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To accurately determine the reaction path and its energetics for enzymatic and solution-phase
reactions, we present a sequential sampling and optimization approach that greatly enhances the
efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path
(QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex
reaction system is described by the potential of mean force (PMF) surface of the quantum
mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing
a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method
comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem
required for the calculation of the QM PMF and its gradient. In our new sequential sampling and
optimization approach, we aim to reduce the amount of MM sampling while still retaining the
accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM
subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures
are then used to obtain more accurate sampling of the MM subsystem. This process of sequential
MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM
conformational ensemble enables the precise evaluation of the QM potential of mean force and its
gradient within the ensemble, thus circumventing the challenges associated with statistical
averaging and significantly speeding up the convergence of the optimization process. To further
improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed
by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the
QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost
that is comparable to classical MM simulations. The new method was successfully applied to two
example reaction processes, the classical Sy2 reaction of Cl7+CH;Cl in solution and the second
proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The
activation free energies calculated with this new sequential sampling and optimization approach to
the QM/MM-MFEP method agree well with results from other simulation approaches such as the
umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy
of the iterative QM/MM-MFEP method. © 2008 American Institute of Physics.
[DOI: 10.1063/1.2816557]

I. INTRODUCTION

Understanding reaction mechanisms and the origins of
catalytic proficiency of enzymes are among the most funda-
mental topics in chemical and biological sciences. Informa-
tion from experiments is necessary, but often insufficient, to
determine the precise mechanism and energetics of a reaction
process. Complementary to experiments, computational stud-
ies can in principle provide detailed knowledge at the atomic
or even the electronic level regarding how a molecular sys-
tem changes from one state to another. This knowledge in-
cludes the reaction path, the structure of the transition state,
and the interaction energetics.l

In general, computer simulations of chemical reactions
face two main challenges: One is the accurate description of
the interactions of the molecular system (the potential energy
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surface), and the other is sufficient statistical sampling to
ensure that the results are converged in a thermodynamic
sense. The first challenge usually requires the use of an ap-
propriate level of quantum-mechanical (QM) theory, with ab
initio QM being more desirable for the accuracy and consis-
tency of the results. The second challenge can be addressed
through extensive phase-space sampling of the system. For
small molecule reactions in the gas phase, both challenges
can be tackled in a satisfactory manner. With currently avail-
able computational resources, the energetics of small mol-
ecules can be calculated quantum mechanically. The statisti-
cal partition function, required for computing the
thermodynamics of the system, can be computed analytically
by using a harmonic approximation or sampled directly
through numerical simulations.

When a reaction occurs either in solution or in an en-
zyme, the interactions between the reactive moieties and
their surroundings are significant and must therefore be in-
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cluded in the calculations. Consequently, there may be too
many degrees of freedom and the harmonic approximation
required for calculating the analytic partition function is no
longer valid for all relevant degrees of freedom. As a result,
direct conformational space sampling becomes necessary
even though it is computationally demanding. Normally, the
sampling of the complicated multidimensional conforma-
tional space is achieved by molecular dynamics (MD) or
Monte Carlo (MC) simulations, which can in principle per-
form effectively for macromolecular systems. In practice,
however, the reliability of the results depends critically on
the available simulation time.

Because of the excessive computational demands, it is
also difficult to describe an entire condensed-phase reaction
system quantum mechanically. Instead, the potential energy
of a complex reaction system can be described efficiently
with a combined quantum mechanical and molecular me-
chanical (QM/MM) approach.2 In this approach, only a por-
tion of the system that makes the most important and direct
contributions to the reaction process is described quantum
mechanically, while the rest of the system is described by
molecular mechanics. The partitioning of the system into two
subsystems allows a complex system to be modeled in an
accurate, yet affordable manner. With steady improvements
in computer speed, the QM/MM approach has been applied
to numerous biochemical problems.S_29

Even with the savings provided by a reasonably sized
QM subsystem in the QM/MM approach, ab initio QM cal-
culations are still quite expensive in general. For the majority
of QM/MM applications in the literature, either semiempir-
ical QM methods have been employed to carry out direct
conformational sampling of the QM/MM subsystem with
MD or MC, or only a limited number of conformations of
the system have been simulated with ab initio QM/MM
methods.

When semiempirical QM/MM methods are used, the
computational costs are low enough that classical statistical
approaches such as umbrella sampling,30 potential of mean
force (PMF) calculations, and thermodynamic integration
can be applied in a straightforward manner. The structural
and energetic properties are often obtained by modeling the
reaction as a process proceeding along a reaction coordinate
or order parameter. Because broad phase-space sampling is
attainable, the convergence of the results may be satisfactory.
Nonetheless, the results may be less accurate and reliable
compared to ab initio QM calculations due to the well-
known deficiencies of semiempirical QM methods.

The limitations of semiempirical QM/MM methods have
motivated the development of several ab initio QM/MM
methods including the QM-FE method,7’8’31733 the
OM(ai)/MM  method,*>*** and the QM/MM-FE
method.?"****** The QM/MM-FE method developed in our
laboratory, and closely related to our development in this
report, is comprised of three major ingredients: (1) The
pseudobond ab initio QM/MM method, which offers a
smooth interface between the QM and MM subsystems and
thus provides a well-defined potential energy surface; (2) an
efficient, iterative optimization procedure which allows the
determination of reaction paths within a realistic enzyme en-
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vironment; and (3) free-energy perturbation calculations,
which provide accurate free energies between QM conforma-
tions and take into account the fluctuations of the surround-
ing enzyme and solvent environment. This method, along
with its further extensions, has been successfully applied to
the study of many enzymatic reactions and has provided im-
portant  insights into many biologically relevant
reactions,>>2$2:41-46 However, the main limitation of the
QM/MM-FE method is that the optimization of the reaction
path depends on the choice of the initial conformation,*’ al-
though it is debatable how much this dependence can bias
the results in the simulations of enzymatic reactions.*”® For
reactions in solution, however, the dependence of the reac-
tion path on the initial conformation renders the application
of the QM/MM-FE method nearly impossible because of the
disorder and rapid changes in the positions of the solvent
molecules.

To eliminate the conformational dependence of the MM
environment on the reaction path, we recently developed the
QM/MM minimum free-energy path (QM/MM-MFEP)
method.*’ In this method, the thermodynamics of the entire
system is simplified by using the PMF surface of the QM
portion of the system, which enables the simultaneous opti-
mization of a reaction path on the QM PMF surface and the
accurate calculation of the free energies of the reaction pro-
cess. Accurate ab initio QM optimizations can therefore be
performed in the conformational ensemble of the MM sub-
system.

The QM/MM-MFEP method is well-suited for the study
of reaction processes in complicated systems because many
MM conformations contribute to the determination of the
QM PMFE. QM/MM-MFEP is efficient because it uses a
minimal number of QM energy and force evaluations to ob-
tain a reaction path. Even so, in order to obtain the QM PMF
and associated forces that are accurate enough for reaction
path optimizations, the previous implementation requires
converged statistical sampling of the MM subsystem associ-
ated with each energy and force evaluation of the QM PMF.
While the number of QM calculations is minimal in prin-
ciple, much like a geometry optimization of a pure QM sys-
tem, converged sampling of the fluctuating MM environment
for each QM conformation can be extremely demanding in
terms of computational resources. In addition, because the
QM optimization aims to move on the converged PMF sur-
face, the statistical uncertainty in the free energy and its gra-
dients can significantly slow down the QM optimization al-
gorithm. This is precisely the issue we seek to address and
overcome in the present work.

Herein, we report two major improvements in the effi-
ciency and accuracy of the QM/MM-MFEP method. First,
sequential sampling and optimization of the QM PMF is in-
troduced to significantly reduce the amount of sampling of
the MM configuration space required for the optimization on
the QM PMF surface. Second, a polarizable QM charge
model is also implemented to provide improved accuracy for
the QM PMF and gradient calculations. The sequential sam-
pling and optimization strategy developed here for the QM/
MM-MFEP method is similar in nature to the iterative opti-
mization of the QM/MM total energy developed in the QM/
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MM-FE approach.21 We have applied the iterative QM/MM-
MFEP method to two reaction processes: the Sy2 reaction of
CI™+CH;Cl in aqueous solution and the second proton trans-
fer step of the tautomerization reaction catalyzed by the en-
zyme 4-oxalocrotonate tautomerase (40T). For both pro-
cesses, we determined the reaction path on the PMF surface
of the QM subsystem, including the structures of the reactant
state, transition state, and product state of each reaction. We
also calculated the corresponding activation free energies.
For comparison, the activation free energy of the Sy2 reac-
tion of CI™+CH;Cl was also computed using the umbrella
sampling technique with direct QM/MM dynamic sampling.
The free energies from umbrella sampling and QM/MM-
MEEP are in good agreement with each other, indicating that
the QM/MM-MFEP method is accurate. The results for the
40T system are also in good agreement with previous results
from QM/MM-FE simulations. The results of both reactions
demonstrate the potential of this method for simulating
chemical processes in solution and in enzymes.

Il. THEORY

A. Background on the potential of mean force
and QM/MM-MFEP

The progress of a chemical reaction process is often
characterized by the structural change of a selected group of
atoms. Within the QM/MM context, it is natural to describe
the progress of the reaction system, e.g., reactant, product,
and transition state, by the conformations of the QM sub-
system. Therefore, following the previously developed QM/
MM-MFEP method, we simplify the thermodynamics of the
entire system by defining the PMF of a QM/MM system in
terms of the QM conformation as

1
Alrgm) =- Eln{f exp(— BE(rQM”’MM))d"MM] ) (1)

where E(rqu.ryvm) is the total energy of the entire system
expressed as a function of the coordinates of the QM and
MM subsystems, rqy and ryp, respectively. The gradient of
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the PMF, i.e., the free-energy gradient, is then
dA(rom) _ < 3E("QMJ’MM) > 2)
EJMM,

(?rQM &rQM

which appears conveniently as the ensemble average of the

gradient of the QM atoms, a term that can be obtained from

MD simulations of the MM atoms. The notation (X)g,,

indicates an average over the MM degrees of freedom in the

ensemble generated from the energy function E(ron, "y
_ JX(rypp)exp(— BE(rQM’rMM))drMM

XDy = Jexp(= BE(rqwrvm))drvm ©

Note that Eq. (2) is exact and is independent of the form of
the energy function of the target QM/MM system. It is also
possible to extend this equation to systems beyond a
QM/MM description.

