σ2

)]
ds.

Letting x = b(t) in (3.6) yields (3.7). �

Remark 3.2. Using similar techniques to Peskir [16], we also can show that b(t) is the unique solution of
(3.7). Also, we can prove that the pair (V, b) is the unique solution to (3.4) (see e.g. Karatzas and Shreve
[9], Section 2.7).

4 The Bayesian Case

In this section, we study (3.6) and (3.7) in a special case with the intensity matrix Q = 0 in the model of
previous section. This is the so-called Bayesian case where the unobserved drift process µt is simply a
random variable µt = µ, and (2.1) is rewritten as

dXt = ω(1 − Xt)XtdWt, t ≥ 0, (4.1)

with X0 = x0 ∈ (0, 1). To calculate (3.6) and (3.7) analytically, let φt = Xt/(1 − Xt). Applying the Itô
formula yields that

dφt = ω2Xtφtdt + ωφtdWt.

First, by a similar method as that in Klein [10] and Ekström and Lu [3], we introduce a new proba-
bility measure P∗. To do this, define a new process W∗ by

dW∗t = ωXtdt + dWt.

The new probability measure is defined by

dP∗

dP

∣∣∣∣∣
F s

T

= exp
{
−

1
2

∫ T

0
ω2X2

t dt −
∫ T

0
ωXtdWt

}
= exp

{
1
2

∫ T

0
ω2X2

t dt −
∫ T

0
ωXtdW∗t

}
.

By Girsanov’s theorem, W∗ is a P∗-Brownian motion, and

dφt = ωφtdW∗t (4.2)

under measure P∗. Define the likelihood process

ηt = exp
{
−

1
2

∫ T

0
ω2X2

t dt +

∫ T

0
ωXtdW∗t

}
which is a P∗-martingale. It can be shown that

ηt =
1 + φt

1 + φ0
(4.3)
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(see Ekström and Lu [3]).

Let E∗ be the expectation with respective to P∗. Noting that Xt = φt/(1 + φt), and using (4.3), we
have

E
[
1{Xx

s>b(t+s)}

(
(µ1 − µ2)Xx

s + µ2 −
1
2
σ2

)]
=

1
1 + φ0

E
[
(1 + φ0)1{Xx

s>b(t+s)}

(
(µ1 − µ2)Xx

s + µ2 −
1
2
σ2

)]
=

1
1 + φ0

E∗
[
ηT (1 + φ0)1{

φs
1+φs

>b(t+s)
} ((µ1 − µ2)

φs

1 + φs
+ µ2 −

1
2
σ2

)]
=

1
1 + φ0

E∗
[
ηs(1 + φ0)1{

φs
1+φs

>b(t+s)
} ((µ1 − µ2)

φs

1 + φs
+ µ2 −

1
2
σ2

)]
=

1
1 + φ0

E∗
[
(1 + φs)1{

φs
1+φs

>b(t+s)
} ((µ1 − µ2)

φs

1 + φs
+ µ2 −

1
2
σ2

)]
=

µ1 −
1
2σ

2

1 + φ0
E∗

[
1{
φs>

b(t+s)
1−b(t+s)

}φs

]
+
µ2 −

1
2σ

2

1 + φ0
E∗

[
1{
φs>

b(t+s)
1−b(t+s)

}] ,
where φ0 = x/(1 − x). From (4.2), we know that

φt = φ0e−
1
2ω

2t+ωW∗t .

Thus we have

E∗
[
1{
φs>

b(t+s)
1−b(t+s)

}φs

]
= φ0N(d1(t, s)), and E∗

[
1{
φs>

b(t+s)
1−b(t+s)

}] = N(d2(t, s)),

where N(·) is the cumulative distribution function of the standard normal distribution, and

d1(t, s) =
ln

[
φ0(1 − b(t + s))

]
− ln b(t + s)

ω
√

s
+
ω
√

s
2

,

d2(t, s) = d1(t, s) − ω
√

s.

Consequently, we have

V(t, x) =

∫ T−t

0

[
φ0

1 + φ0
(µ1 −

1
2
σ2)N(d1(t, s)) +

1
1 + φ0

(µ2 −
1
2
σ2)N(d2(t, s))

]
ds, (4.4)

where φ0 = x/(1 − x). Setting x = b(t) gives

0 =

∫ T−t

0

[
b(t)(µ1 −

1
2
σ2)N(d∗1(t, s)) + (1 − b(t))(µ2 −

1
2
σ2)N(d∗2(t, s))

]
ds, (4.5)

where

d∗1(t, s) =
ln [b(t)(1 − b(t + s))] − ln [(1 − b(t))b(t + s)]

ω
√

s
+
ω
√

s
2

,

d∗2(t, s) = d∗1(t, s) − ω
√

s.

Thus in the Bayesian case we can rewrite the results of Proposition 3.5 in a analytical form giving by
(4.4) and (4.5).
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