Equations (1) and (2) form the foundation for all meth-
ods that optimize the molecular conformation on a PMF
surface,sof58 including the QM/MM-MFEP method. In our
method, the optimization of the reaction path is carried out
efficiently in a discretized representation.49 To reduce the
statistical variance and hence achieve better convergence as-
sociated with the ensemble average in the calculation of the
PMF using Eq. (1), we always use the free-energy perturba-
tion formula for the chain of conformations,ﬂ’49

1
A(rom) =Aer— I[—gln(exp{— BLE(r om-Ivin)

- ref(rMM)]}>Eref,rMM . (4)

Here, A, is the PMF of a reference QM conformation, and
E,(ryw) 1s the energy of the reference QM conformation as
a function of the MM conformation. E,.(ryy) is normally
chosen to be E(rg{A,rMM), the QM/MM total energy of the

system at a reference QM geometry rr(g{,[,

Ei(rym) = E(erelfw,rMM). (5)

The PMF gradient associated with Eq. (4) is then

ref>” MM ) (6)

<Mexp[— B(E(rQM’rMM) - Eref(rMM))]>
&A(TQM) _ (?rQM -
drom (expl— BE(rqw:rsm) = Ever(ryt)) D, oy

Using the PMF and its gradient given by Egs. (4) and (6), we
can carry out the optimization of a QM conformation along
the reaction path according to

min A(rqy) = min{Aref— l1n<exp[— BE-E)De .~ }
rom roM 8 ref”’ MM
(7)

Because the QM degrees of freedom are coupled with the

MM degrees of freedom, a straightforward minimization al-
gorithm requires each step in the optimization of the QM
conformations to be associated with the converged sampling
of the MM ensemble.

In this optimization scheme, every QM optimization step
to a new conformation on the PMF surface is followed by a
course of MD sampling of the MM conformations, usually
with a simulation time of 100-1000 ps. Such extensive MM
sampling is required so that the QM PMF and gradient
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obtained from Egs. (4) and (6) are sufficiently accurate for
successful structure and reaction path optimization of the
QM subsystem.“g’5 6.58

While the QM/MM-MFEP method has been successfully
applied to the proton transfer reaction in triosephosphate
isomerase (TIM), in practical simulations this method is still
limited by two factors. First, 100—1000 ps of MD simulations
on a system of ~10 000 atoms is expensive. Even worse is
that such MD simulations must be repeated for each step in
the optimization process of the QM subsystem. Additionally,
the intrinsic fluctuations and limited simulation times for the
MD sampling lead to slow convergence in the path optimi-
zation if a new MD simulation is always begun immediately
after every QM geometry optimization step. Therefore, the
direct optimization approach implemented in previous work
becomes inefficient when the QM/MM-MFEP method is ap-
plied to larger molecular systems.

If our goal were to accurately evaluate the PMF and its
gradient at all the conformations involved in the path opti-
mizations, then there might be no way around the converged
sampling of the MM subsystem carried out each time a new
point on the PMF is visited. However, our goal is to find the
relevant stationary points on the PMF that comprise the
MEEP of the reaction process. Exploring this approach opens
up new possibilities and leads to greatly enhanced efficiency.
Our development of the reaction path optimization on the
PMEF, presented here in the QM/MM context, is also gener-
ally applicable to the optimization of PMF degrees of free-
dom other than the QM conformations.

B. QM/MM-FE: Sequential QM and MM optimization
on the QM/MM potential energy surface

To set the stage for the presentation of our new method,
let us first review the development of our previous QM/
MM-FE approach whose framework shares great similarity
with the current work.”"?*** In this approach, one aims to
find the minimum energy reaction path by performing the
following minimization:

min  E(rqup.ryvm) - (8)
rom-"'MM
A straightforward realization of this goal would be the con-
current optimization of both rqy; and ryyy. For this purpose,
one must perform a QM calculation at each step in the opti-
mization process to compute the exact energy and gradient,
which is expensive for ab initio QM methods.

In general optimization problems,59 it is known that in
certain cases it may be more desirable to break up a process
into an iferative sequence of two (or more) steps as follows:
(i) optimize a subset of the system, A, with the rest of the
system, B, held constant; (ii) optimize B with A fixed ac-
cording to the results obtained in step (i). Thus, in the QM/
MM-FE method, instead of a concurrent optimization of the
QM and MM degrees of freedom, Zhang, Liu, and Yang2]
developed an iterative sequential optimization protocol that
has proven to be quite effective in reducing the number of
QM energy and gradient evaluations. The main idea is this:
Starting from a given structure of the QM/MM molecular
system, the optimization is separated into two processes. One
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first optimizes rqy with fixed ry, which is at an approxi-
mate minimum in the MM degrees of freedom. Afterwards,
the conformation of the MM subsystem, ryy, iS optimized
with rqy fixed. To reduce the number of QM evaluations, an

approximate QM/MM total energy, E(rQM,rMM), is used for
the MM optimization. The electrostatic interactions between
the QM and MM atoms are approximated by the Coulombic
interactions between the point charges of the MM atoms and
the electrostatic potential (ESP) fitted charges of the QM
atoms. This process is then iterated until convergence, which
is normally achieved within a few iterations (often less than
ten). Expressed as an algorithm, the Zhang-Liu-Yang
QM/MM optimization procedure is as follows:

Algorithm 1: Sequential QM and MM optimization on
the QM/MM potential energy suifa0621

(1) Initiate a structure of the QM subsystem, rg)g/l and set

n=0;
(2) Setn=n+1;
(a) Carry out an MM minimization with QM atoms

fixed at rgll\_,ll),

"1(\2;\/1 =arg min E(rg‘l;,ll),rMM). 9)
MM

(b) Carry out a QM optimization with MM atoms

fixed at "1(\2\/1’
rg’ﬁ,[ = arg min E(rQM,rf\jﬁV[). (10)
roMm

(3) Go to step (2) until converged.

C. QM/MM-MFEP: Sequential sampling
and optimization on the QM PMF surface

We can also cast the problem of optimization on the QM
PMF as a simultaneous optimization in gy, the QM degrees
of freedom, and p(ryp), the configuration distribution of the
MM degrees of freedom.* Specifically, the MD sampling of
the MM degrees of freedom can be viewed as an optimiza-
tion of p(rypy),”

1
A("QM) == Eln{f exp(~ ,BE(rQM’rMM))drMM:|

= min fp(rMM){E(I‘QMJ‘MM)

P(’M]\/[)
1
+ Eln p(ryiv) |dryims (11)

and

min A(rgy) = min min f p(rMM)[E(rQM,rMM)

QM rom Prvm

1
+ Eln p(rMM)}drMM (12)

Like the QM/MM-FE method, we can improve the optimi-
zation efficiency by reformulating the concurrent optimiza-
tion of the QM subsystem and the statistical sampling of the
MM subsystem into an iterative step of sequential MD sam-
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pling of the MM system at a fixed QM structure and subse-
quent optimization of the QM subsystem within the fixed
MM conformational ensemble. The approximate energy

function model, E(rQM,rMM), plays a crucial role in reducing
the number of QM energy and gradient evaluations required.
In the MD sampling of the MM conformations, E(rQM,rMM)
acts as a reference sampling energy function, E,.{(ryn), to
drive the motion of the MM atoms without performing a QM
calculation at every MD step. That is, E.f(rym)

—E(rgltv[,rMM), the QM/MM total energy of the system de-
rived from a reference QM geometry rg{v[, similar to that in
Eq. (5). In the optimization of the QM subsystem within the
fixed-size MM conformational ensemble, E(rQM,rMM) is
again used to avoid QM calculations for each new conforma-
tion in the MM ensemble. Further discussion of E(rQM,rMM)
will be given in Sec. II D.

Expressed as an algorithm, the sequential sampling and
optimization method is as follows:

Algorithm 2: Sequential sampling and optimization on
the OM/MM PMF surface

(0)

o> and set

(1) Initiate a structure of the QM subsystem, .
n=0.
(2) Set n=n+1;
(a) Carry out MD sampling of the MM ensemble
(n—
with QM atoms fixed at rQM ,
{r(”) 7, 7=1,...,N}
<MD sampling based on E,.{(ryp), (13)

where 7 is the step of the MD simulation, N is the

o"A(")(rQM) EN 1(9E(rQM,r

7)/0rgu.; expl— BLE(rom,Fim(1) = Eve(ri alliy
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number of MD steps,
E.f(rym) is

the reference energy

Eef(rynv) = E (" wefe=t) NVIVID (14)

and the reference QM structure rg’t(" D is derived

from rg'Ml), the QM geometry from the previous
iteration.
(b) Carry out a QM optimization with the MM en-

semble fixed at {r\ (7},

re K,[ =arg min A ”)(rQM) (15)

roMm
where the object of minimization is the QM PMF

(or QM free energy) in the nth iteration given by
a finite sum representation of Eq. (4),

A(n)(rQM) = Aref

——In

N
; =S expl AE(rqu ()
=1

Epef(ri(M)1} (- (16)

The corresponding gradient with respect to the ith
QM coordinate is given by the finite sum

0rQM’l-

) hased on the

(c) Update the reference structure rQM

minimized rg')

(3) Go to step (2) until converged.

Note here that step (2) is also termed an optimization
“cycle” in later discussions.

In this algorithm, the relative PMF of a given QM con-
formation is computed by free-energy perturbation with re-
spect to a reference QM conformation. The choice of the
reference QM conformation will of course directly affect the
accuracy and convergence of the FEP calculations. In our
experience, for the optimization of the reactant and product
structures, we set the QM structure optimized in the previous
step as the reference QM structure; that is, glf\f[” D gle)
Eq. (14). For the optimization of other QM structures along
the reaction path, in accordance with the FEP calculations of
relative free energies between two adjacent conformations,

(17)

S exp{— BLE(romin(M) — Erer(riia (1)1}

we use the QM structure from the neighbors r&fé{" D= gle)

(neighboring state). Further details will be provided in
Sec. IT E.

The key feature of our new QM/MM-MFEP algorithm is
the iterative QM optimization in a fixed MM ensemble,
Eq. (15) in Algorithm 2. Because the MM ensemble,
{rl(\'g\,[(r)}, 7=1,...,N, is finite and remains fixed throughout
the course of the QM optimization for rgg/l, one can obtain
the precise PMF, Eq. (16), and its gradient, Eq. (17), defined
within this ensemble. This circumvents the difficult and
costly convergence problems associated with MM sampling.
The optimization of the PMF can be carried out efficiently
using classical numerical optimization tools. Each optimized
QM structure r™ in turn provides the next reference

Q
QM structure rg?,[") and its energy function, E,.{(rym)

=E(rglf5["),rMM), for the next round of MD sampling of the

MM conformations. Each optimized QM structure should
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improve on the previous one by providing a better QM ge-
ometry and corresponding ESP charges for the MM simula-
tion in the next cycle. As we will show in Sec. IV, Results,
our QM/MM-MFEP method converges as efficiently as the
QM/MM-FE method.

From the consideration of computational costs, the use
of a finite, fixed-size ensemble of MM conformations im-
proves the utilization of the MM conformations and avoids
repetitive MD sampling at each step of the QM structure
optimization. Thus, instead of performing excessive steps of
MD simulation that likely have significant overlap with each
other, a few cycles of MD simulation are able to yield con-
verged results in the current method.

To make a clear comparison, we describe here our pre-
vious implementation of QM/MM-MFEP (Ref. 49) and other
works involving optimization of the free energy56’58 as a con-
current MM sampling and QM optimization. Such an ap-
proach is shown in the following algorithm:

Algorithm 3: Concurrent sampling and optimization on
the QM PMF surface

(0)

oM and set

(1) Initiate a structure of the QM subsystem, r
n=0;

(2) Setn=n+1;
(a) Carry out MD sampling of the MM ensemble

with QM atoms fixed at rg'l\_,ll),

{rfc[%\,[(f),7= 1,...,N}
<MD sampling based on E(ryy). (18)

As in Algorithm 2, an approximate energy func-

tion E(rQM,rMM) is used to compute the reference
energy E..f(ryp). During the MD simulation, the
QM PMF and PMF gradient are determined by
Egs. (4) and (6).

(b) Complete one step of movement for the QM op-
timization using the QM PMF and its gradient
computed in (a),

J. Chem. Phys. 128, 034105 (2008)

rg'ﬁ,ﬁ:one step in the QM optimization

AAGULY
based on A(rg'](,})) and M (19)
ﬁrQM

(c) Update the reference structure rg’&") based on the
new QM structure rg'g,[
(3) Go to step (2) until converged.

As discussed in Sec. II A, this concurrent sampling and
optimization of Eq. (7) requires the accurate and converged
value of the PMF and its gradient used in step (2b) shown
above. Compared with Algorithm 2, the MM sampling in Eq.
(18) is much more frequent, occurring at each new QM
structure during the course of the QM optimization.

D. Approximate total QM/MM energy E'(rQM,rMM)

For a system investigated using the combined QM/MM
method, the total potential energy of the system can be ex-
pressed schematically as

E(rom-"vm) = Eqm(rom) + Equmm ele(Foms"vm)
+ Eqnmmvaw (Fomsvim)

+ Eqnmm.cov(Foms"vm) + Eniv(rvin) -
(20)

The terms on the right-hand side are the QM internal energy,
the electrostatic interactions between the QM and MM sub-
systems, the van der Waals interactions between the QM and
MM subsystems, covalent interactions between the QM and
MM subsystems, and the interactions of the MM subsystem,
respectively. The first two terms on the right-hand side must
be solved together in a self-consistent manner to capture the
correct polarization interactions of the QM atoms. That is,

Eom(rom + Equm.ete(FonsFan) = (V| Hegr| W), (21)

in which H is the effective QM Hamiltonian including the
Coulombic potential term from the MM atoms.

The derivative of Eq. (20), required for the PMF gradi-
ent calculation in Egs. (2), (6), and (17), is

JE(r om-F Mm) _ 0"(EQM(" QM) + EQM/MM,ele(" oM’ M) + [?(EQM/MM,vdw(r oM’ M) + EQM/MM,cov(r oM ) + Evn(ving)

ﬁrQM,i (?rQM,,»

The first term on the right, based on the Hellman-Feynman
theorem, can be obtained analytically in any standard elec-
tronic structure program, while the second term can be easily
computed from a classical MM force field. The direct appli-
cation of Eq. (22) would require a QM calculation at every
MD step, which is only possible for relatively small QM
subsystems or QM methods at the semiempirical level. 0

é’rQM’i
(22)

To circumvent the high cost of ab initio QM computa-
tions that essentially eliminates the possibility of carrying
out long timescale simulations, we develop here an approxi-

mate energy function model, i.e., E(rQM,rMM). As shown in
previous algorithms, introducing this term can dramatically
reduce the number of QM calculations in the optimization or
the MD sampling of the MM subsystem.
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Clearly, this energy function must be constructed on the
basis of ab initio QM without a significant loss of accuracy,
and it must also be computationally affordable. We summa-

rize here possible forms for the term E (rom-ryvm) used in the
three algorithms, with gradually improved accuracy through
successive inclusion of higher order interaction terms. In
practical applications, the choice of a specific model can be
flexibly adjusted depending on the desired level of accuracy.

1. Simple QM point charges

We would like to employ an approximate expression to
simplify the calculation of the electrostatic interactions be-
tween the QM and MM subsystems, which otherwise must
be evaluated using the QM SCF calculations described in Eq.
(21). Such an expression must also be readily differentiable
to allow the calculation of the gradient of the MM atoms.
One approach is to separate the interactions into two compo-
nents: A QM internal energy and an electrostatic interaction
energy between the QM and MM subsystems. We approxi-
mate the electrostatic term as the Coulombic interactions be-
tween the QM ESP charges and the MM atomic charges, i.e.,

EESP

ommm(TomsTvm) = > > 2, 9irou-ryun) (23)

JEMM ieQM |rQM,i - rMM,j| .

Here, Q,(rom.ryvw) is the ESP fitted charge of QM atom i,
and g; is the point charge of MM atom j from the MM force
field. While the MM atomic charges are constant in common
force fields, the QM electrostatic charges {Q;} are clearly
dependent on both rgy and ryy. The QM internal energy,
E\(rom.rmw), is defined as™'®

E (rom:rvm) = (W|Heg W) — Eg?\/IP/MM(rQMerM)- (24)

This QM internal energy is the energy of the QM system in
the electrostatic potential of the MM atoms, minus the Cou-
lombic interactions between the QM ESP charges and MM
atomic charges. The QM energy (V|H, W) also depends on
both rqy and rygy. The QM/MM total energy of Eq. (20) can
then be expressed as

E 2 qz'Qi(rngrMM)

E(romrvm) = E1(rowsTyviv) +
JEMM i€QM |rQM,i —"MM,j|

+ EqmmMvaw(Foms"vim)

+ EqmmM.cov(Fovs"vm) + Exiv(Faan) -
(25)

Obviously, the term Egi,IP/MM(rQM,rMM) captures the essence
of the electrostatic interactions between the QM and MM
subsystems. The significance of this QM ESP charge expres-
sion is that it provides us great flexibility as the interactions
are now expressed in a classical pairwise MM form. To im-
prove the accuracy of the QM/MM electrostatic interactions,
we can approximate the polarization in Q;(rqy.ryy) With an
explicit analytic dependence on rqy and ryy, and/or add
electrostatic multipoles to each atom or bond.

To develop various approximations to the total energy,
we use the classical perturbation-response model commonly
employed in quantum mechanics. For this purpose, we need

J. Chem. Phys. 128, 034105 (2008)

a reference state for both the QM and MM subsystems upon
which we can make expansions of the QM/MM total energy.
The optimal choice of the reference MM system has been
discussed in our previous work.* Here we recapitulate the
method. The MM electrostatic potential at position r and
at any time 7 in the MD simulation is given by the
expression

M, (r
o) =3 — 40 (26)
j=1 |"‘"MM,/(T)|

where M, is the number of MM atoms, ry ;(7) is the posi-
tion vector of MM atom j at time 7, and g,(7) is the atomic
charge of MM atom j at the 7th snapshot. Again, the last
term is a constant if a nonpolarizable MM force field is used
as in the current work. The electrostatic potential vyp(r)
enters into the QM calculations to determine E;(rqum.7vm)
and fluctuates in the MD ensemble. To describe this fluctua-
tion, we choose a reference potential as the mean field of the
MM environment.* Namely, the averaged electrostatic po-
tential at r is

W ()= l% % g (27)
N Ir=rw(7)]

Here, N is the number of snapshots recorded during an MD
simulation. The electrostatic potential U&M(r) is used in QM
calculations to determine El(rQM,rl?AM) in Eq. (28) shown
below. In the implementation of Algorithms 2 and 3, the
reference mean-field electrostatic potential vOMM(r) is calcu-
lated from the previous iteration, as it is required to generate
the ensemble for the current iteration.

As a zero-order approximation, we assume that the QM
internal energy E l(rQM,rOMM) and Q,-(rQM,rOMM), both ob-
tained from a QM calculation with a reference MM confor-
mation r;),[M, are constant and generally correct in spite of the
fluctuation of the MM environments. That is to say, we ap-
proximate the QM internal energy as

0
E\(rovs"ym) = E1(romsTvm) » (28)
and the electrostatic interaction as

i ‘(r ’ro )
B rurn) = S S LTawha) o)
QM/MM\" Q
JEMM i€QM Irom.i = rviml

The approximate QM/MM total energy is

0
_ s
Flrowm) = Errourty) + S S, L2rawnn)
JEMM i€EQM |"QMJ - rMM,jl

+ EqnmMvaw (Fomsvim)

+ Eqnmm.cov(Foms"vm) + Exv(Paam) -
(30)

Here, we wuse the electrostatic interaction energy
Egls\,lp/MM(rQM,rMM) function twice in two diffegent ways. In
the expression of the internal energy E;(rqyp.ryy)-, it enters

as a constant,
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_ 4;0:(rom )
EQM/MM(rQM»rR/IM) > X QMOMM» (31)

JEMM i€QM |rQMt vwj

independent of ry. In the approximate total energy of Eq.
(30), Egif/MM(rQM,rMM) enters as Eq. (29), the electrostatic
interaction energy between the constant QM charges and the
MM point charges.

Of course, approximating the complex QM/MM electro-
static interactions in a form that employs simple constant
QM ESP charges implies an important assumption, i.e., the
variation of the polarization of the QM subsystem due to
different MM environments is negligible. Although it may
lead to limited precision, the approximate ESP expression
performs quite accurately, as shown by work done in our
group and by others, 20:21:23.24.27.40.42.46.60

2. QM point charges with polarization due to the MM
atoms

The QM internal energy defined in Eq. (24) allows sys-
tematic improvements in the accuracy of the approximate
QM/MM energy beyond Eq. (30), including polarization ef-
fects in the calculation of the terms E;(rqy.ry) and

gi,[P/MM(rQM,rMM) In our MFEP method, the QM atoms do
not move during the MD simulations. Therefore, the interac-
tions responsible for the change in the QM/MM interaction
energy and thus necessitating a QM calculation at each MD
step, originate from the polarization of the QM atoms in the
fluctuating external MM potential of the moving MM atoms.
Instead of performing costly, direct QM calculations, we can
account for the polarization effects from the fluctuating MM
environments with the polarizable QM ESP charge
model,”>®! which is given by

0
Qi(romvmm) = Qom.i

0
> Xiflomm(rom,) = vmm(rom,)]-
JEQM

(32)

Here, Q%M,i=Qi(rQM’UR/[M) is the reference ESP charge of

J. Chem. Phys. 128, 034105 (2008)

QM atom i obtained from a QM calculation with a reference
MM electrostatic potential, U&M(I'QM). The term vy (rom,;)
represents the MM electrostatic potential on QM atom j at
position rqy;, as defined in Eq. (26). Note here that for
clarity the MM electrostatic potentials are used as variables
instead of the explicit MM coordinates ryyy; in E(rgn, Unim)
and EQM,MM(rQM,vMM) which are equivalent to
E(rom.rvy) and EQM/MM(rQM,rMM) respectively. A re-
sponse kernel is used to characterize the change of a specific
QM ESP charge due to the fluctuation of the external MM
electrostatic field. The response kernel is defined ag?>0162

dQ; )
= — . 33
X ( IVamlrom,) /v (33

With the polarization effects included, the QM internal en-
ergy becomes>

E E XijvoMM(rQM,i)

i€QM jEQM

El(rQM’UMM) = El("QM9U(13/1M) -

0
X[omm(rom,p) = Uam(om,)]

1
-3 2 2 [UMM(rQM,i)

2iEQM jeQm
- UR/[M(rQM,i)]Xij[UMM(rQM,j)
- UOMM(rQM,j)]- (34)

At the same order of approximation, the electrostatic inter-
action energy between the QM and MM subsystems is

> Oi(rom:vmm)vmm(rom.)

EQM/MM(" QM> Umm)

i€EQM
0
= 2 |:QQM,[+ E Xilomm(rom,)
i€QM JjEQM

- UR/IM("QM,,‘)]]UMM("QMJ)- (35)

The total QM/MM energy is now

~ ESP
E(rom-rvm) = E1(roms vvm) + EgunmToms Unim) + EQM/MM,vdw(r oM Ivm) + Egvmmt.covTovsvm) + Evn(Pavim)

= El(rQM’UMM

2 0, UMM("QM ) + >

ieEQM

2 [UMM(rQMl) UMM(rQMz)]Xu[UMM(rQMj) UMM rQM/)]
i,jEQM

+ EQM/MM,vdw(r omsT M) + EQM/MM,cov(r M7 M) + Enia (i) - (36)

By taking the derivatives of each individual term, the QM gradient is

OE(r omsTvm)  IE(r QM,URAM) o Iomm(rom.) £ S Jomm(rom.i)
= +Qomi [omm(rom ) — vMM(rQM Dxii
IrQm,i IrQm,i IrQm,i JEQM IrQm,i
N IEgqmmm,vawTomsIvnm) + Eommm.cov(Foms"vm)) . (37)
z?rQM‘i
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The derivative [JE l(rQM,vR,IM)]/ drgm,; is obtained from the
QM analytical gradient and [dvy(rowm,)]/ drqwm; is obtained
directly from Eq. (26). As shown previously, this polarizable
QM ESP charge model yields accurate QM/MM electrostatic
energies even in drastically different MM environments.*
Again, we choose the mean electrostatic MM field from MD
simulations of the MM subsystem to build the reference po-
tential vy (rom)-

3. QM point charges with polarization due to MM
and QM atoms

A further improvement to the QM polarization interac-
tion can be made by including the polarization from QM
atoms. That is, QM ESP charge Q; responds linearly to per-
turbations in both the MM environment and the QM geom-
etry according to the equation

~ 0
IE(romrmm)  IE1(romsUnm) + 0 Ivmm(rom,)
= M»AA
IrQmi IrQmi P drou,

J. Chem. Phys. 128, 034105 (2008)

0 0
Qi(rQM’UMM)zQQM,i"' 2 Xij[UMM("QM,j)
JEQM

0 0 0
- UMM(rQM,j)] + E Kij[rQM,j - rQM,j]-
JjEQM

(38)

Here, a second kernel is introduced to account for the re-
sponse of the QM ESP charges to QM geometric
perturbations,25

IQqm.i
Kij=( QUi )N. (39)

C?rQM!j

Because the QM atoms are frozen during the course of the
MD simulations, this second response kernel does not appear
in the QM/MM energy in Eq. (36). However, because this
kernel correctly describes the change in the QM polarizations
with respect to the geometric change, the QM gradient com-
puted from Eq. (36) is now accurate [or exact for the energy
of Eq. (36)] and contains an additional term from «;;. Com-
pared to Eq. (37), the QM gradient is now

0
+ E Kij[vMM(rQM,j) —UMM("QM,_,')]
jEQM

0
+ X [omm(Fom,)) = Unm(Tom, ) X
JjeQM

Implementation of the polarizable QM ESP charge model
described in Egs. (32) and (38) improves the accuracy of the
QM/MM energy and gradient. However, higher accuracy
comes at an increased computational cost due to the calcula-
tion of the two response kernels. To compute the kernels, the
QM ESP charges must first be analytically differentiable with
respect to geometric perturbations. Then, one must solve
coupled-perturbed Kohn-Sham equations. The first problem
has been overcome by a recently developed analytical ESP
fitting model,”” and the second problem has also been solved
in our laboratory.64 The cost for solving the coupled-
perturbed Kohn-Sham equations is usually of the same order
as a frequency calculation, which is expensive but still af-
fordable for most QM systems of interest. To reduce the
computational expense, one could begin with the simple non-
polarizable charge model to obtain paths of reasonable accu-
racy and later switch to more accurate calculations with po-
larizable QM ESP charges.

E. Optimization of the reaction path on the QM PMF

A reaction path provides a clear picture of a chemical
reaction mechanism as well as quantitative information re-
quired for reaction rate calculations. It is thus important to
implement an efficient method for determining reaction paths

o7rQM,i

Imm(rom,:) N IEgmmm,vawTomsIviv) + Eqmmm.cov(Fomsvim))

&rQMyi
(40)

in association with the application of the QM/MM-MFEP
method. For this work we consider optimization algorithms
based on a chain-of-states, or discrete, representation of the
path. Previously, the nudged elastic band (NEB) (Ref. 65)
and the Ayala-Schlegel second-order minimum energy path
(MEP) (Ref. 66) methods were used.* Our experience indi-
cates that the NEB method is simple to implement but con-
verges slowly and has difficulty locating transition states.
The MEP method can converge to the correct path, but its
application to large molecular systems is troublesome be-
cause it requires an initial guess that is close to the exact
path. As an alternative, a quadratic string method (QSM)
(Ref. 67) was developed in our laboratory which has been
shown to yield better performance than the NEB method.
This method has been employed here as the main algorithm
for path optimization.

For efficiency considerations, the whole path optimiza-
tion process is usually separated into two stages. In the first
stage, independent minimum free-energy minimizations are
carried out for the system in the reactant and product valleys.
In this process, the reference QM conformation used in Eq.
(16) is taken from the optimized structure in the previous
step, i.e., rglf/([”_l)zrg'l\_,[]). The optimization of the QM geom-
etry in a fixed MM ensemble, i.e., Eq. (15), is carried out
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FIG. 1. (Color online) Path optimization scheme and different choices for
the reference QM conformations in the PMF and PMF gradient calculations
of the QM/MM-MFEP method.

with GAUSSIANO3 (Ref. 33) using the keyword “external.”
Accordingly, “loose” convergence criteria as defined in
GAUSSIANO3 are used. From step (3) of Algorithm 2, conver-
gence is achieved when the free-energy variation of a newly
optimized QM conformation, rgl]z,[, with respect to the previ-
ously optimized QM conformation, rgl\_,ll), is less than 1.0
kcal/mol.

In the second stage of the path optimization, QSM is
employed to optimize the entire reaction path with the pre-
optimized structures of the reactant and product states used
as fixed anchoring points. For all other conformations on the
path, the PMF and PMF gradient are computed according to
Egs. (16) and (17). In these calculations, there are two pos-
sible choices for the reference QM conformations. As shown
in Fig. 1, for a conformation state A, on the nth path, its
relative PMF could be computed with neighboring confor-
mation states B,, and C,, acting as reference states, or with its
optimized conformation from the previous path, A,,_;, acting
as the reference state. Both will yield the same result. How-
ever, we choose to use neighboring conformational states as
reference states so we do not have to store the trajectory of
MM conformations from the previous optimization step in
order to perform the required ensemble averaging described
in Eq. (16).

As mentioned in the previous section, for efficiency con-
siderations, one could begin the path optimization process
with the simple QM ESP charge model and later increase the
precision by using a polarizable QM ESP charge model. Fur-
ther savings in computation time can be achieved by realiz-
ing that a high-precision path is not necessary to obtain the
reaction energetics. Instead, if one can obtain accurate struc-
tures for the stationary points on the path, i.e., reactant, prod-
uct, and transition state, an approximate path can be easily
interpolated between adjacent stationary points. This path
can then be minimized with QSM even without the need for
complete convergence. This approximate QSM path is usu-
ally accurate enough to carry out free-energy perturbation
calculations and obtain the activation free energy.

J. Chem. Phys. 128, 034105 (2008)

F. Dynamic contributions from the QM subsystem

In the QM/MM-MFEP method, the dynamic contribu-
tions of the QM subsystem have been left out of the QM
PMF expression as the temperature of the QM subsystem is
essentially 0 K. The dynamic contributions are necessary for
recovering the full free energy of the system. For stationary
points on the reaction path, an effective approach is the har-
monic approximation, which assumes that the PMF surface
of the system is quadratic around the stationary points. This
assumption allows the missing free-energy components to be
included through a vibrational frequency analysis.

Specifically, one first computes [ A (rou) 1/ drowm., rom. s
the second derivatives of the PMF surface with respect to the
QM geometries (the Hessian matrix). This matrix can be
computed numerically or analytically as®

PA(rom) PEqvymm
(9rQM!i &rQMJ (9rQMqi ¢9rQM,j E’rMM
B IEommm PEQmmm
Iromi QM [ Eryy
_( PEqumm IEqmmm
M [ Ergpg \ OTQMj [ Eryyy

(41)

Diagonalization of the mass-weighted Hessian matrix yields
3N eigenvalues {\;} and the associated eigenvectors (modes).
For a first-order saddle point such as the transition state of a
reaction, there is one negative eigenvalue whose correspond-
ing eigenvector points along the direction of the reaction
coordinate. If the molecule is isolated, the eigenvalue of the
six translational and rotational modes should approach zero
in the calculation. For a QM subsystem in solution or em-
bedded in an enzyme environment, the six translational and
rotational degrees of freedom can no longer be separated
from other motions because of the coupled interactions be-
tween the QM and MM subsystems. Therefore, these libra-
tional motions of the QM subsystem must also be included in
the calculations as (low-frequency) vibrations.

The positive eigenvalues of the mass-weighted Hessian
matrix can be converted into harmonic vibrational frequen-
cies {y;} through the equation

v = W\ /47, (42)

By treating each harmonic mode as a quantum harmonic
oscillator, one can compute the entropic contributions by68

hu/kT
exp(hv/kT) — 1

Suib=k2

i

In(1 — exp(— Ay/kT)) |.

(43)

The harmonic motions also contribute to the average energy
or enthalpy of the system as
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hUi/k
exp(hu/kT) -1 |

1Ay,
Egp=kX | == +
~ 2%

(44)

The first term on the right-hand side is the zero-point energy
of each mode, while the second term comes from the energy
distribution of the harmonic motion.

The harmonic contributions described in Egs. (43) and
(44) are important to the QM/MM-MFEP simulation results.
Under the harmonic assumption, the addition of these two
terms to the QM/MM-MFEP free energies yields complete
free energies for the stationary points of the reaction process.
However, one cannot simply include the two terms and make
direct comparisons to results from other theoretical methods
such as umbrella sampling. For the conventional umbrella
sampling approach, which treats all dynamics classically, the
zero-point energy is not accounted for in the simulations,
neither are the full 3N degrees of freedom for the reactant
and product. In umbrella sampling, the contributions of the
restrained degrees of freedom are not included for all the
conformations on the reaction path. While this is correct for
the transition state, it misses one degree of freedom for the
reactant, product, or any intermediate states. To enable a
comparison between the QM/MM-MFEP and umbrella sam-
pling results, the zero-point energy in Eq. (44) cannot be
added to the QM/MM-MFEP result. The contribution of one
or a few restrained degrees of freedom in umbrella sampling
for the reactant and product states, nonetheless, cannot be
analytically evaluated due to the difficulty of identifying the
corresponding harmonic mode(s) in the QM/MM-MFEP re-
sults. To compute this term, simulation methods like the
restrain-release approach69’70 could be applied to estimate the
entropic cost for restraining specific degrees of freedom. The
contribution of this single degree of freedom is expected to
yield a small difference between the free energies computed
with QM/MM-MFEP and umbrella sampling. Thus, it was
not explored further in the current work.

One should also note that the harmonic approximation
can only be applied to a single stationary state of the system.
Doing so provides the entropic contribution from the vibra-
tional motions within the specific conformational state. If the
system possesses intramolecular rotations or multiple stable
conformational states, an additional term called the configu-
rational entropy should be included,” as will be shown for
the Sy2 reaction.

J. Chem. Phys. 128, 034105 (2008)

FIG. 2. Second proton transfer step of
the reaction catalyzed by the enzyme
4-OT.

lll. SIMULATION DETAILS

To illustrate the effectiveness of this iterative QM/MM-
MFEP method, we report here the simulation of two reaction
processes: the Sy2 reaction of CH;Cl+CI™ as an example of
an aqueous solution process, and the second proton transfer
step catalyzed by the enzyme 40T as an example of an en-
zymatic reaction. For the former reaction, we computed the
activation free energy by two different methods to make the
comparison: one involves direct QM/MM dynamics with
umbrella sampling, and the other is the QM/MM-MFEP
method developed in the current work. For the latter reac-
tion, the results obtained from the QM/MM-MFEP simula-
tion are compared with previous work.

All MD simulations were carried out with the program
SIGMA,26’49’72’73 while all QM calculations were performed
with GAUSSIAN03.>® The ESP fitting was carried out with our
recently developed method,” which makes the analytical
calculation of the two response kernels feasible. In all the
simulations where dual cutoffs were used, the charges of the
MM atoms within the short-range cutoff were included in the
QM calculations of the energies, gradients, and response ker-
nels; hence, their polarization effects on the QM atoms were
explicitly treated. Polarization effects from other MM atoms
within the long-range cutoff were not considered. Their elec-
trostatic interactions with the QM atoms were simply consid-
ered as Coulombic interactions between the MM point
charges and the QM ESP charges.

For the S\2 process, the solute, i.e., the complex of
CH;ClI and CI7, was solvated in a cubic box with dimensions
48X 48x48 A3 that contained 3600 tip3p water
molecules.”* The CHARMM27 force field was used to describe
the van der Waals interactions between the solute and the
solvent molecules.”” For obvious reasons, one modification
was made such that the atom type CLA was used for both
chlorine and the chloride anion. The multiple-time-step
211g0rithm76’77 was used for dynamic integration with a basic
integration step size of 1 fs. A dual cutoff of 9 and 15 A was
used for separating the interactions: the integration step size
was 1 fs for short-range interactions, and 3 fs for medium-
range interactions. The nonbond pair lists were updated ev-
ery 12 integration steps. The system was simulated under
NVT conditions, with the temperature restrained at 300 K
using a Berendsen thermostat.”® In the QM/MM-MFEP
simulations, each period of MD sampling lasted for 90 ps in
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FIG. 3. Reaction free energies for ClI+CH;CI in solution simulated by
umbrella sampling and WHAM analysis. The QM methods used were:
MP2/6-31+G" (dot-dash), MP2/6-311+G" (dash), B3LYP/6-31+G" (solid),
and B3LYP/6-311+G" (dot).

the initial cycles, and 120 ps in the final cycles for greater
accuracy.

One purpose of the current study is to show that our
QM/MM-MFEP method can generate reaction energetics of
comparable accuracy to the direct classical sampling ap-
proach. Instead of comparing to an indirect experimental es-
timate of the reaction free-energy barrier, umbrella sampling
was carried out to compute the barrier with direct QM/MM
dynamics sampling for the complex of CH;Cl and CI~. For
such a small system, on-the-fly QM calculations at each MD
step are affordable. The difference between the two C-Cl
bond lengths, Ad:dC_Cll—dC_Clz, was used as the reaction
order parameter. The distributions of the bond length differ-
ences were processed by the weighted histogram analysis
method (WHAM).79’80 Two different QM methods, specifi-
cally B3LYP (Refs. 81 and 82) and MP2.2® were used to
examine how the results vary with respect to the level of
theory. Two common basis sets, 6-31+G" and 6-311+G",
were used to examine the basis set dependence. A total of 25
sampling windows was used for the umbrella sampling. The
centers of the harmonic potential were at Ad=-2.5, —-2.2,
-1.9,-1.6,-14, -1.2, -1.0, 0.8, -0.6, —=0.45, 0.3, =0.15,
0.0, 0.15, 0.3, 0.45, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.9, 2.2, and
2.5 A. The force constants were 20, 20, 20, 40, 60, 80, 120,
140, 160, 180, 180, 200, 240, 200, 180, 180, 160, 140, 120,
80, 60, 40, 20, 20, and 20 kcal/(mol* A2). The results from
umbrella sampling with B3LYP/6-31+G" were used as a ref-
erence for the QM/MM-MFEP simulations, in which the
same QM method was used.

In the QM/MM-MFEP simulations of the Sy2 process,
two conformations were selected from the trajectories of the
umbrella sampling simulations as the initial conformations of
the reactant state and product state, respectively. Each con-
formation was optimized with the iterative QM/MM-MFEP
method. In each cycle, the solute was optimized in the fixed
ensemble of MM conformations until the gradient and en-
ergy converged to the thresholds set in GAUSIANO3 with root-
mean-square gradients less than 0.36 kcal/mol/A. The en-

J. Chem. Phys. 128, 034105 (2008)
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FIG. 4. Reaction free energies for CI"+CH;Cl in solution simulated with
QM/MM-MFEP and QSM. (a) Direct QSM optimization with the structures
of the reactant and product state frozen; (b) two separate QSM simulations
connecting the reactant state with the transition state, and the transition state
with the product state.

tire optimization process was considered converged when the
change in free energy between two sequential cycles was
below 1.0 kcal/mol. Usually this process required less than
10 cycles of QM/MM-MFEP minimizations.

After the conformations of the two end points were de-
termined, conformations of 11 “intermediate” states were in-
terpolated with GAUSSIANO3. These 11 conformations, plus
the two end points, were used as the initial guess of the
reaction path that was then optimized with QSM. For the
reason discussed in Sec. II E, the QSM calculations were
only carried out for three cycles. At that stage, the conforma-
tion with the highest free energy on the path was selected for
transition state optimization on the free-energy surface. The
QST3 algorithm implemented in GAUSSIANO3 was used to
accomplish this task.®

With the structure of the transition state determined, two
separate QSM calculations were carried out to determine the
free-energy changes along the reaction path, one connecting
the reactant state to the transition state, and the other con-
necting the transition state to the product state. Again, each
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TABLE I. Vibrational frequencies (in cm™') of the transition state (TS) and
reactant state (RS) of the complex CI~+CH;Cl in solution.

Index TS RS
1 -298.64 41.72
2 66.37 49.44
3 95.87 57.76
4 106.46 66.09
5 113.75 77.40
6 125.46 109.97
7 129.38 168.40
8 214.60 175.90
9 217.02 182.38
10 234.07 708.32
11 976.67 1039.97
12 982.33 1052.31
13 1125.74 1408.77
14 1425.90 1497.86
15 1429.94 1514.00
16 3220.21 3146.16
17 3411.26 3253.99
18 3418.54 3263.34

simulation employed 11 middle conformations to build and
optimize the path. Energies from the two half reactions were
then pieced together to generate the full path.

The frequency analysis described in Sec. II F was carried
out for the reactant and transition state of the Sy2 reaction.
The PMF Hessian matrix was computed by numerically dif-
ferentiating the PMF gradient [dA(rqym) 1/ dr gy ;- The entropic
contributions from vibrational motions were then computed
and included into the free energy of the reaction process. The
enthalpic contributions, without the zero-point energies in
Eq. (44), were also computed for comparison with umbrella
sampling.

The second proton transfer step in the reaction catalyzed

c
H1
cH Ci2
(a)
ci c ci2

o o

(b)

FIG. 5. (Color) Solution-phase stationary point structures of the CI~
+CH;Cl complex optimized by the QM/MM-MFEP method: (a) reactant
(and product) state; (b) transition state.

J. Chem. Phys. 128, 034105 (2008)

TABLE II. Geometric measurements of the reactant state (RS), product state
(PS), and transition state (TS) for the reaction CI~+CH;Cl. Bond lengths are
in A, and bond angles are in degrees.

Bond or angle RS PS TS
C-Cll 1.81 3.68 2.30
C-C12 3.66 1.81 2.32
Cl2-C-Cl1 98.4 102.1 179.1

by 40T was also simulated by the QM/MM-MFEP method
(Fig. 2). Starting conformations for the reactant and product
states were taken from previous work. 274942 The setup
used in the current QM/MM-MFEP simulations was similar
to the previous simulations.** The system contained 5973
protein atoms described by the CHARMM?27 force field and
2408 tip3p water molecules. Harmonic restraints with a force
constant of 40 kcal/(mol* A?) were applied to all heavy at-
oms that were further than 20 A from the C3 atom of the
substrate. A dual cutoff of 8 and 40 A was used for all non-
bonded interactions. Consistent with previous work, the QM
system was described by the B3LYP/6-31G™ level of theory
and the QM/MM boundary was described using the pseudo-
bond approach.3 ? The integration step size was 1 fs for short-
range forces and 4 fs for medium-range forces. The nonbond
pair lists were updated every 16 MD steps. The temperature
of the system was held at 300 K with a Berendsen
thermostat.

IV. RESULTS
A. S\2 reaction

The results from umbrella sampling with direct QM/MM
dynamics sampling are shown in Fig. 3. Both the B3LYP and
the MP2 calculations showed little dependence on the basis
sets. The computed activation free energy was 20.7 kcal/mol
with B3LYP/6-31+G=*, and 28.7 kcal/mol with MP2/6-31
+Gs. The best estimate of the activation free energy for this
process is 26.6 keal/mol,** but no direct experimental mea-
surements have been reported. One must note that the ordi-
nary umbrella sampling approach does not consider the con-
tributions from the zero-point energy. Nonetheless, entropic
contributions are implicitly included in the MD simulations.
The result of 20.7 kcal/mol from umbrella sampling using
the B3LYP/6-31+G™ level of theory was used to compare
against the iterative QM/MM-MFEP simulations.

The free energies from the QSM path optimization, both
before and after the transition state optimization, are shown
in Fig. 4. The converged free-energy difference between the
reactant and the transition state is 18.7 kcal/mol without in-
cluding the dynamic contributions from the QM subsystems.
Inclusion of contributions from the harmonic vibrational mo-
tions computed via frequency calculations, (Table I) gives an
activation free energy of 19.7 kcal/mol as the estimate from
the QM/MM-MFEP method.

Umbrella sampling only simulates the classical dynam-
ics of the QM/MM system. To make an effective compari-
son, we include contributions of the harmonic vibrational
motions computed with frequency calculations, but without
the contributions of the zero-point energy in Eq. (44). This

Downloaded 29 Jul 2013 to 147.8.230.100. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



034105-14

Hu et al.

(c)

FIG. 6. (Color) Stationary point structures from the active site of 40T
optimized with the QM/MM-MFEP method: (a) reactant state; (b) transition
state; and (c) product state.

yields an activation free energy of 20.4 kcal/mol, in good
agreement with the results from umbrella sampling (20.7
kcal/mol).

However, we need to consider two additional small con-
tributions of opposite energetic effects: One originates from
the rotational multiplicity of the reactant (and product) struc-
ture in the QM/MM-MFEP method. The CI™ ion has in fact
equal possibilities of forming a weakly H-bonded complex
with each of the three C-H bonds [Fig. 5(a)]. In umbrella
sampling, the three states can be adequately sampled in a

J. Chem. Phys. 128, 034105 (2008)

AG (kcal/mol)

Index

FIG. 7. Reaction free energies of the second proton transfer step of the
reaction catalyzed by 40T using QM/MM-MFEP and QSM.

simulation of ~10 ps. To account for this rotational multi-
plicity in QM/MM-MFEP, an additional entropic contribu-
tion of kT In(1/3)=-0.65 kcal/mol should be added to the
free energy of the reactant state of 20.4 kcal/mol. This con-
tribution yields an activation free energy of 21.1 kcal/mol for
the QM/MM-MFEP method. The second contribution comes
from the fact that the reactant state from umbrella sampling
has one less configurational degree of freedom (the reaction
coordinate). Often omitted in the literature, the contribution
of the single, restrained degree of freedom in umbrella sam-
pling for the reactant state cannot be precisely evaluated
without additional sampling,(’g’70 but it will lower the free
energy for the reactant state and raise the barrier of reaction
for the umbrella sampling calculations.

The conformations of the reactant and transition state of
the reaction of CH;Cl+CI, optimized with the QM/MM-
MFEP method, are illustrated in Fig. 5 and the characteristic
bonds and angles are listed in Table II. The slight difference
between the structures of the reactant and product is due to
fluctuations of the MM conformations. For the same reason,
the transition state is slightly asymmetrical. One must note
that, unless certain biased sampling methods were carried out
on the MM subsystems, it would be extremely slow and
computationally expensive to optimize to the putative sym-
metrical transition state. The slight deviation from the sym-
metrical structure, however, does not significantly affect the
calculation of the free energies. As expected, the frequencies
of the reactant state and transition state on the PMF surface
reported in Table I clearly demonstrate a single negative fre-
quency for the transition state.

B. 40T reaction

The second proton transfer step of the reaction catalyzed
by 40T was also simulated with the new iterative QM/MM-
MFEP method. The optimized structures of the reactant,
product, and transition state are shown in Fig. 6. The free-
energy change along the reaction path simulated using QSM
is illustrated in Fig. 7. The QSM barrier is 14.7 kcal/mol, in
excellent agreement with the previous simulation result of
14.47 keal/mol.*

Downloaded 29 Jul 2013 to 147.8.230.100. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



034105-15  QM/MM minimum free-energy path

AA (keal/mol)
'y
T
1

&
I
]

0 20 40 60 80 100 120
(a) Number of steps

2 ——————T—TT—T—T]——

—_
L
I
|

—_
=
|

Gradient norm (kcal/mol/A)

th
I
|

M 1 L 1 f | " 1 . 1
% 10 20 30 40 50
(b) Number of QM steps

J. Chem. Phys. 128, 034105 (2008)

AA (kcal/mol)
=)
[®
N |

| ;

- \..-'-.-\ -
D4 \w-« -
05 L 1 L 1 . 1 L 1 . \h-.
-0 10 20 30 40 50
(d) Number of QM steps

FIG. 8. (Color) Convergence of the QM/MM-MFEP and QSM optimizations for the 40T and S\2 reactions. (a) Convergence of the relative free energies in
the optimization of the reactant state of 40T. Each vertical line indicates the start of a new cycle. The X-axis is the accumulated number of QM steps made
by the QM optimization algorithm. Vertical lines indicate the onset of a new cycle of sequential MM sampling and QM optimization. The number of vertical
lines is the number of times MM ensembles are generated. (b) Convergence of the norm of the gradient for one conformational state on the path of the 40T
reaction. (c) Evolution of the PMF profiles during successive cycles of QSM optimization of the 40T reaction: cycle 1 (blue), cycle 2 (green), cycle 3 (red),
cycle 4 (black). (d) Convergence of the relative free energies in the optimization of the reactant state for the Sy2 reaction. Each vertical line indicates the start

of a new cycle.

V. DISCUSSION

As expected, the current iterative QM/MM-MFEP
method combined with the QSM path optimization algorithm
significantly improves the convergence of reaction paths. To
illustrate how the optimization converges in practical appli-
cations, we plot here the evolution of various characteristic
quantities during the QM/MM-MFEP+QSM optimization of
the proton transfer reaction catalyzed by the enzyme 40T.

Figure 8(a) shows the variation of the (relative) free en-
ergy of the molecular system during the optimization of the
reactant state. For each given ensemble of MM conforma-
tions, 20 QM steps of the QM optimization were carried out.
A QM step is defined as a move of the QM subsystem made
by the specific optimization algorithm, with the computa-
tional cost including one free energy/energy and gradient
evaluation and the cost of the linear search. It is clear that
after six cycles of sequential sampling and optimization us-
ing QM/MM-MFEP, the free energy of the system converges
to a plateau. The spikes in the figure are the result of the
optimization algorithm implemented in GAUSSIANO3, and are
frequently observed in various molecular systems, especially

for the first few steps of QM optimizations in the static MM
ensembles. Figure 8(b) shows the variation of the norm of
the gradient for an arbitrarily chosen conformation on the
reaction path during the QM/MM-MFEP optimization pro-
cess. The norm of the gradient converges at a similar rate to
the free energy. In Fig. 8(c), we also show the evolution of
the PMF profile for the whole reaction path in four cycles of
QSM optimization. The conformations of the initial path
were generated from simple linear interpolations between the
optimized reactant and product state and were followed by
simple energy minimizations. As a result, the free energies of
those conformations fluctuate significantly throughout the re-
action process. However, with QSM the PMF profile con-
verges quickly.

For solution reactions, the convergence of the reaction
path is even better than that for the enzymatic reaction. Fig-
ure 8(d) shows the changes of the relative free energy during
the QM/MM-MFEP optimization of the reactant for the Sy2
reaction. In each MM ensemble it usually takes less than ten
optimization steps to attain full convergence in the QM op-
timization. One should note that, compared to Fig. 8(a), the
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magnitude of the change in the relative free energy is smaller
in the SN2 reaction; however, the structural changes are non-
negligible. This result can also be partly understood from the
flat PMF curve of the reactant and product valleys shown in
Fig. 3. In general, the QM optimization in step (2b) of Algo-
rithm 2 converges quickly in a few steps, even with the tight
convergence criteria in GAUSSIANO3. This fast convergence
can be understood because the short relaxation time and
long-range isotropic distribution of the solvent molecules
lead to the rapid convergence of the ensemble sampling of
the MM environments. In contrast, because of the rugged
energy landscape, the protein dynamics spans a broader
range of timescales which requires longer MD simulations
for enzymatic reactions.

Figures 8(a), 8(b), and 8(d) demonstrate the two advan-
tages of our sequential sampling and optimization approach:
First, the MM sampling only needed to be carried out at the
end of each QM optimization within the finite ensemble. In
contrast, the sampling is required at each step of a QM
movement in the concurrent sampling and optimization
method. Second, the total number of QM steps is greatly
reduced because each QM optimization is carried out with
the exact QM PMF and its gradients within the finite en-
semble, allowing the classical optimization techniques to be
most effective. On the other hand, in the concurrent MM
sampling and QM optimization approach, the QM PMF and
its gradients fluctuate during the QM steps, leading to slow
convergence with classical optimization techniques.

As a prototype Sy2 reaction, the self-exchange of
CH;CI+CI™ has long been studied using various methods
developed in different groups3’7’8’85788 including the QM-FEP
approach from the Jorgensen group, the EVB method from
Warshel’s group, and the MOVB method from Gao’s group.
The energetics of the reaction process, especially the solute-
solvent interactions, have been analyzed in great detail and
have been compared with the corresponding processes in en-
zymes in an attempt to answer questions regarding the ori-
gins of enzymatic proﬁciency.3’86 However, little is known
about the structures of the reactant, product, and transition
states. In fact, there have been few attempts to determine
those structures, possibly because of the aforementioned dif-
ficulty in the theoretical treatment of the rapid fluctuations of
the solvent molecules in solution. However, detailed knowl-
edge concerning the specific structures of the stationary
points and the reaction path would provide great benefit in
the analysis of solvent-solute dynamics, such as nuclear tun-
neling effects in reaction processes.

With the inclusion of explicit solvent contributions, we
determined here the structures of the stationary points. Sur-
prisingly, the reactant adopted a bent, low-symmetry confor-
mation, with the CI~ ion forming a weak hydrogen bond with
one C—H bond. On the contrary, if one carried out an opti-
mization in the gas phase or with a continuum solvent model,
the structure of the reactant state would eventually converge
to a highly symmetric C;, conformation with the three heavy
atoms CI, C, and Cl collinear.®® Two observations further
support this result that the low-symmetry structure has lower
free energy. First is that in the umbrella sampling simulations
we have carried out for determining the reaction barrier,

J. Chem. Phys. 128, 034105 (2008)
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FIG. 9. Correlation between the free-energy gradient computed using ana-
lytical and numerical approaches. The X-axis contains the numerical free-
energy gradient computed for the C1™+CH;CI complex in solution, and the
Y-axis contains the free-energy gradient computed with the analytical equa-
tions described in Sec. II, Theory.

C,,-like conformations were barely observed. Second is that
a set of short umbrella simulations has been performed
which determined that the free energy of our low-symmetry
structure is a few (~4) kcal/mol lower than the putative Cs,
structure. We believe that the stabilization of the low-
symmetry structure comes from the explicit solvent mol-
ecules in our simulations that provided a strong asymmetri-
cal anisotropic stabilization for the reactant state. Such a
structural difference for the reactant state strongly suggests
the importance of including explicit solvent molecules in the
simulation of solution reactions. It also highlights the risks of
using conformations optimized in the gas phase or with a
continuum solvent model for the study of solution or enzyme
reactions.

Compared with the original QM/MM-MFEP method, the
new method we have developed here contains two critical
improvements: the use of a finite and fixed MM ensemble
speeds up the overall convergence of the path optimization
process; and the use of the polarizable ESP charge model
improves the accuracy of the free-energy perturbation calcu-
lations and the PMF gradient. To illustrate the latter point,
we compared the free-energy gradient computed using two
different approaches (Fig. 9): analytical calculation as previ-
ously derived in Eq. (17), and numerical differentiation. As
demonstrated for the ClI™+CH;Cl system, the results from
the two approaches agree quite well, and thus ensure the
success of the geometry optimization in the QM/MM-MFEP
method.

The focus of the current study is to enhance the applica-
bility of the QM/MM-MFEP method in the simulation of
both enzyme and solution reactions. Of the many differences
between reactions in solution and in enzymes, the predomi-
nant one from the perspective of simulation originates from
the different dynamic properties of the reaction environment.
In solution, the solvent molecules exchange positions rapidly
around the reacting moieties, while the active site in an en-
zyme is more or less protected. Even though the active site is
often regarded as quasistatic in the course of a reaction pro-
cess, its conformation is also affected by the modulation of
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large-scale conformational changes of the enzyme molecule.
Therefore, to model the reactions in solution or in enzymes,
simulation methods should be able to yield converged con-
tributions from the constantly fluctuating solvent molecules
for reactions in solution, while at the same time allowing
broad sampling of the enzyme conformational space. Both
requirements are fully achieved in the QM/MM-MFEP
method through the MD simulations and potential of mean
force calculations.

One motivation for the development of the ab initio QM/
MM-MFEP methods was to simulate not only enzymatic but
also solution reactions. This stems from the repeatedly ob-
served fact that the catalytic proficiency of an enzyme is
often determined by the degree of difficulty of the corre-
sponding uncatalyzed reaction in solution.** In addition to
this observation, it has also been suggested that the catalytic
power of an enzyme is mostly attributed to the preorganized
electrostatic interactions in the structure of enzyme
molecules,%’m’92 as well as conformational dynamics.18
Therefore, simulating how a reaction proceeds in solution
can provide vital insight into the ultimate question of how an
enzyme accomplishes a chemical process in a fraction of a
second that would otherwise take millions of years without a
catalyst. Despite the importance of the reference solution re-
actions, the number of solution reactions that have been the
subject of theoretical scrutiny based on ab initio QM is far
less than the number of enzymatic reactions. One reason for
such an imbalance might be the fact that the methodology
development for simulating solution reactions is not compa-
rable with that for simulating enzyme reactions. Approaches
that simplify the solvent contributions by a continuum sol-
vent model can provide only very limited, and sometimes
even incorrect, information concerning the reaction process.
To correctly model the solvent contributions, one must in-
clude the solvent molecules explicitly in simulations.

V1. CONCLUSIONS

In this report, we have presented a greatly enhanced ab
initio QM/MM-MFEP method for simulating accurate paths
and energetics for reactions both in solution and in enzymes.
Two developments have been made to improve the perfor-
mance of the QM/MM-MFEP method, namely an iterative
sequential MM sampling and QM optimization scheme in a
finite and fixed-size ensemble of MM conformations to im-
prove the optimization efficiency, and a fully polarizable QM
ESP charge model to improve the accuracy of the QM energy
and gradient calculations. The application of this method in-
dicates that it provides accurate results in agreement with
experimental data and other established simulation ap-
proaches. As costly ab initio QM methods become increas-
ingly affordable for providing accurate information regarding
the explicit structure and energetics of a reaction process,
this method will play an important role in the simulation of
reaction processes in solution and in enzymes.

In addition, our sequential sampling and optimization
approach for MFEP optimization, constructed here using a
finite and fixed ensemble in the calculation of free-energy
difference, gradients, and optimization, may be directly ap-

J. Chem. Phys. 128, 034105 (2008)

plied to any MFEP simulations based on other energy sur-
faces. As we have shown here, this will eliminate the prob-
lems in the conventional direct MFEP simulations where the
convergence of the free-energy gradient is slow and intrinsic
fluctuation of the sampling slows down the optimization.

ACKNOWLEDGMENTS

We gratefully acknowledge the National Institutes of
Health for financial support.

"A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and
Solutions (Wiley & Sons, New York, 1991).

2 A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976).

31K Hwang, G. King, S. Creighton, and A. Warshel, J. Am. Chem. Soc.
110, 5297 (1988).

‘M. Strajbl, G. Hong, and A. Warshel, J. Phys. Chem. B 106, 13333
(2002).

5 A. Warshel, Annu. Rev. Biophys. Biomol. Struct. 32, 425 (2003).

oA, Warshel, P. K. Sharma, M. Kato, Y. Xiang, H. Liu, and M. H. M.
Olsson, Chem. Rev. 106, 3210 (2006).

1. Chandrasekhar, S. F. Smith, and W. L. Jorgensen, J. Am. Chem. Soc.
107, 154 (1985).

SW. L. Jorgensen, Acc. Chem. Res. 22, 184 (1989).

°0. Acevedo and W. L. Jorgensen, J. Am. Chem. Soc. 128, 6141 (2006).

M. 7. Field, P. A. Bash, and M. Karplus, J. Comput. Chem. 11, 700
(1990).

p A, Bash, M. J. Field, R. C. Davenport, G. A. Petsko, D. Ringe, and M.
Karplus, Biochemistry 30, 5826 (1991).

'2Q. Cui and M. Karplus, J. Chem. Phys. 112, 1133 (2000).

I3Q. Cui and M. Karplus, J. Phys. Chem. B 104, 3721 (2000).

Q. Cui and M. Karplus, J. Am. Chem. Soc. 123, 2284 (2001).

M. Garcia-Viloca, J. Gao, M. Karplus, and D. G. Truhlar, Science 303,
186 (2004).

'°J. Gao and X. Xia, Science 258, 631 (1992).

173, Gao and D. G. Truhlar, Annu. Rev. Phys. Chem. 53, 467 (2002).

133, L. Gao, Curr. Opin. Struct. Biol. 13, 184 (2003).

5. Gao, S. Ma, D. T. Major, K. Nam, J. Pu, and D. G. Truhlar, Chem. Rev.
106, 3188 (2006).

H. Y. Liu, Y. K. Zhang, and W. T. Yang, J. Am. Chem. Soc. 122, 6560
(2000).

21Y. Zhang, H. Liu, and W. Yang, J. Chem. Phys. 112, 3483 (2000).

2y, Liu, M. Elstner, E. Kaxiras, T. Frauenheim, J. Hermans, and W. Yang,
Proteins Struct. Funct. Genet. 44, 484 (2001).

#G. A. Cisneros, H. Y. Liu, Y. K. Zhang, and W. T. Yang, J. Am. Chem.
Soc. 125, 10384 (2003).

**H. Liu, Z. Lu, G. A. Cisneros, and W. Yang, J. Chem. Phys. 121, 697
(2004).

7. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004).

%°H. Hu and W. Yang, J. Chem. Phys. 123, 041102 (2005).

?'G. A. Cisneros, M. Wang, P. Silinski, M. C. Fitzgerald, and W. T. Yang,
J. Phys. Chem. A 110, 700 (2006).

P, Hu and Y. K. Zhang, J. Am. Chem. Soc. 128, 1272 (2006).

YL H. Wang, X. Y. Yu, P. Hu, S. Broyde, and Y. K. Zhang, J. Am. Chem.
Soc. 129, 4731 (2007).

*G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).

3'B. Kuhn and P. A. Kollman, J. Am. Chem. Soc. 122, 2586 (2000).

32U. C. Singh and P. A. Kollmann, J. Comput. Chem. 7, 718 (1986).

BM. . Frisch, G. W. Trucks, H. B. Schlegel et al.., GAUSSIAN 03, Gaussian,
Inc., Wallingford, CT, 2004.

3 A. Shurki and A. Warshel, Adv. Protein Chem. 66, 249 (2003).

3T, Wesolowski and A. Warshel, J. Phys. Chem. 98, 5183 (1994).

35T, Wesolowski, R. P. Muller, and A. Warshel, J. Phys. Chem. 100, 15444
(1996).

37R. P. Muller and A. Warshel, J. Phys. Chem. 99, 17516 (1995).

87, Bentzien, R. P. Muller, J. Floridn, and A. Warshel, J. Phys. Chem. B
102, 2293 (1998).

Y. Zhang, T.-S. Lee, and W. Yang, J. Chem. Phys. 110, 46 (1999).

“G. A. Cisneros, H. Y. Liu, Z. Y. Lu, and W. T. Yang, J. Chem. Phys. 122,
114502 (2005).

*'M. Wang, Z. Lu, and W. Yang, J. Chem. Phys. 121, 101 (2004).

“G. A Cisneros, M. Wang, P. Silinski, M. C. Fitzgerald, and W. Yang,

Downloaded 29 Jul 2013 to 147.8.230.100. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



034105-18 Hu et al.

Biochemistry 43, 6885 (2004).

“*M. Wang, Z. Lu, and W. Yang, J. Chem. Phys. 124, 124516 (2006).

*S. L. Wang, P. Hu, and Y. K. Zhang, . Phys. Chem. B 111, 3758 (2007).

B, Corminboeuf, P. Hu, M. E. Tuckerman, and Y. K. Zhang, J. Am.
Chem. Soc. 128, 4530 (2006).

407, Kistner, H. M. Senn, S. Thiel, N. Otte, and W. Thiel, J. Chem. Theory
Comput. 2, 452 (2000).

ML Klahn, S. Braun-Sand, E. Rosta, and A. Warshel, J. Phys. Chem. B
109, 15645 (2005).

“8G. A. Cisneros and W. T. Yang (unpublished).

“H. Hu, Z. Y. Lu, and W. T. Yang, J. Chem. Theory Comput. 3, 390
(2007).

OM. Nagaoka, N. Okuyama-Yoshida, and T. Yamabe, J. Phys. Chem. A
102, 8202 (1998).

SIN. Okuyama-Yoshida, M. Nagaoka, and T. Yamabe, Int. J. Quantum
Chem. 70, 95 (1998).

2N, Okuyama-Yoshida, K. Kataoka, M. Nagaoka, and T. Yamabe, J.
Chem. Phys. 113, 3519 (2000).

53H. Hirao, Y. Nagae, and M. Nagaoka, Chem. Phys. Lett. 348, 350 (2001).

*P, Fleurat-Lessard and T. Ziegler, J. Chem. Phys. 123, 084101 (2005).

3.1y, Yang, I. Hristov, P. Fleurat-Lessard, and T. Ziegler, J. Phys. Chem.
A 109, 197 (2005).

%G, Li and Q. Cui, J. Mol. Graph. Model. 24, 82 (2005).

STL. Maragliano, A. Fischer, E. Vanden-Eijnden, and G. Ciccotti, J. Chem.
Phys. 125, 024106 (2006).

M. Higashi, S. Hayashi, and S. Kato, J. Chem. Phys. 126, 144503
(2007).

¥R. E. Miller, Optimization: Foundations and Applications (Wiley &
Sons, New York, 2000).

T H. Rod and U. Ryde, J. Chem. Theory Comput. 1, 1240 (2005).

' A. Morita and S. Kato, J. Am. Chem. Soc. 119, 4021 (1997).

2R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Mol-
ecules (Oxford University Press, Oxford, 1994).

SH. Hu, Z. Lu, and W. Yang, J. Chem. Theory Comput. 3, 1004 (2007).

7. Lu, H. Hu, and W. Yang (to be published).

Sy, Jénsson, G. Mills, and K. W. Jacobsen, Nudged Elastic Band Method
for Finding Minimum Energy Paths of Transitions, Classical and Quan-
tum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G.
Ciccotti, D. F. Coker (World Scientific, Singapore, 1998).

P Y. Ayala and H. B. Schlegel, J. Chem. Phys. 107, 375 (1997).

673, K. Burger and W. Yang, J. Chem. Phys. 124, 054109 (2006).

ST L. Hill, An Introduction to Statistical Thermodynamics (Dover, New
York, 1987).

J. Chem. Phys. 128, 034105 (2008)

3. Hermans and L. Wang, J. Am. Chem. Soc. 119, 2707 (1997).

M. Strajbl, Y. Y. Sham, J. Villa, Z. T. Chu, and A. Warshel, J. Phys.
Chem. B 104, 4578 (2000).

"1C. L. Brooks III, M. Karplus, and B. M. Pettitt, Proteins: A Theoretical
Perspective of Dynamics, Structure, and Thermodynamics (Wiley &
Sons, New York, 1988).

y. Hu, M. Elstner, and J. Hermans, Proteins Struct. Funct. Genet. 50,
451 (2003).

BG. Mann, R. H. Yun, L. Nyland, J. Prins, J. Board, and J. Hermans, in
Computational ~ Methods  for  Macromolecules:  Challenges —and
Applications—Proceedings of the 3rd International Workshop on Algo-
rithms for Macromolecular Modelling, edited by T. Schlick and H. H.
Gan (Springer, Berlin, 2002), p. 129.

W, L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.
Klein, J. Chem. Phys. 79, 926 (1983).

BA.D. MacKerell, B. Brooks, C. L. Brooks, L. Nilsson, B. Roux, Y. Won,
and M. Karplus, in The Encyclopedia of Computational Chemistry, edited
by P. v. R. Schleyer et al.. (Wiley & Sons, Chichester, 1998), Vol. 1, p.
271.

M. E. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys. 97,
1990 (1992).

T, Schlick, R. D. Skeel, A. T. Briinger, L. V. Kalé, J. A. Board, J. Her-
mans, and K. Schulten, J. Comput. Phys. 151, 9 (1999).

H.J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and
J. R. Haak, J. Chem. Phys. 81, 3684 (1984).

" A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

80g, Kumar, D. Bouzida, R. H. Swendsen, P. A. Kollman, and J. M. Rosen-
berg, J. Comput. Chem. 13, 1011 (1992).

81 A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

82C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153,
503 (1988).

%D. J. McLennan, Aust. J. Chem. 31, 1897 (1978).

8P A. Bash, M. J. Field, and M. Karplus, J. Am. Chem. Soc. 109, 8092
(1987).

%M. H. M. Olsson and A. Warshel, J. Am. Chem. Soc. 126, 15167 (2004).

87Y. R. Mo and J. L. Gao, J. Comput. Chem. 21, 1458 (2000).

88K. Ohmiya and S. Kato, Chem. Phys. Lett. 348, 75 (2001).

% A. Radzicka and R. Wolfenden, Science 267, 90 (1995).

%R. Wolfenden and M. J. Snider, Acc. Chem. Res. 34, 938 (2001).

' A. Warshel, J. Biol. Chem. 273, 27035 (1998).

°2T. C. Bruice and P. Y. Bruice, J. Am. Chem. Soc. 127, 12478 (2005).

Downloaded 29 Jul 2013 to 147.8.230.100. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions





