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Abstract

In a multi-candidate election, a voter may prefer to vote for his second
choice in order to defeat his least favorite candidate. I study a model in
which voters know their own preference but infer support of each candidate
from a private signal. I show that if private signals are su¢ ciently precise,
an equilibrium exists and is unique in the limit as the size of the electorate
increases. In this unique equlibrium, supporters of a candidate vote more
strategically when their hate for their worst choice becomes more domi-
nant, but they vote less strategically when the same is true for the opposite
camp. Using this property, I show that in sequential primaries, winning
early primaries improves a candidate�s chance of winning later primaries
by making his supporters in later primaries vote more sincerely. I show
that sequential primaries help with coordination, but puts more weight on
the preference of the median voters in the early primaries. When voters�
worry enough about defeating their worst choice, sequential primaries are
better at aggregating preferences than simultaneous primaries.

1 Introduction

The outcomes of early elections play an out-of-proportion role in the US Presi-
dential primary. Adam (1987) reports that the 1984 New Hampshire primary
got nearly 20% of the season�s coverage in ABC,CBS, NBC and the New York
Times, even though New Hampshire accounts for only 0.4% of the US popula-
tion, and only four votes out of 538 electoral votes in the presidential election.
In the 1980 Republican primaries, George Bush and Ronald Reagan spent about
3/4 of their respective campaign budgets in early primary states, which account
for much less than a �fth of the votes in the Republican convention in 1980
(Malbin, 1985). The emphasis on winning early primaries may come from the
widely-held belief that early winners gain �momentum�due to the sequential
nature of the election.
However, recent primaries have become more �front-loaded� into the early

weeks. California has recently passed a legislation to move forward its primary
to Feb. 5, 2008, only after 4 other primaries held in January. The media in
general views this as �sel�sh�behavior on the part of those states. It has been
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argued that a more front-loaded primary system makes it more important for
candidates to raise a lot of money early (William Schneider, 1997) and a more
front-loaded 2008 primary gives well-established candidates an advantage. On
what ground do these assertions stand? And if they are true, through what
channel does the timing structure a¤ect the voting outcomes?
Existing literature that study sequential elections has for the most part re-

stricted attention to contests between two candidates. However, there are
usually many candidates in a presidential primary. For example, Sen. Hillary
Rodham Clinton of New York, Sen. Barack Obama of Illinois and former sen-
ator John Edwards of North Carolina, are all considered front runners in the
2008 primary for the Democratic party. With only two candidates, voters sim-
ply vote for their preferred candidate. In a multi-candidate contest, however,
some voters have to vote strategically for their second choice if they believe
their most preferred candidate has a smaller probability of being in a close race.
Therefore, voters�beliefs about relative popularity of every candidate, and the
relative likelihood of di¤erent pivotal events, play an important role in their
decision.
Given this element of coordination in multicandidate contest under plurality

rule, it is not surprising that with common knowledge assumption of the elec-
toral situation, the voting outcome involves either a complete success or failure
of coordination. Duverger�s Law (see Riker 1982) asserts that �plurality rule
brings about and maintains two-party competition�, because only two candi-
dates should be expected to get any vote. This represents complete success of
coordination. Most of the literature focuses on these �Duvergerian�equilibria,
but o¤ers no formal theory as to which two candidates should be considered
�serious�contenders. In addition, it cannot explain the incomplete coordina-
tion observed in many multicandidate election outcomes. For example, in the
1970 New York senatorial election, even the trailing candidate among the three
got more than 24% of the votes, and the winner gets only 2% more votes than
the second.
Moreover, common knowledge of the electoral situation seems a very strong

assumption. The 1997 British Election Survey indicates that about two-third
of voters who expected their preferred party to come second actually found that
it came third (Fisher, 2000). There was clearly lack of common knowledge
among voters as to the identities of the �rst and second place winner, which is
inconsistent with that literature.
This paper presents a model of preference aggregation in a multi-candidate

election that features a candidate who is �a common second choice�for support-
ers of the other two extreme candidates. One interpretation of �the common
second choice� is a candidate that�s widely known and considered a �safe op-
tion�. Voters in the model know their preferences over the candidates, but
have only imperfect information about the distribution of preferences in the
electorate. Supporters of an extreme candidate have an incentive to coordinate
with supporters of the �common second choice�against their least favorite can-
didate. Relaxing common knowledge assumption enables meaningful analysis
of this coordination e¤ect.
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I show that an equilibrium exists and is unique in the limit as the size
of the electorate increases. In this unique equilibrium, coordination incentive
among supporters of an extreme candidate is stronger when their love-hate ratio
for that candidate is smaller, when love-hate ratio for the opposing extreme
candidate is higher, or when the prior belief of the share of supporters of the
extreme candidate is smaller. In addition, in those situations, there is excess
coordination in that the �common second choice�wins too often, i.e. sometimes
�the common second choice�wins even though the median voter favors one of
the extreme candidates.
I then study an election that involves voting in three states (electorates)

in which the candidate winning the most states wins the election. This is
close to Republican primaries. I compare voting behavior and outcomes under
simultaneous and sequential primaries. When hate is stronger than love, in
the last state, supporters of the extreme candidate that has not garnered any
victory always vote for the �common second choice�. Thus the equilibrium
exhibit winnowing down of front runners. In addition, a victory by one extreme
candidate in the �rst state boosts the morale of her supporters in the second
state and results in more sincere voting behavior by her supporters and higher
chance of winning in the second state. I show that when love-hate ratio is
moderately small, or when the ex ante share of moderate voters is big (eg.
larger than 1

2 ), a sequential election reduces excess coordination motive in the
�rst state as compared to the outcome under simultaneous primaries and reduces
the ex ante probability that the candidate winning that state is not the median
voter�s �rst choice.
In addition to comparing voting behavior, I can also compare voting outcome

between simultaneous and sequential election. Even if sequential election does
not make extreme voters in the �rst state more aggressive, if the median voter
in the �rst state is extreme, then if love-hate ratio is moderate, she prefers
a sequential election to a simultaneous election because she can a¤ect voting
outcome in other states toward her favorite candidate. If the median voter
in the �rst state is moderate, then she also prefers sequential election if the
probability that an extreme voter wins her state is at least 70% of that of the
share of extreme voters.
I can also compare voting outcome across voting order in a sequential elec-

tion. If the median voter is extreme, then she always prefers voting earlier, i.e.
�rst rather than second. If the median voter is moderate, then she prefers that
her state votes �rst if the other state that her state swaps voting order with is
�moderate�state, one in which love-hate ratio of extreme voters is small, or ex
ante share of extreme voters is small. This is because when the other state is
�moderate�, voting �rst makes its extreme voters more aggressive, which is bad
from a moderate voter�s point of view.

3



2 Literature Review

Dekel and Piccione (2000) and Ali and Kartik (2006) both study sequential elec-
tions between two candidates in which some voters have only imperfect infor-
mation about their own preference over the two candidates. Dekel and Piccione
(2000) show that any outcome of a voting equilibrium in a simultaneous election
is also an equilibrium outcome of a sequential election with any timing structure.
Ali and Kartik (2006), on the other hand, construct a Perfect Bayesian equilib-
rium in which �herding,� i.e. voting according to the history of vote counts so
far and disregarding one�s own information, happens with positive probability.
This suggests that in a race between two candidates, a simultaneous election
can be (but is not necessarily due to multiplicity of equilibria) more e¢ cient in
gathering information than a sequential election.
Myerson andWeber (1993) and Myerson (2002) both assume common knowl-

edge of the preference distribution of the electorate, and show that under plu-
rality rule, for any pair of candidates in a �three-horse race�, there exists an
equilibrium in which only this pair are considered �serious�and get any vote.
Myerson (2002) call these discriminary equilibria because labeling of the can-
didates matter as to whether they have positive probability of winning. They
argue that �a large multiplicity of equilibria creates a wider scope for focal
manipulation by political leaders.�
Myerson and Weber (1993) also show via an example the existence of a �non-

Duvergerian�equilibria in which a group of voters fail completely to coordinate
to avoid the worst outcome, and the two losers exactly tie. They conjecture
that some additional assumption of dynamic stability or persistence may be
used to eliminate these �non-Duvergerian�equilibria.
This paper is most closely related to Myatt (2007), which studies simulta-

neous elections under plurality rule in which one candidate (the conservative
status quo) has a commonly known �xed fraction (< 1

2 ) of supporters, while
the rest of the electorate share the distaste of the status quo but disagree on
which of the other two (liberal) candidates is optimal. This assumption ef-
fectively reduces an election under plurality rule with three candidates to one
under quali�ed-majority rule between two candidates. Essentially, the (liberal)
voters have to coordinate behind the two (liberal) candidates. They relax the
common knowledge assumption by assuming that each voter gets an imperfect
signal about the preference distribution of the electorate (as evident in the UK
General Election of 1997). They construct a uniqe symmetric equilibrium that
is consistent with the 1970 New York Senatorial election, which displays limited
strategic voting and incomplete coordination. However, the assumption of a
�xed and commonly known support for one candidate does not seem to �t US
Presidential primaries.
It is di¢ cult to characterize equilibria in a large election because probabil-

ity ratios of close-race events between di¤erent pairs of candidates can be quite
intractable. Myatt (2007) develops the solution concept of strategic-voting equi-
librium for large elections, which can be viewed as a Bayesian Nash equilibrium
with a continuum of voters. It facilitates the calculation through law of large
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numbers arguments. Myerson (2000), on the other hand, tackels this issue by
assuming population uncertainty. They assume that voter turnout follows a
Poisson process with a commonly known preference distribution. The feature
of Poisson process that an individual voter�s belief about the behavior of the
electorate does not depend on his own preference type facilitates comparison of
limiting probabilities of di¤erent pivotal events as the size of the electorate goes
to in�nity.
On relaxing common knowledge assumptions in voting situations, Fedder-

sen and Pesendorfer (1997, 1998) use a common value model for jury decision
making. In their model, each juror decides on one of two votes based on a
private signal about the defendant�s guilt and aims to convict the guilty and
acquit the innocent. Thus other jurors�information matters even for a juror�s
own preference over outcomes. Each juror infers about the merits of his two
actions from an assessment of the information possessed by others conditional
on his vote being pivotal. Therefore, if other jurors respond a lot to their
signals, a juror may have an incentive to disregard his own signal because the
information contained in the pivotal event outweighs his own information. This
is why bandwagon e¤ects may arise in sequential elections with two candidates
in Ali and Kartik (2006). However, since there are only two outcomes, the
coordination e¤ect in multicandidate contests is not present in these models.

3 A Multicandidate Contest in One State

3.1 The Model

Voting Rule Three candidates L;M;R compete in a simultaneous elec-
tion. The number of voters is a random variable that follows a Poisson distrib-
ution with mean n. We use Gn to denote the voting game with expected voter
turnout n. Each voter has to voter for exactly one candidate. The winner of
this election is the candidate with the most votes. In case of a tie, each of the
candidate with the most votes wins with equal probability.

Preferences A voter can be of three preference types. A type r voter
favors candidate R, and prefers R to M to L, a type l voter prefers candidate L
toM to R, while a type m voter prefers candidateM the most and is indi¤erent
between R and L. Candidate M can be thought of as the common second
choice. He is not the most hated candidate for any voter. On the other hand,
candidate R and L are loved the most by some but hated the most by some
others. We can think of candidate R and M as extreme candidates and their
supporters as extreme voters. A voter�s payo¤ when his most hated candidate
wins is normalized to 0. A voter who favors candidate c receives payo¤ Vc if
his favorite candidate wins, and vc if his second choice wins, where Vc > vc > 0
for c 2 fR;Lg and Vm > vm = 0. We de�ne Vc � vc to be a type c voter�s
love, which is his payo¤ di¤erence between a win by his favorite candidate and
a win by his second choice. We de�ne vc to be his hate, which is his payo¤
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di¤erence between his second choice and his worst choice. For c 2 fR;Lg,
de�ne �c =

Vc�vc
vc

, which is type c voter�s love-hate ratio. This love-hate ratio
captures the importance of coordinating with the moderate voters. The smaller
the love-hate ratio is, the more fearful the voter is of a win by his worst choice,
and thus the more important it is to coordinate with the m voters to defeat L.
De�ne uc = log (2�c).
All voters with the same preference type shares the same love-hate ratio. As

will be shown later, a voter�s behavior depends on his preference only through
this love-hate ratio. One can think of m voters as having such a large love-hate
ratio that it is always weakly dominant for them to vote sincerely. The love-hate
ratios of each preference type are common knowledge, but a voter�s preference
is his own private information.

Electoral Preference Distribution A voter in the electorate is type r
with probability F (� � �), type l with probability F (�� � �) and type m with
probability 1� F (� � �)� F (�� � �), where F is the cumulative distribution
function for Laplace distribution with mean 0 and scale parameter 1, denoted
by Laplace (0; 1). So

F (x) =

�
1
2e
x if x � 0

1� 1
2e
�x if x > 0

.

� is an exogenously given parameter of the model. We can think of voters as
living on a real line as depicted in �gure __. An r voter lives above �, and
an l voter lives below ��, and m voters live in (��; �). Voter location follows
Laplace distribution with mean � and scale parameter 2. We can think fo � as
the location of the median voter. It also completely determines the preference
distribution of the electorate. Because preference is single-peaked, the median
voter�s favorite candidate is the Condorcet winner. We assume throughout that
e�� < 1

2 . This ensures that for each candidate, there are electoral preference
situations where the majority of the electorate support that candidate.

Information To capture uncertainty about preference distribution of the
electorate, I assume that no one knows the location of the median voter, but
a voter with belief type z believes that � follows distribution with density
function h (�; z) = f(�(���0))f(z��)R1

�1 f(�(���0))f(z��)d�
where f (:) is the density function

of Laplace (0; 1), and �0 2 R and � > 0 are exogenous parameters of the model.
Thus, a voter with belief type z believes that the likelihood ratio of the event
that � = �1 v.s. the event that � = �2 is

f (z � �1) f (� (�1 � �0))
f (z � �2) f (� (�2 � �0))

.

The parameter �0 captures some common prior belief about the preference dis-
tribution, and � > 0 captures the strength of this prior belief.
We assume that conditional on the true median voter location �, the belief

type z of a voter follows Laplace (�; 1), and is independent of voter preference
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type. That is, a voter�s belief about the preference distribution of the elec-
torate is independent of his own preference type. This assumption is made for
tractibility reason.
There are two stories that can deliver this. One is that an r voter and an l

voter hold di¤erent priors that exactly cancel out the inference they draw from
their own preference type. They are pessimistic about the size of the fellow
supporters of their favorite candidate and this pessimism exactly cancels out
the favorite news they draw from being a supporter of this candidate.
Another story is that voters hold a common prior that � follows Laplace (�0; �)

but do not update based on their own preference. That is, voters believe that
the preference distribution among all other voters are determined by the para-
meter �; they hold the same prior about �, but do not believe that their own
preference is generated by the same distribution determined by �. They form
their posterior belief about the preference distribution among all other voters
by the common prior and an additional signal z which is independently drawn
from Laplace (0; 1).
From the expression of the likelihood ratio when voter belief type is z, we

can see that the precision of the private signal is held �xed in this model, instead
of being allowed to get arbitrarily precise. In a sense, the precision of private
signal is captured by the parameter �, because when j�j � �

2 , type m voters
are expected to be the majority, and it is weakly dominant for them to vote
sincerely, so most likely M is going to win and no voter is pivotal. An extreme
voter will be weighing likelihood ratios of an event where � is in some set above
�
2 and an event where � is in some set below �

�
2 . Thus a larger � implies that

voters will be gauging the likelihoods of two disjoint subsets of states that are
further apart, and thus will be more con�dent whether � > �

2 or � < �
�
2 . [???

needs more work]

3.2 Sincere Voting and Coordination Failure

If every voter simply votes for his favorite candidate, then in a large election,
vote share of candidate C, denoted by pc (�), is almost equal to the probability
that voter is of type c. If 2F (��) < 2

3 , when the share of two exreme voters are
equal to each other, it is smaller than the share of moderate voters. Because
pR (�) increases with �, and pR (�) = 1

2 , the median voter preferes R to M if
and only if � > �. However, when � is close to � but smaller than �, R still gets
almost half of the votes, while M and L share the other half. Thus R wins the
election even though the median voter is moderate and the majority prefer M
to R. This happens because left-wing voters and moderates fail to coordinate
with each other and support M together against R. I call this cross-camp
coordination failure.

3.3 Equilibria

Here I investigate equilibrium voting behavior, and how it changes with voters�
love-hate ratios.
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3.3.1 Strategies

Voter i�s pure strategy vi is a mapping from his preference-belief pair (o; z) 2
fr;m; lg � R to a candidate in fR;M;Lg. A voter votes sincerely if he simply
casts his ballot for his most preferred candidate regardless of his belief about
electoral preference distribution.
A strategy pro�le is symmetric if voting behavior depends only on a voter�s

preference type and belief type, but not on the voter�s identity. We look at
symmetric weakly undominated strategy pro�les. This rules out equilibria where
a voter is never pivotal and thus any action is a best response. Because it is
weakly dominant for a typem voter to vote sincerely, and it is weakly dominated
for an extreme voter to vote for his worst choice, a voting strategy pro�le can
be represented by (vr (z) ; vl (z)) : R ! [0; 1], where vc (z) is the probability a
type c voter votes for his favorite candidate.
Given the voting strategy v = (vr; vl) everyone adopts, and the median voter

location �, a randomly chosen voter will vote for candidate C with probability

pR (�; v) = F (� � �)Ez [vr (z) j�]
pL (�; v) = F (�� � �)Ez [vl (z) j�]
pM (�; v) = 1� pR (�; v)� pL (�; v) .

We call p (�; v) = (pR; pM ; pL) (�; v) the expected vote share function. We
suppress the dependence on v when it is clear.
Given any two candidates c1; c2, there is an equilibrium in which every voter

votes for the one in fc1; c2g that she prefers. In such an equilibrium, the third
candidate never gets any vote, and thus is irrelevant. The election is reduced
to a binary choice. One can say that the two candidates c1 and c2 are the focal
points of the election. However, the model cannot answer the question of how
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front runners are chosen or have any meaningful comparative statics. In order to
model how the identity of the front runners change with the underlying electoral
situation, we restrict attention to strategy pro�les where every candidate has
positive probability of winning ex ante. In a large election, the actual vote share
will be close to the expected vote share with high probability by law of large
numbers. Thus, with probability close to1, the winner will be the candidate with
the highest expected vote share. Thus, if each candidate�s ex ante probability of
winning remains positive as electorate size increases, the strategy pro�le must
exist multi-candidate support as de�ned as follows.

De�nition 1 A strategy pro�le has multi-candidate support if, for each candi-
date, there exist some electoral preference distribution � where this candidate
has the highest expected vote share.

3.3.2 Best Responses

Consider a type r voter�s payo¤ given that everyone else adopts voting strategy
v. Let xj denote the number of votes candidate j gets from everyone else. Then
(xR; xM ; xL) is a vector of random variables whose distribution depend on the
voting strategy v adopted by everyone else and electoral preference distribution
�. Given �, (xR; xM ; xL) follow independent Poisson distributions with mean
(npR (�; v) ; npM (�; v) ; npL (�; v)).
A voter with preference type r will choose between voting for R and voting

for his second choice M . Cosider the vote distribution without this voter�s
ballot. If his �rst and second choice either ties or is only one vote apart, he
gains his love by voting sincerely [strictly prefers to vote for his �rst choice[.
If his �rst and worst choice ties, or if his �rst choice is one vote behind, then
by voting for his favorite candidate, he not only gains his love but also avoids
his hate [his preference for voting sincerely is even stronger]. But if his second
choice either ties with the worst choice, or is one vote behind, then he prefers
to vote for his second choice to prevent his worst candidate from winning and
avoid his hate. A voter does not know whether and which tie event will obtain,
but forms beliefs about their probability based on the expected vote share and
his belief type z. Let Pr fHj�g denote the probability of an event H when the
median voter location is �. Then a voter with belief type z believes that event
H happens with probability E [Pr fHj�g jz].
Let Pr

�
Pivr+j�

	
denote the probability that an additional vote for r�s fa-

vorite candidate R rather than the second choice M will cause the winner to
change from candidate M to R. Let Pr fPivrRLj�g to be the probability that
sincere voting rather than defensive voting will change the winner from r�s worst
choice L to r�s favorite candidate R. When this is the case, by voting sincerely,
the voter gains his love and also avoids su¤ering his hate. Let Pr

�
Pivr�j�

	
be

the probability that sincere voting rather than defensive voting will back�re and
cause the winner to change from the second choiceM to the worst choice L. Let
Cause the winner to change from the worst choice �C to the favorite candidate
C, cause the winner to change from the second choice M to the worst choice

9



�C. If a type c voter casts his vote for his favorite candidate instead of voting
defensively for his second choice, the winner switches from M to C with proba-
bility Pr

�
Pivc+j�

	
, and fromM to �C with probability Pr

�
Pivc�j�

	
, and from

worst �C to best C with probability Pr fPivcRLj�g. Thus by voting sincerely,
the expected gain to a type c voter with belief type z is�
E
�
Pr
�
Pivc+j�

	
jz
�
+ E [Pr fPivcRLg j�]

�
(Vc � vc)�

�
E
�
Pr
�
Pivc�j�

	
jz
�
� E [Pr fPivcRLj�g]

�
vc.

So Pr
�
Pivc+j�

	
+ Pr fPivcRLg is the probability that voter 0 gains his love by

voting sincerely, while E
�
Pr
�
Pivc�j�

	
jz
�
� E [Pr fPivcRLj�g] is the net proba-

bility that voter 0 su¤ers his hate by voting sincerely. So a voter of type (c; z)
prefers to vote sincerely if and only if his love-hate ratio is higher than the
likelihood ratio of hate-avoiding events to love-enhancing events:

�c =
Vc � vc
vc

�
E
�
Pr
�
Pivc�j�

	
jz
�
� E [Pr fPivcRLj�g]

E
�
Pr
�
Pivc+j�

	
jz
�
+ E [Pr fPivcRLg j�]

.

We will establish that a multi-candidate equilibrium exists and is unique in
the limit.

De�nition 2 A limit equilibrium is the limit of some sequence f(vnk;r; vnk;l)g
1
k=1,

where vnk is an equilibrium when expected voter turnout is nk.

We show that when � is su¢ ciently large and � is su¢ ciently small, equi-
librium with multi-candidate support exists and is unique in the limit. That is,
there exists a strategy pro�le with multi-candidate support which is the limit a
sequence of equilibria, and is the limit of every sequence of equilibria.
Write

� = max

�
ur
2
;
ul
2
;
3

4
(ur + ul)

�
� log

0@1� 1�
p
1�2e�2�
2

2

1A .
Theorem 1 For all � > �, there exists � > 0 such that for all � < �, there
exists a unique limit equilibrium with multi-candidate support. In this unique
limit equilibrium, v�r = I

�
z � a� � ur

2

	
and v�l = I

�
z � a� + ul

2

	
.

This unique limit must be in cuto¤ strategies. If the supporters of candidate
C 2 fR;Lg has higher love-hate ratio, then in equilibrium they vote more
sincerely, while voters in the opposing camp �C votes more defensively, and
which causes candidate C to win with lower probability.

3.3.3 Limit Probability of Pivotal Events

For a supporter of candidate C, voting sincerely rather than defensively causes
the winner to switch from M to C when C and M either tie or are one vote
away from a tie; it causes the winner to switch from M to the worst choice �C
when either M and (�C) tie or M is one vote behind �C as the winner. The
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probability that candidate 2 is d votes ahead of candidate 1, given expected vote
share (p1; p2; p3), is X

k2N;minfk;k+dg�0

1X
j=0

e�n (p1)
k
(p2)

k+d
(p3)

j

k! (k + d)! (j!)
.

De�ne as in Myerson (2006) the magnitude of an event f(x1; x2; x3)g given the
mean (np1; np2; np3) as

� ((x1; x2; x3) jnp) =
3X
i=1

xi
n

�
1� log xi

npi

�
.

Then the probability of f(x1; x2; x3)g given mean np is

Pr fxjnpg = en�(xjnp)

�3i=1
�
� (xi)

p
2�xi +

�
3

� .
Consider an event H. Call x� a maximizer of the event H and x a near-
maximizer of H given np if

x� 2 arg max
x2Co(H)

� (xjnp)

and
x 2 arg max

Co(H)
� (xjnp) .

Myerson (2006) show that as n ! 1, the probability of an event H will con-
centrate around the near maximizer of the event.
magnitude of a pivotal event f(k; k + d; j) : k; d 2 Ng

� (f(k; k + d; j) : k; d 2 Ng jnp) = � (pp1 �
p
p2)

2
+ ::

magnitude of f(k; k + d; j) : k; d 2 N; k � jg when the constraint is binding,

�1 + 3 (p1p2p3)
1
3

and when it is not binding.

Lemma 3.1 (Upper bound and lower bound on probability a pivotal event)

So if the magnitude of an event is negative, its probability vanishes. In
addition, if two events have di¤erent magnitude, as n ! 1, the one with
larger magnitude will become in�nitely more likely than the event with smaller
magnitude.
By assumption on � and because it is weakly dominant for type m voters to

vote sincerely, M�s expected vote share is highest among all when � is
�
� �
2 ;

�
2

�
.

It is straightforward to check that there exists some " > 0 and N > 0 such that
given any voting strategy, the magnitude of an event where the two extreme
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candidates are one vote apart is less than �" if the expected turnout is n >
N . (Claim 6 in "condition on p for uniform converge to an expression with
magnitude.tex")
Because v is assumed to have multi-candidate support, there must exist

some � such that pR (�; v) �;max fpM (�; v) ; pL (�; v)g. This is only possible
for � > �

2 because for � <
�
2 , candidateM has more supporters than R, and thus

de�nitely more votes in expectation than R. By continuity of pR (:; v), there
exists �R > �

2 such R and M tie as leader in expected vote share. At such �R,
the magnitude is 0, which is the maximum possible magnitude, and probability
of a tie becomes 1. Applying the magitude comparison, as n!1, probability
of an R �M tie will concentrate around such �R�s. And for any interval I of
electorate situations that contain at least one such solution �R, conditional on
� 2 I, the event of an R �M tie also becomes in�nitely more likely than the
event where R and L are one vote apart.
Thus the likelihood ratio of hate-love events become close to the likelihood

ratio of an L �M ie over an R �M tie. The next lemma shows that if v is a
limit equilibrium, then there will be exactly one solution �R (v) at which R and
M tie as the expected vote share leader.
Recall that the higher the belief type z is, the higher the likelihood ratio

is between a r-dense world and a l-dense world. For an r voter, the higher
her belief type is, the more optimistic she is about the share of r voters in the
electorate. For an l voter, the lower her belief type z is, the more optimistic she
is about the share of l voters in the electorate. A natural strategy would be a
cuto¤ strategy (z� (r) ; z� (l)) where a voter votes for her favorite candidate if
she is su¢ ciently optimistic about the size of her camp, i.e. if z � z� (r) for an
r voter, and if z � z� (l) for an l voter.
Figure depicts an expected vote share function given a cuto¤ strategy. The

higher the electoral state � is, the more likely a voter supports R, and the more
likely an r voter votes for R. Thus candidate R�s expected vote increases with
elecotral state �. On the other hand, candidate M�s expected vote share peaks
when electoral state is intermediate. In those states,M has the most supporters,
and M also get quite some votes from the extreme voters who are pessimistic
about their favorite candidates. When R andM are the expected front runners,
R�s expected vote share lead increases as the electoral condition becomes more
favorable to R. Same applies to L. As a result, there is a pair of cuto¤s (�R; �L)
on the electoral condition such that candidate R has the highest expected vote
share if the electoral condition is higher than �R, L has the highest expected
vote share if � < �L, and M does for � 2 (�L; �R).
We call expected vote share functions with the aforementioned properties

regular.

De�nition 3 Say that an expected vote share function p : R ! � fR;M;Lg
is regular if, for c;�c 2 fR;Lg and c 6= �c, pc (�) = pM (�) � p�c (�) has a
unique solution �c, and p

0
R (�)� p0M (�) > 0 for all � � and p0L (�)� p0M (�) < 0

for all �. A voting strategy is regular if it generates a regular expected vote share
function.
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The following lemma implies that, for the purpose of �nding all limit equi-
libria, we can focus on voting strategies generating regular vote share functions.

Lemma 3.2 If (v�r ; v
�
l ) is the limit of a sequence of equilibria and has multi-

candidate support, then (v�r ; v
�
l ) must be regular.

Sketch of the proof. The key step is to show that for a supporter of an
extreme candidate C, there exists some belief type ẑc such that a type c voter
will vote sincerely if he is more optimistic than ẑ.
We �rst see that for � 2

�
� �
2 ;

�
2

�
, candidateM has the highest expected vote

share. Let ��C and �
�
C denote the smallest and the largest in f� : pC (�; v�) = pM (�; v

�) � p�C (�; v
�)g.

Then ��R > �
2 > �

�
2 > ��L. We �rst observe that for z 2

�
� �
2 ; �

�
R � �

�
for any

� > 0, and for voting strategy vn su¢ ciently close to v, the likelihood ratio
of hate-avoiding event to love-enhancing event is strictly decreasing in voter�s
belief type z and has a slope less than �1. This is because the love-enhancing
events concentrate around certain electoral situations � � �R (vnk) � ��R � �,

while hate-avoiding events concertrate some � � ��L. Thus as z 2
�
��L; �

�
R � �

�
increases, the it moves closer to love-enhancing events and away from hate-
avoiding events, making the love-enhancing event more likely and the hate-

avoiding event less likely. In addition, because pR
�
��R; v

�
�
= pM

�
��R; v

�
�
and

because ��R > �
2 , in v

�, r voters must vote for R with positive probability for

belief types z 2
�
� �
2 ; �

�
R

�
. This must be true vn close to v�.

We then see that of Because the limit v has multi-candidate support, there

1.

In a large election, the actual vote share will be close to the expected vote
share. Consider a regular expected vote share function with critical states
(�R; �L). Thus for � > �R, it is most likely that R will win, while for � 2
(�L; �R), it is most likely that M will win. When � = �R, it is a knife-edge race
between R and M and it is when an R-M tie is most likely going to happen.
Similarly, an L-M tie is most likely going to happen at � = �L. When candidate
R and L have the same expected vote share, they are tying for the biggest loser,
not the winner, and thus it is unlikely that the two extreme candidates will tie
for the winner at any electoral condition �. Thus the ratio E[PrfPivcRLj�gjz]

E[PrfPivc+j�gjz]
! 0

as expected voter turn out goes to in�nity. Therefore, the likelihood ratio of
hate - love events approaches the likelihood ratio of an LM tie over an RM tie.

3.3.4 Limit Best Response Correspondence

A voter will be weighing his love-hate ratio with the likelihood ratio of the
event that � is close to �R with the event that � is close to �L. Even though the
probability of either an R-M tie or an M-L tie goes to 0 except at � = �R or �L,

13



and the probability that the electoral condition is exactly equal to �R or �L is 0
given any belief type z, the likelihood ratio of the two events actually converge
as n!1. Because a C-M tie happens most likely around �C , the limit of this
ratio depends on the likelihood ratio of the two electoral states �R and �L, and
also on how fast the distance between the two front runners�expected vote share
diverges from 0 as the electoral condition � goes away from �c. Lemma shows
that the ratio converges to for all voting strategies generating regular vote share
functions.
Though at all � 6= �R, probability of near tie events goes to 0,
Let �� := fp 2 � fR;M;Lg : pc � � for all cg.

Lemma 3.3 Given any � > 0,

nPr f(k; k + d; j) : k; j 2 Njnpg
p
ne

�n(
p
p1(�)�

p
p2(�))

2

p
2�(4pR(�)pM (�))

1
4

goes to 1 uniformly among all p 2 ��.

Because an R�L tie becomes in�nitely less likely than either an R�M tie
or anM�L tie, the likelihood ratio of hate-love event approaches the likelihood
ratio ofM�L tie over R�L tie. Because the probability of a tie between C and
M will concentrate on a neighborhood of �C , the limit of the likelihood ratio
will depend on the likelihood ratio of the two electorate situations �L and �R,
and how fast the expected votes of the front runners diverge when � diverges
from �C .
De�ne

� (v) =
�R (v) + �L (v)

2
+
1

2

�
log

jp0R (�R (v) ; v)� p0M (�R (v) ; v)j
jp0L (�L (v) ; v)� p0M (�L (v) ; v)j

+ � (j�R (v)� �0j � j�L (v)� �0j)
�
.

Lemma 3.4 Given any v generating a regular vote share function,  n (z; v)
converges to ( r;  l) (z; v) where

 r (z; v) =

8<: �2 (�L � � (v)) if z < �L
�2 (z � � (v)) if z 2 [�L; �R]
�2 (�R � � (v)) if z > �R

and  l (z; v) = � r (z; v). Convergence is uniform over z on a bounded interval.

Figure 1 depicts the limit of the likelihood ratio of hate-love events as a
function of belief type z. For z between �L and �R, when belief type z increases,
an R�M tie becomes more likely while an L�M tie becomes less likely. Thus
the likelihood ratio of hate -love events decreases. But when both �L and �R lie
on the same side of the belief type z, their likelihood ratio does not change with
z. It immediately follows that either an extreme voter�s limit best response is
a cuto¤ strategy that votes sincerely for belief types more optimistic than the

14



Figure 1: Limit Likelihood Ratio Function of Hate-Love Events

threshold, or an extreme voter always weakly prefer (in the limit) one candidate
regardless of his belief.
The limit pivotal ratio is very simple. It is linear for belief types between

�L and �R and is �at for more extreme belief types. Thus, for a voter that
favors either R or L, her limit best response when everyone else uses the same
regular strategy is either a cuto¤ strategy, or she always weakly prefers to vote
for one candidate no matter what her belief type is. De�ne � to be the set of
regular voting strategies. Let BR1 :

P
! 2

P
denote the limit best response

correspondence.
Lemma shows that a limit equilibrium must be a limit best response to

itself. Thus we can proceed by �nding all �xed points to the limit best response
correspondence.

Lemma 3.5 If v is the limit of a sequence of equilibria where every candidate
wins ex ante with probability at least " for some " > 0, then v must be a limit
best response to itself a.e..

3.3.5 Unique Fixed Point to the Limit Best Response Correspon-
dence

Theorem 2 BR1 has a unique �xed point v�.

We �rst show that if v� is a limit best response to itself, then an ex-
treme voter does not weakly prefer one candidate at all belief types. That
is,  r (�L (v

�) ; v�) > ur >  r (�R (v
�) ; v�) if v� is a �xed point to BR1.
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Lemma 3.6 If � > max
�
ur
2 ;

ul
2

	
�log

�
1� 1�

p
1�2e�2�
2

�
and � > 3

4 (ur + ul)�

log 2, then a �xed point to BR1 must be a cuto¤ strategy
�
a� � ur

2 ; a
� + ul

2

�
where the cuto¤ is the unique solution of z to  c (z; v

�) = uc.

Proof. Suppose v has multi-candidate support and is a limit best response
to itself. First we show that  r (z; v) < ur for z � �R (v). Suppose not. Then
 r (�R (v) ; v) = ur for v to have multicandidate support. Thus vr (z) = 0 for
all z < �R (v). Then

2pR (�R (v) ; v) + pL (�R (v) ; v)� 1

� max

��
1� 1

2
e���R(v)

�
;
1

2

�
+
1

2
e����R(v) � 1

< 0,

contradiction to the de�nition of �R (v).
Next we show that  r (z; v) > ur for all z � �L (v). It follows immediately

by noting that �R (v)� �L (v) � �sinR � �sinL = 2 log
e�+
p
e2��2
2 , and thus for all

z � �L (v),

�r (z; v) = �r (�L (v) ; v)

= �R (v)� �L (v) + �
�
�R + �L

2
� �0

�
� 2 log

e� +
p
e2� � 2
2

+ �

�
�R + �L

2
� �0

�
> ur

by the assumption on �. Similarly,  l (z; v) > ul for all z � �R (v).
Thus v must be a cuto¤ strategy of the form

�
a� ur

2 ; a+
ul
2

�
. But a must

be a �xed point of �.
Thus if v is a limit best response to itself, then an

vr (z) = 1fz: r(z;v)�urg = 1fz:z��(v)�ur
2 g

vl (z) = 1fz: l(z;v)�ulg = 1fz:z��(v)+ul
2 g.

So it must be in cuto¤ strategies of the form
�
a� ur

2 ; a+
ul
2

�
. Thus the problem

is reduced to �nding a �xed point a� to the function

~� (a) = �
�
a� ur

2
; a+

ul
2

�
where

a� � ur
2
; a� +

ul
2
2
�
�L

�
a� � ur

2
; a+

ul
2

�
; �R

�
a� � ur

2
; a+

ul
2

��
(1)
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Lemma 3.7 If
�
a� � ur

2 ; a
� + ul

2

�
is a limit best response to itself, then

�R

�
a� � ur

2
; a� +

ul
2

�
> max

n
�; a� � ur

2
; a� +

ul
2

o
�L

�
a� � ur

2
; a� +

ul
2

�
< min

n
��; a� + ul

2
; a� � ur

2

o
.

If �R (z
� (r) ; z� (l)) > max f�; z� (r) ; z� (l)g, then �R is thus the solution to
1 = 2pR (�; z

� (r) ; z� (l)) + pL (�; z
� (r) ; z� (l)) (2)

= 2

�
1� 1

2
e���

��
1� 1

2
ez

�(r)��
�
+
1

2
e����

1

2
ez

�(l)��.

Thus

�R (z
� (r) ; z� (l)) = log

 
e� + ez

�(r)

2
+

p
e2� + e2z�(r) � e��+z�(l)

2

!
.

Similary, if �L (z
� (r) ; z� (l)) � min f��; z� (r) ; z� (l)g, then

�L (z
� (r) ; z� (l)) = � log

 
e� + e�z

�(l)

2
+

p
e2� + e�z�(l) � e���z�(r)

2

!
.

And

p0R (�R)� p0M (�R)
= 2F (�R � z� (r)) f (�R � �) + 2f (�R � z� (r))F (�R � �)

�f (�� � �)F (z� (l)� �)� F (�� � �) f (z� (l)� �)
= �4pR (�R) + 2F (�R � z� (r)) + 2F (�R � �)� 2pL (�R)

= 2

�
1� 1

2
ez

�(r)��R
�
+ 2

�
1� 1

2
e���R

�
� 2

= 1� ez
�(r)��R + 1� e���R

= e��R
�
2e�R � ez

�(r) � e�
�

= e��R
�p

e2� + e2z�(r) � e��+z�(l)
�
.

Likewise,

p0L (�L)� p0M (�L) = �e�L
�p

e2� + e�z�(l) � e���z�(r)
�
.

Thus

� (z� (r) ; z� (l))

=
�R (z

�) + �L (z
�)

2
� 1
2

 
log

jp0R(�R(z�);z�)�p0M (�R(z�);z�)j
jp0L(�L(z�);z�)�p0M (�L(z�);z�)j

+� (j�R (z�)� �0j � j�L (z�)� �0j)

!

= (�R (z
�) + �L (z

�))� 1
2
log

p
e2� + e2z�(r) � e��+z�(l)p
e2� + e�z�(l) � e���z�(r)

+
1

2
� (j�R (z�)� �0j � j�L (z�)� �0j) .
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Using equation (2), we get

@�R (z
�)

@z� (r)
= �

2@pR(�;z
�)

@z�(r) + @pL(�;z
�)

@z�(r)

2p0R (�R (z
�) ; z�) + p0L (�R (z

�) ; z�)

= � �2f (�R � z� (r))F (�R � �) + 0
e��R

�p
e2� + e2z�(r) � e��+z�(l)

�
=

2 (1� F (�R � z� (r)))F (�R � �)
e��R

�p
e2� + e2z�(r) � e��+z�(l)

�
=

2F (�R � �)� 2pR (�R (z�) ; z�)
e��R

�p
e2� + e2z�(r) � e��+z�(l)

�
=

2
�
1� 1

2e
���R

�
� (1� pL (�R (z�) ; z�))

e��R
�p

e2� + e2z�(r) � e��+z�(l)
�

=
1� e���R + pL (�R (z�) ; z�)

e��R
�p

e2� + e2z�(r) � e��+z�(l)
�

=
ez
�(r)�e�
2 +

p
e2�+e2z�(r)�e��+z�(l)

2p
e2� + e2z�(r) � e��+z�(l)

+

�
ez
�(r)+e�

2 +

p
e2�+e2z�(r)�e��+z�(l)

2

�
pL (�R (z

�) ; z�)

p
e2� + e2z�(r) � e��+z�(l)

=
1

2

�
1 +

ez
�(r) � e�p

e2� + e2z�(r) � e��+z�(l)

�
+
1

2

�
1 +

ez
�(r) + e�p

e2� + e2z�(r) � e��+z�(l)

�
pL (�R (z

�) ; z�) .

Using the same method, we get

@�R (z
�)

@z� (l)
= �1

2

�
1 +

e� + ez
�(r)

p
e2� + e2z�(r) � e��+z�(l)

�
pL (�R (z

�)) .

Because �z� (r)+ z� (l) = ur+ul
2 < �,

p
e2� + e2z�(r) � e��+z�(l) >

��ez�(r) � e���,
and thus

d�R
�
a� ur

2 ; a+
ul
2

�
da

=
1

2

�
1 +

ez
�(r) � e�p

e2� + e2z�(r) � e��+z�(l)

�
2 (0; 1) .

We obtain

@�L (z
�)

@z� (l)
=

1

2

�
1 +

e�z
�(l) � e�p

e2� + e�z�(l) � e���z�(r)

�
+
1

2

�
1 +

e� + e�z
�(l)

p
e2� + e�z�(l) � e���z�(r)

�
pR (�L (z

�))

and

@�L (z
�)

@z� (r)
= �1

2

�
1 +

e� + e�z
�(l)

p
e2� + e�z�(l) � e���z�(r)

�
pR (�L (z

�)) .
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With some algebra, we get

� 0 (a) =
1

2

8>>>><>>>>:
1
2 +

ea�
ur
2 �e�q

e2�+e2a�ur�e��+a+
ul
2

 
1�

e
a�ur

2 +e�

2q
e2�+e2a�ur�e��+a+

ul
2

!

+ 1
2 +

e�z
�(l)�e�q

e2�+e�2a�ul�e���(a�
ur
2 )

 
1�

e�+e�z
�(l)

2q
e2�+e�2a�ul�e���(a�

ur
2 )

!
9>>>>=>>>>;

+
1

2
�

�
d

da

����R �a� ur
2
; a+

ul
2

�
� �0

���� d

da

����L �a� ur
2
; a+

ul
2

�
� �0

���� .
It su¢ ces to �nd an uniform upper bound below 1 for the term in fg. If either
z� (r) < �, or z� (l) > ��, then the term with fg is less than 3

4 . Because the
two thresholds are moved up and down by the same number a, when z� (r)
� � and z� (l) � ��, it must be the case that z� (r) 2

�
�;�� � ur+ul

2

�
and

z� (l) 2
�
� + ur+ul

2 ;��
�
. Because the expression is continuous in z� and belongs

to (0; 1), it must be no bigger than the maximum of this expression on this
compact subset.
We conclude the proof showing that the unique �xed point to ~� (:) satis�es

inequality (1).

3.3.6 Existence of A Converging Sequence of Equilibria

Lastly, I construct a sequence of �nite equilibria that converge pointwise to the
unique �xed point v�. To do so, I show that for su¢ ciently high n, the best
response correspondence in Gn has a �xed point in strategies in a neighborhood
of v�.

Theorem 3 There exists a sequence f(vn;r; vn;l)g1n=N which converge to v�

pointwise where vn is an equilibrium in the game Gn.

3.4 Comparative Statics

Let ��c (ur; ul; �; �) = �c (a
� (ur; ul; �; �)) for c 2 fR;Lg. Here we analyse the

comparative statics of the unique limit equilibrium.

3.4.1 Comparative Statics of Strategic Voting Equilibrium

We �rst see that when �0 = 0, a
�� (ur � ul) < 0. So the camp that has stronger

love-hate ratio, i.e. the camp that is less afraid of cross-camp coordination
failure, will vote more sincerely in equilibrium, and which gives an additional
advantage to them, which in turn make them vote more sincerely. Because �0
just moves the limit likelihood ratio function up and down, @a

�

@�0
< 0.

Proposition 1 If � > � and � < �, then
@j��j (ur;ul;�;�)j

@uj
< 0 and

@j��j (ur;ul;�;�)j
@uk

>

0 for j 6= k and j; k 2 fL;Rg.
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��R decreases with right wing voters� love-hate ratio ur and increases with
left-wing voters love-hate ratio ul. In other words, the prior probability that
R wins the election increases with ur and decreases with ul. This is true for
preference intensities that are not very strong nor too weak.
When left-wing voters�love-hate ratio ul goes up, there are two o¤-setting

e¤ects. First, this will increase the information threshold for right-wing voters
and thus decrease the probability that a right wing voter votes for R by increas-
ing the �xed point a�. On the other hand, given the same a, this will decrease
the information threshold for left-wing voters, and this will also decrease equi-
librium a�. A stronger left-wing force will eat into the voter base for M , and
improves the prospect of R w.r.t. M . When ul is not too big , the former force
dominates.

��R (u; u; �; �) is decreasing in u and increasing in �. The ex ante probability
that over-coordination occurs, i.e. the ex ante probability that � 2 (�; ��R) or
(���L;��), decreases with �. Here � should be viewed as precision of private
information.

4 Sequential v.s. Simultaneous Election

4.1 Model

The electorate consists of three states, state 1,2,3, or say, NH, MI and CA. The
candidate that wins most states wins the election. In case of a tie between 2 or
3 candidates, the winner is determined by a random draw among those that tie
for the �rst place. The winner within a state is determined also by plurality
rule as described in the previous section. Voter i is state k is right-wing with
probability F (�k � �k) and left-wing with probability F (��k � �k). Every
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voter shares the same prior that �k�s follow i:i:d: Laplace (0; �k). In addition
to the common prior, voter i in state k obtains an additional signal �̂i about �k
where �̂i � Laplace (�k; 1). The independence of �k�s across states implies that
there is no learning when voting takes place sequentially. This allows me to
focus on the coordination e¤ect of sequential voting. �k�s and �k�s are common
knowledge among voters in every state. Let Gk be the prior distribution of �k.
Let voc denote the payo¤to voter of ideology type o in state k when candidate

c wins the election. We will look at the symmetric case where vrR = vlL >
vrM = vlM > vrL = vlR and vmM > vmL = vmR. De�ne

�k =
vrRk � vrMk

vrMk � vrLk

and u = log 2�k. We call �k the extreme voters�love-hate ratio for their favorite
candidate. Because right wing and left-wing voters both have love-hate ratio
�k, the threshold a

� is 0 no matter how big �k is.

4.2 Sequential Election

This section analyzes equilibria in a sequential election and illustrate the coor-
dination e¤ect. We only look at the election where � < 1

2 . In such elections,
coordination is important because the payo¤ di¤erence between the second and
the least favorite candidate is more than twice that of the �rst and the second
favorite candidate.

4.2.1 Voting in the last state, CA

It is weakly dominant for a moderate voter to vote for M . Given any voting
strategy in which m always votes for M , the probability that candidate R ties
with L vanishes more quickly than the probability that candidate L ties with
M . Therefore, voter i only weighs between the probability of an R�M tie and
the probability of an M � L tie.
When candidate L and candidate M each wins one state, then a right

wing voter�s payo¤ when candidate c wins the third state is given by UrR =
vrR+vrM+vrL

3 , UrM = vrM and UrL = vrL. When � < 1, UrM � UrL =
(vrR�vrM )�(vrM�vrL)

3 < 0. Therefore, in both an R�M tie and an M � L tie,
a right wing voter prefers to vote for M . Therefore, in all weakly undominated
equilibria, a right wing voter votes for M . Thus the last state is a runo¤ be-
tween L and M . L wins the last state and the election if �3 < �� and M wins
the last state and the election if �3 > ��.
When candidate L andR each wins one state, ULRrR �ULRrM = urR�urM+urR�urL

3
and UrM � UrL =

urR�urL+urM�urL
3 . Therefore, the love-hate ratio for the

last-state election, denoted by �RL, is equal to 1. Thus, the equilibrium in
the subgame after R and L split the �rst two states gives rise to the two cuto¤
points ��R (1; 1; �; �) and �

�
L (1; 1; �; �). Because � >

1+1
4 , �

�
R (1; 1; �; �) > �.
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4.2.2 Voting in the second state, MI.

In this section we will show how the cuto¤ points on �MI for di¤erent voting
outcomes in state 2 depends on the voting outcome in New Hampshire, the �rst
primary. In particular, we will show that when love-hate ratio for the overall
election is moderate, probability that candidate R wins Michigan increases as
the winner of New Hampshire changes from L to M to R. In particular, we
will analyze how �hR changes with h, where h 2 fR;M;Lg is winner in New
Hampshire and �hR is the lower bound on �2 for candidate R to win the second
state.
Given the voting outcome h 2 fR;M;Lg of state 1, the �nal election outcome

depends on the voting outcome of state 2 and the electoral preference of state 3,
�3. Figure illustrates how the election outcome depends on the voting outcomes
of the �rst two states and �3.
Consider the voting game in state 2 after candidate R wins the �rst state.

State 2�s voting outcome is pivotal only when M will win state 3, i.e. �3 < �.
Therefore, we get UrR � UrM = GCA (�CA) (vrR � vrM ), where GCA is the
cumulative distribution function of the prior on �CA. But the payo¤ di¤erence
when M wins state 2 v.s. when L wins state 2 gets even smaller. Therefore,
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we get

�Rr =
G (�)�

1
2 �

G(��;�)
2 �� G(��;�)

6 (1� �)� G(�;�RLR )
3 (1� �)

=
G (�)�
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�
1� 1

3G (��; �)�
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�
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��
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�
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�
�; �RLR

��
�

=
G (�)�

1
3

�
2G (�;1) +G

�
�; �RLR

�
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�
�RLR ;1

��
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3

�
G (��; �)�G

�
�; �RLR

��
(1� �)

=
G (�)�

G (�;1) + 1
3

�
G (��; �)�G

�
�; �RLR

��
(1� �)

,

where � = �MI is the inherent love-hate ratio of extreme voters in Michigan
and G = GCA, � = �CA. So a win by R boosts the love-hate ratio of right-wing

voters in the second state. The ratio �Rr
� is higher the weaker the general love-

hate ratio is, and the less likely an extreme candidate will win state 3. Because
the game is symmetric, �Ll = �Rr . �

R
r is di¤erent from the payo¤di¤erence ratio

in a simultaneous election conditional on one state being taken by candidate R.
Conditional on one state being R, a R-win or anM -win makes a di¤erence when
state 3 is taken by either M or L. But in a sequential election, L never wins
state 3 if R wins state 1 and state 2 is taken by either R or M . In other words,
voting outcome in the �rst two states can change a left-wing state from being
taken by L to being taken by M .
Consider the voting game in state 2 after L wins the �rst state. We get that

�Lr =
1
2��

G(��;�)
2 + G(��;�)

6 (1� �) + G(�;��R(1;1))
3 (1� �)

G (�)

=
1

3

�
1 +G

�
�RLR ;1

��
��

�
G (��; �)�G

�
�; �RLR

��
G (�)

.

If M wins the �rst state, �Mr = �. This is because L will not win California
unless L wins Michigan. Thus when comparing expected payo¤ from R being
the winner in Michigan and expected payo¤ from M being the winner, a voter
does not need to consider a M � L tie in other states. In other words, when
Michigan�s vote matters, winner in Michigan is winner of the election. Because
whether R or M wins Michigan matters when at least half of the population in
California is left-wing, and whether L or M wins MI matters when California
is right-wing. That the prior probability of California being left-wing or right-
wing implies that within-state love-hate ratio is equal to inherent pereference
intensity.
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Therefore, we see that �hr increases as h changes from L to M to R. Right
wing voters�love-hate ratio for the voting outcome in the second state is higher
the closer the voting outcome in the �rst state is to their preferred choice. This
is not surprising because when � < 1, UR � UM is highest when there is an
R � L tie, second when there is an R �M tie, but negative conditional on an
M �L tie. Conditional on R winning NH, anM �L tie between NH and CA is
ruled out, therefore boosting the payo¤ di¤erence between a victory by R and
a victory by M , while reducing the payo¤ di¤erence between a victory by M
and a victory by L. If L wins the �rst state, then voting for R is very risky: it
is good in an R� L tie but bad in an M � L tie. So �LR =1 if

� � G (��; �)�G (�; ��R (1; 1))
1 +G (�;1)�G (�; ��R (1; 1))

This term is increasing in �. It is su¢ cient if � < Gk (��k; �k), the prior
probability that a voter in California is moderate.

Proposition 2 If u < 0,� < 1
4 , and � > min

�
�u
2 + log 2;

3
2

	
, then �RR (u; �; �) <

�MR (u; �; �) < �LR (u; �; �).

This follows immediately from Proposition 1 because right wing voters�
within-state love-hate ratio increases while left-wing voters�within-state love-
hate ratio decreases as the winner of New Hampshire changes from L to M to
R.
Note that �RR is still greater than �. So the within-camp coordination prob-

lem still exists in the primary of Michigan. But this problem is less severe
when the the camp�s favorite candidate wins New Hampshire and more severe
when the camp�s worst enemy wins New Hampshire. If we de�ne �h

� as the de-
gree of sensitivity of Michigan�s within-state love-hate ratio w.r.t. history, then
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the following proposition says that the larger moderate population in California
is, the more sensitive MI�s love-hate ratio is to history. On the other hand,
the stronger MI extreme voters�inherent love-hate ratio is, the more sensitive
their within-state love-hate ratio is to good news, i.e. to the history where their
favorite candidate wins NH, but the less sensitive their within-state love-hate
ratio is to bad news, i.e. to the history where their worst enemy wins N.

Lemma 4.1 log �
R

� increases with both GCA (�CA) and �, while
���log �L� ��� in-

creases with GCA (�CA) but decreases with �.

4.2.3 Voting in the �rst state, NH

Because the �nal outcome depends on the voting result in MI and CA, eg.
when M and L splits MI and CA, victory by R in NH results in a random draw
between all three candidates, while victory byM in NH results in a solid victory
byM in the �nal election, the expected payo¤ di¤erence between a victory by R
and M in NH is a linear combination of the payo¤ di¤erence from �nal election
outcome between R and M and M and L, i.e. vR� vM and vM � vL. Roughly
speaking, a victory by R instead of M may change the �nal winner from R to
M , fromM to L, from L toM . Because R and L are symmetric in every state,

�;r =
�� c;
1� c;�

where

c; =
1
3P (m)F

�
�1; �RL

�
� 1
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2
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P (r)
P (m)
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+ 1
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1
6 �

1
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P (r)
P (m) +

F(�RR;�MR )
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P (r)
P (m)

.

Because � < 1; �;r is decreasing in c
;.

Outcome in the �rst state can change outcome in the second state and/or
outcome in state 3. The reason a right-wing voter may strategically vote for
M instead of her favorite candidate R is for fear of a tie between M and L and
getting L elected instead of M in that situation. Roughly speaking, M and L
tie in the overall election when one of the other two states is moderate and the
other is left-wing. But when R wins the �rst state, and M wins the second
state, no one votes for L in the third state and M will win the third state and
the �nal election even if the median voter in CA is left-wing.
When � < 1, an extreme voter worry quite a lot about failing to coordinate

with a moderate state and letting L win the election. Note that for the second
state, after one victory by M , a victory by R ensures that L cannot win the
election. Therefore, for NH, if the e¤ect from changing MI from L to M is
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small, then the love-hate ratio for NH voters is smaller than that for MI voters
when M wins NH. That is, �;R > �MR . But if the e¤ect of changing MI from L

to M is big, then �;R < �MR .

4.2.4 Why Does New Hampshire want to vote �rst?

Does a median voter in NH prefer to vote �rst or second in a sequential primary?
That is, does the median voter in NH prefer to vote �rst or to switch order with
Michigan? This depends on the distribution of preferences in NH and MI. If
the median voter in NH and MI are both right-wing, then NH�s median voter
weakly prefers the more aggressive state to vote �rst. If NH and MI are ex
ante identical, conditional on the super majority in both states being of the
same camp, payo¤ does not depend on whether NH swaps order with MI. If
NH is only mildly right-wing and MI is moderate, then whether NH votes �rst
or after knowing that M wins MI may change the identity of the winner in
NH. More speci�cally, if �NH is between �MR and �;R andM wins MI regardless
of order, then voting �rst makes right-wing voters behave more aggressively if
�;R < �MR , while voting after being assured that M wins MI makes them behave
more aggressively if �;R > �MR . Thus, conditional on NH being mildly right-wing
and MI being moderate, median voter in NH prefers to vote �rst if and only if
�;R < �MR .
However, if MI is of the opposite camp from NH, then the median voter in

NH de�nitely prefers to vote �rst. This is because the winner in MI will be M
instead of L if NH votes �rst and R wins NH, which makes the �nal election
outcome more favorable to NH�s median voter, or because NH is not right wing
enough and thus voting after MI implies voting after knowing that L has won
MI, which makes right wing voters in NH more conservative and results in a
victory by M instead of R in NH even though the super majority in NH prefers
R.
Thus if �;R > �MR , conditional on the median voter in NH being right wing,

whether she prefers that NH votes �rst or MI votes �rst depends on the relative
probability of

��
�NH ; �MI

�
2
�
�MR ; �

;
R

�
�
�
�;L; �

R
R

�	
and

��
�NH ; �MI

�
2
�
�;R;1

�
�
�
�;L; �

R
L

�
[
�
�;R; �

L
R

�
�
�
�RL ;1

�	
.

If the median voter in NH is moderate, then they prefer to vote �rst if and
only if knowing that M wins NH tampers the behavior of extreme voters in
MI and makes a victory by M more likely. That is, if median voter in NH is
moderate, she prefers to vote �rst if and only �;R < �MR .
Thus we can conclude that if �;R < �MR , expected payo¤ from voting �rst is

weakly higher than that from voting second for any �NH . That is, voting �rst
is unambigiously better for voters in New Hampshire when �;R < �MR . �

;
R < �MR

when the e¤ect of in�uencing the second state�s behavior is su¢ ciently large.
Thus voting �rst is unambigiously better than voting second if inherent love-
hate ratio is small. For example, when � is smaller than the probability of a
moderate voter in California, winnowing happens in the second state and thus
winning the �rst state is necessary for an extreme candidate to win the election.
Therefore, voting �rst is better than second.
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4.3 Simultaneous (Front-loaded) Election

The payo¤ di¤erence to voter i in state k when candidate c wins state k v.s.
candidate c0 depends on how the voting outcome in state k a¤ects the election
outcome. We will focus on symmetric equilibria in which every voter in very
state use the same voting strategy. Suppose voters in the other two states
use voting strategy s such that R wins state k if �k > ~� and L wins state k
if �k < �~�. Then the probability that R wins state k is G (�~�). Denote by
pF (c) the probability that candidate c wins a state. This vector of probabilities
depend on the voting strategy s employed and is determined by ~�.

UFR � UFM = PF (R)PF (M) (vcR � vcM ) + PF (R)PF (L)
(vcR � vcM ) + (vcR � vcL)

3

+PF (M)PF (L)
(vcR � vcM )� (vcM � vcL)

3

=

�
PF (R)P (M) +

2

3
P (R)P (L) +

1

3
P (M)P (L)

�
(vcR � vcM )

�PF (L)
�
PF (M)� PF (R)

�
(vcM � vcL) .

Because the game is symmetric and we are looking for symmetric equilibria,
PF (R) = PF (L) and we get

�F : =
UFR � UFM
UFM � UFL

=
�� cF
1� cF�

where

cF =
2
3P

F (M)PF (L)� 2
3P

F (R)PF (L)

2PF (R)PF (M) + 2� 2
3P

F (R)PF (L) + 2� 1
3P
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=
1
3

�
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�
4
3P
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3P
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1

2

1� PF (R)
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2 + PF (L)
PF (M)

.

Note that cF is a function of ~�, and thus uF is a function of u and ~�.
Given that voters in the other two states use symmetric voting strategy

v characterized by ~�, love-hate ratio for voting outcome of the state is given
by uF (u; ~�). Because the game within the state is symmetric, a� = 0. In
this equilibrium, an extreme voter votes for her favorite candidate if her signal
�̂i > �uF (u;~�)

2 . Note that when � < 1, �F (�; ~�) < � if and only if PF (R)
PF (M)

<

1. Therefore, in a symmetric equilibrium, the cuto¤ for R to win a state is
�FR (u; �; �) > ��R (u; u; �; �). De�ne �

F (~�;u; �; �) = ��R
�
uF (u; ~�) ; uF (u; ~�) ; �; �

�
.
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�F (~�) is increasing for ~� � ��R (u; u; �; �) and �
F (��R (u; u; �; �)) > ��R. De�ne

the �xed point to be 1 when �F (~�) > ~� for all ~� > ��R (u; u; �; �). Then �
F
R is

a �xed point of the function. �FR = 1 is a simultaneous voting equilibrium in
which all voters vote for M .

4.4 Comparison between Sequential and Simultaneous Elec-
tion

4.4.1 Voting Behavior in State 1 (NH) under sequential and front-
loaded election

Comparing �;R and �FR is equivalent to comparing c; and cF . When � < 1,
�;R < �FR if and only if c

; < cF .

Proposition 3 For � big enough (for example when P (r) < 1
4), or u small

enough, voters in state 1 behave more aggressively under a sequential election
than under a simultaneous election.

It amounts to �nding conditions under which c; < cF . If we ignore the
e¤ect of a¤ecting other states voting behavior, we will be comparing cF with

1
3P (m)F

�
�1; �RL

�
P (m)F

�
�RR;1

�
+ P (m)P (r) + 2P (r)P (l) + 1

3P (m)F
�
�RL
� .

Because NH voters choose without knowing the voting results of MI and CA
in both systems, expected payo¤ di¤erence between R-victory and M -victory
depends on probability of M � L tie, R � L tie and R �M tie in MI and CA.
Payo¤ di¤erence between an R-NH andM -NH is largest when R and L split MI
and CA. More importantly, an R�L tie o¤set worries about anM�L tie. The
more likely an R�L tie is relatively to an M �L tie, the higher love-hate ratio
is. Because every state is ex ante identical, the more likely an extreme voter
will win a state, the higher �F is. When NH votes in a sequential primary, an
R-L tie does not happen. If MI is R and CA is won by L in a simultaneous
election, then in a sequential election, left-wing voters in CA will coordinate
with moderates and thus M will win CA instead of L, and thus an R � L tie
in simultaneous primary turns into an R �M tie in a sequential primary. If
MI is won by L and CA by R, then right-wing voters in CA coordinate with
moderates and ensure a victory by M in CA instead of R if M wins NH. Again
an R � L tie turns into an R �M tie. In other words, victory by M in NH
forces voters in CA to coordinate with moderates in CA and in a sense with
moderates in NH so thatM wins the election instead of a random draw. If this
channel is important, �F > �;. This channel is important if the probability
that an extreme candidate wins a state in a simultaneous election is low.

r voters in NH worry about M �L tie. If the probability of an M �L tie is
smaller, then love-hate ratio is bigger. An M � L tie happens in a sequential
primary with half of the probability of that in a simultaneous primary. This is
because if MI is M and CA is L, a victory by R in NH forces left-wing voters in
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CA to coordinate with moderates, which result in a sure victory by M instead
of an M � L tie. This channel increases love-hate ratio under a sequential
primary relative to that under a simultaneous primary.
Which channel is more important depends on whether anR�L tie or an L�R

is more likely or a L�M tie. By symmetry, �; is higher if PF (R) < 1
2P

F (M).
Because voters behave too conservatively in a strategic voting equilibrium, this
is true whenever ex ante share of an extreme voter is no bigger than half of that
of a moderate voter. This explains why �;R < �FR when � is large.
In a sequential primary, who wins NH a¤ects voting behavior in MI and CA.

In particular, it a¤ects voting behavior in MI. In particular, victory by R in
NH makes it harder for L to win MI, thus making an L � M tie less likely.
This e¤ect increases NH�s love-hate ratio in a sequential primary. This e¤ect is
larger when intrinsic love-hate ratio in MI is smaller, or when the ex ante share
of extreme preference voters is smaller.

4.4.2 Comparing election winner between Simultaneous and Sequen-
tial Primary

I will consider parameters such that extreme voters in New Hampshire behave
more aggressively in a sequential election than in a simultaneous election, i.e.
� < �;R < �FR. In this situation, �

h
R > � for any history in both election systems.

Therefore, M always wins a state whenever M is the condorcet winner in that
state. Thus, ifM is the condorcet winner in at least two states, M will win the
election regardless of primary system. I then need to discuss only cases where
either an extreme candidate is the Condorcet winner in at least two states, or
the Condorcet winner is di¤erent in every state.

rrr: it seems straightforward that the a better system selects candidate R
more often. The Condorcet winner in state k is R if and only if �k > �, but the
winner in state k is R if and only if �k > �hR where h is either F which indicates
the simultaneous system or a history in the sequential system. R wins the elec-
tion if R wins at least two states. Because h 2 f;; R;M;RR;RM;MMg given
that �k > � for every state k, �hR > �FR. Therefore, if R wins in a simultaneous
system, R wins in a sequential system, and there are

�
�NH ; �MI ; �CA

�
such that

R wins in a sequential system but M wins in a simultaneous system.
rrm or rmr or mrr: h 2 f;; R;M;RR;RM;MR;MMg.
rrl: R wins if and only if R win both r�states. If R wins only one r-state

and M wins the l�state, or if R wins no r-states, then M wins the election. If
R wins an r-state in simultaneous election, then R wins that state in sequential
election because �hR < �FR for all possible histories an r state faces in a sequential
election in this case. Therefore, whenever R wins a simultaneous election, R
would win a sequential election. If R wins only one r-state and L wins the l-
state, then all three candidates tie in the election and the outcome is a random
draw among the three. Because � < 1, all voters prefer a sure victoyr by M to
a random draw among every candidate. Thus this is the worst election outcome
in this case. Because �hL = �1 for h 2 fRM;MRg, when California�s vote
matters, left-wing voters there will not vote for L and L will not win California
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if the �rst two states are both right-wing. Therefore, a sequential election never
produces the worst outcome, a three-way tie, while a simultaneous election may.
So sequential election produces better outcome conditional on rrl.

rlr: R wins the election if and only if R win both r-states. The set of histo-
ries that an r�state may face in this case is f;; RM;RL;MM;MLg. Therefore,
if an R wins an r-state in simultaneous election, R would win in a sequential
election as well. Therefore, R wins a simultanoues election only if R wins a
sequential election. If a sequential primary results in a three-way split, then the
winner of each state in the order of voting must be RLM because R will never
win California in a sequential primary after history ML. The outcome under
sequential is worse than that under simtulaneous election if and only if the win-
ner in order under sequential is RLM while that under simultaneous is MLM .
The election outcome would change from 1

3R+
1
3M+ 1

3L, a random draw among
all, to M when the system becomes simultaneous if

�
�NH ; �MI ; �CA

�
2�

�;R; �
F
R

�
�
�
�1; �RL

�
� (�; ��R (1)) .

This is the only parameter range in this case where the outcome under sequential
is worse than that under simultaneous. On the other hand, the outcome would
change from R to 1

3R +
1
3M + 1

3L when the primary becomes simultaneous if�
�NH ; �MI ; �CA

�
2 �

�;R; �
F
R

�
�
�
�1; �RL

�
�
�
�FR;1

�
.

Because R is the best outcome and a random draw among all is the worst, the
second e¤ect more than cancels out the �rst if GCA

�
�FR;1

�
< GCA (�; �

�
R (1)).

Because GCA (��; �) > 1
3 , this is true only if the probability that R will win

California in a simultaneous election is less than 1
6 or only if GCA (�; �

�
R (1)) >

1
6 .

But then, MLM !MLR�
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�
�
�
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�
.

This e¤ect cancels out the �rst if GCA
�
�;R; �

F
R

�
< GCA

�
�FR;1

�
.

The only problem is whenGCA
�
�FR;1

�
< min

�
GCA (�; �

�
R (1)) ; GCA

�
�;R; �

F
R

�	
.

Then GCA
�
�; �FR

�
> 2GCA

�
�FR;1

�
.

Suppose the parameters are such that extreme voters in New Hampshire
behave more aggressively in a sequential primary than a simultaneous primary.
Because M always wins a state whenever M is the condorcet winner in that
state, while there is always too much coordination cross camp other than in
the last primary in a sequential election after the camp�s favorite candidate
splits with M , conditional on the median voter in every state supports the
same candidate, the universally favored candidate is the winner with higher
probability in a sequential election than in a simultaneous election. In addition,
sequential primary facilitates coordination across camp across states and thus a
three-way split between all candidates is less likely to happen under a sequentail
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primary. When � < 1, every voter prefers a sure victory by M than a random
draw among all candidates. Thus every voter prefers a sequential primary
conditional on the simultanoues primary outcome being a three-way split. In
general, if the median voter in two states support the same candidate, then
sequential primary is preferred unless the candidate most preferred by median
voters in the last two states, MI and CA, is an extreme candidate, say R,
and the median voter in the NH supports the other extreme candidate, say
L. In the latter situation, the eventual winner may be M instead of R if MI
is the probability of right-wing voter is not high enough. This is due to the
disproportionate impact of the winner in NH in a sequential primary.

4.4.3 For NH � Sequential or Simultaneous?

If voters in NH behave more aggresively in a sequential election, then if the
median voter in NH is extreme, he must prefer sequential primary to simulta-
neous primary. In fact, even if voting behavior is less aggressive in a sequential
election, as long as the di¤erence is small, if median voter in NH is extreme, he
still prefers sequential primary. This is because the voting outcome in NH may
change voting outcome in MI and/or CA toward NH�s median voter�s preferred
candidate. For example, if �1 > max

�
�FR; �

;
R

	
, then the voting outcome in

NH is R regardless of primary system. This makes it harder for L to win MI
than if the primary system is simultaneous. If �MI < �RL , then moving to
a sequential primary changes the voting outcome in MI from L to M , which
futher changes voting outcome in CA from L to M thus �nal winner from L to
M if �CA < �FL . Suppose �2 is such that outcome in MI does not depend on
primary system either. Then it changes CA�s voting outcome from L toM and
�nal election outcome from a random draw among all three to M if �CA < �FL
and the primary system is sequential intead of simultaneous.
If in addition to the e¤ect of changing voting outcome in MI and/or CA

from L to M or from M to R, voting behavior in NH is more aggressive in a
sequential primary, then moving to a sequential primary changes winner in NH
from M to R if �NH 2

�
�;R; �

F
R

�
. That r voters in NH vote for R with positive

probability in equilibrium indicates that expected payo¤ if R wins NH is higher
than that if M wins NH.
If the median voter in NH is moderate, then the median voter prefers se-

quential primary if and only if

F
�
�FL
�2 � F ��FL ;���F ��ML �� F ��FL ; �ML �F ��FL� > 0.

This holds if

F
�
�FL
�
>

�
1 +

p
2
�

2 +
p
2
F (��) .

So if voters don�t behave too conservatively in a simultaneous election, then if
NH�s median voter is moderate, he prefers sequential election. In a sequential
election, the e¤ect of forcing forcing left-wing voters to coordinate with NH�s
moderates when R wins MI makes sequential election preferable to a moderate
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voter in NH. However, if both MI and CA are extreme on the same side,
eg. both left-wing, then left-wing voters in CA are much more aggressive in a
sequential election because they are now sure of an M � L tie. In addition,
extreme voters in MI behave more aggressively when then know that M wins
NH. This increases the probability of a �nal victory by an extreme candidate if
the primary system is sequential. Which one is better for a moderate median
voter depends on which happens with higher probability.

5 Conclusion

This paper studies preference aggregation in a multi-candidate contest when the
preference of the electorate is not common knowledge. In a multi-candidate
contest, voters have an incentive to coordinate with supporters of their second
choice to avoid a victory by the least favorite candidate. I show that the
coordination incentive is stronger when love-hate ratio is weaker. I then use
this model as cornerstone to compare a simultaneous election in which several
states vote at the same time and a sequential election in which each state votes
one by one after observing outcomes of previous states. I show that when the
prior probability of extreme voters is small or when the love-hate ratio of extreme
voters is small, coordination incentives are stronger for extreme voters and thus
they vote more aggressively in a sequential election than in a simultaneous
election. As a result, the prior probability that the winner in a state is not the
�rst choice of the median voter is smaller in a sequential election.

6 Appendix

6.1 Proof for lemma ??.

Proof. It su¢ ces to show that

lim
N!1

N Pr fVR = VM > VLj�̂i; pg =
f (�Rj�̂i)

jp0R (�R)� p0M (�R)j
.

Let

Hu = f(VR; VM ; VL) jVR = VM > VL where Vc � 0 for c = R;M;Lg

Then

Pr fVR = VM > VLj�̂i; pg =
Z 1

�=�1
P (HujN; p (�)) f (�j�̂i) d�.

Let
H = f(VR; VM ; VL) jVR = VM where Vc � 0 for c = R;M;Lg

and H� = f(VR; VM ; VL) jVR = VM where Vc � 0 for c = R;M;Lg. Then H is
a hyperplane in (N [ f0g)3 spanned by w1 = (1; 1; 0) and w2 = (0; 0; 1).
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Given �, we �rst show that yN :=
�h
N
p
pR (�) pM (�)

i
;
h
N
p
pR (�) pM (�)

i
; [NpL (�)]

�
is a near maximizer

P
c pc 

�
x(c)
Npc

�
over x in H� where  (�) = � (1� log �)� 1.

H� = f
 (1; 1; 0) + j (0; 0; 1) j
 � 0 and j � 0g. Let

(
�; j�) 2 arg max

�0;j�0

�
pR 

�



NpR

�
+ pM 

�



NpM

�
+ pL 

�
j

NpL

��
.

Because the derivative is 1 for 
 = 0 or j = 0 and the function goes to 0 as

 or j ! 1, the solution must be interior of H�. Thus 
�; j� satisfy the �rst
order condition:

0 = � log 


NpR
� log 


NpM

0 = � log j

NpL
.

So 
� = N
p
pRpM and j� = NpL. Then yN as de�ned is a near maximizer.

pR 

�

�

NpR

�
+ pM 

�

�

NpM

�
+ pL 

�
j�

NpL

�
= pR

�

�

NpR

�
1� log

�

�

NpR

��
� 1
�

+pM

�

�

NpM

�
1� log

�

�

NpM

��
� 1
�

+pL

�
j�

NpL

�
1� log

�
j�

NpL

��
� 1
�

= �1 + 
�

N

�
1� log

�

�

NpR

�
+ 1� log

�

�

NpM

��
+
j�

N

�
1� log

�
j�

NpL

��
= �1 + 2


�

N
+
j�

N
= 2

p
pRpM � (1� pL)

= 2
p
pRpM � pR � pM

= � (ppR �
p
pM )

2 .

Then using theorem 3 in Myerson (2000),

lim
N!1

Pr fHjNp (�)g
Pr fyN jNp (�)g (2�) (det (M (yN )))

�0:5 = 1

whereM (yN (�)) =

" 2h
N
p
PR(�)pM (�)

i 0

0 1
[NpL(�)]

#
and limN!1N �M (yN ) =
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"
2p

PR(�)pM (�)
0

0 1
pL(�)

#
. By Myerson (2000),

Pr fyN jNp (�)g � e
N�

�
pR 

�

�
NpR

�
+pM 

�

�

NpM

�
+pL 

�
j�
NpL

��
�c2fR;M;Lg

p
2�yN (c)

=
e�N(

p
pR�

p
pM)

2

(2�)
3
2

q
(
�)

2
j�

=
e�N(

p
pR�

p
pM)

2

(2N�)
3
2
p
pRpMpL

.

(det (M (yN )))
�0:5 �

�
1

N2ppRpMpL

��0:5
= N

qp
pRpMpL.

So

Pr fH�jNp (�)g � Pr fyN jNp (�)g (2�) (det (M (yN )))
�0:5

� N
qp

pRpMpL (2�)
e�N(

p
pR�

p
pM)

2

(2N�)
3
2
p
pRpMpL

=
e�N(

p
pR�

p
pM)

2

p
2�N

pp
pRpM

.

Given " > 0, let � be such that jpR (�)� pM (�)j � " for all � such that
j� � �Rj � �. De�ne �� := f� : j� � �Rj < �g. Then want to show that
limN!1

PrfHjNp(�)g
Pr(H�jNp(�)) = 1 for � 2 ��. Then show that limN!1N Pr fH�jNp (�)g =

0 for � =2 ��. Then

lim
N!1

N Pr fVR = VM > VLj�̂i; pg

= lim
N!1

N

Z
�

Pr fHjNp (�)g f (�j�̂i) d�

= lim
N!1

�
N

Z
�2��

Pr fHjNp (�)g f (�j�̂i) d� +N
Z
�=2��

Pr fHjNp (�)g f (�j�̂i) d�
�

= lim
N!1

N

Z
�2��

Pr fHjNp (�)g f (�j�̂i) d� + lim
N!1

N

Z
�=2��

Pr fHjNp (�)g f (�j�̂i) d�.

lim
N!1

N

Z
�=2��

Pr fHjNp (�)g f (�j�̂i) d�

� lim
N!1

Z
�=2��

N Pr fHjNp (�)g f (�j�̂i) d�

= 0.
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And

N

Z
�2��

Pr fHjNp (�)g f (�j�̂i) d�

2

2664
p
2f (�Rj�̂i)rq

pM (�R)
pR(�R)

p0R (�R)�
rq

pR(�R)
pM (�R)

p0M (�R)

� �;
p
2f (�Rj�̂i)rq

pM (�R)
pR(�R)

p0R (�R)�
rq

pR(�R)
pM (�R)

p0M (�R)

+ �

3775

�
Z
�2��

N

0BB@
p
2rq

pM
pR
p0R (�)�

rq
pR
pM
p0M (�)

1CCA
�1

Pr fHjNp (�)g d�

=

" p
2f (�Rj�̂i)

p0R (�R)� p0M (�R)
� �;

p
2f (�Rj�̂i)

p0R (�R)� p0M (�R)
+ �

#

�
Z
�2��

N

0BB@
p
2rq

pM
pR
p0R (�)�

rq
pR
pM
p0M (�)

1CCA
�1

Pr fHjNp (�)g d�

Z
�2��

N Pr fHjNp (�)g d�

=

Z �R+"

�=�R�"

p
Ne

�N
�p

pR(�)�
p
pM (�)

�2
p
2�
qp

pR (�) pM (�)
d�.

Write x =
p
2N
�p

pR (�)�
p
pM (�)

�
. Then

dx =
p
2N

p
pM (�)p

0
R (�)�

p
pR (�)p

0
M (�)

2
p
pRpM

d�

=
p
N

rq
pM
pR
p0R (�)�

rq
pR
pM
p0M (�)

p
2
pp

pRpM
d�

Z
�2��

N Pr fHjNp (�)g d�

=

Z p
2N

�p
pR(�R+")�

p
pM (�R+")

�
x=

p
2N

�p
pR(�R�")�

p
pM (�R�")

�
p
2rq

pM
pR
p0R (�)�

rq
pR
pM
p0M (�)

1p
2�
e�

x2

2 dx.
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Then

lim
N!1

Z
�2��

N

0BB@
p
2rq

pM
pR
p0R (�)�

rq
pR
pM
p0M (�)

1CCA
�1

Pr fHjNp (�)g d�

= lim
N!1

Z p
2N

�p
pR(�R+")�

p
pM (�R+")

�
x=

p
2N

�p
pR(�R�")�

p
pM (�R�")

� 1p
2�
e�

x2

2 dx

= 1.

Let � ! 0. Then we get limN!1N Pr fVR = VM > VLj�̂i; pg =
p
2f(�Rj�̂i)

p0R(�R)�p0M (�R)
.

Need
p
2f(�j�̂i)sr

pM (�)

pR(�)
p0R(�)�

sr
pR(�)

pM (�)
p0M (�)

to be absolutely continuous:

6.2 Additional proofs and lemmas for Section??

6.3 Proofs for Proposition 1

Lemma 6.1 @�R(a;ur;ul)
@a 2 (0; 1) if � > uR+uL

4

Proof. Again, if �R >
�
�; a� 1

2 ~uR; a+
~uL
2

	
, then

@pR (�R; a)

@a
= �F (�R � �) + pR (�R)

@pL (�R; a)

@a
= pL (�R) .

So

@�R (a)

@a
= �

2@pR(�R;a)@a + @pL(�R;a)
@a

2p0R (�R) + p
0
L (�R)

=
2F (�R � �)� 1

1� e��R+a�
~uR
2 + 1� e�(�R��)

=
1� e�(�R��)

1� e��R+a�
~uR
2 + 1� e�(�R��)

2 (0; 1)

=
1

2

ea�
uR
2 � e� +

p
e2� + e2a�uR � e��+a+ 1

2uLp
e2� + e2a�uR � e��+a+ 1

2uL

=
1

2

 
1 +

ea�
uR
2 � e�p

e2� + e2a�uR � e��+a+ 1
2uL

!

because �R (a) > max
�
a� uR

2 ; �
	
.

Lemma 6.2 @�R(a;~uR;~uL)
@~uR

< 0 if � > uR+uL
4
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Proof.

@�R
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= �
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Lemma 6.3 @â(a;uR;uL)
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and
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Then
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And if (3) does not hold, if � is small enough such that whenever (3) does not
hold, a� uR

2 > �, then
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2 > �R and such that � <

3
8e
4�. In

addition, if � 43e
�4� < 1

8 , then

@� (a;uR; uL; �)

@uR
< �1

4

 
ea�

uR
2

e�R
� 1
4

ea�
uR
2

e�R

!

= �1
4

3

4

ea�
uR
2

e�R
.

Then either @�(a;uR;uL;�)
@uL

> 1
4
e�a�

uL
2

e��L
, or �a � uL

2 > �, and thus â0 (a��) >

1
4 (1 + �) and

@�(a;uR;uL;�)
@uL

> 1
4
3
4
e�a�

uL
2

e��L
. In both cases, @�(a;uR;uL;�)@uL

> 1
4 (1� â

0 (a��)) 14
e�a�

uL
2

e��L
.

Lemma 6.4 If � < min
n
e�2��

uR+uL
2 ; 332e

4�
o
,uR+uL < log 32 and 2��

uR+uL
2 >

log 3, then @���R
@uL

> 0.
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Proof.

@���R
@uL

=
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@a��
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+
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=
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@a
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�
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2 � 1

2
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�
�
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1
2uL
�
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1
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>
1

2
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�
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2
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2
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=
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2
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2
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2

�
3

2
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�
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Therefore, @�
��
R

@uL
> 0 if

1. uR + uL < log 32 and 2� �
uR+uL

2 > log 3, or

2. 1
2e
��uR+uL

2 � 3
2e
�� + e

uL
2

�
3
2e
�(uR+uL) � 1

�
> 0 and uR > uL because in

that case, a�� < 0.

Lemma 6.5 When love-hate ratio on both sides are equal, the ex ante proba-
bility that over coordination happens decreases with � if � > u+ log 32 .

Proof. This is because

@��R (u; u; �; �)

@�
= e��

�
R

e� +
e2�+ 1

2 e
��+u

2p
e2�+e�

u
2 �e��+

u
2
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�
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u
2 �e��+

u
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u
2 �e��+

u
2

2
< 1
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because 3
2e
��+u

2+
u
2 < 1, and thus 3

2e
��+u

2 < e�
u
2 . Thus the derivative of the

ex ante probability of over coordination w.r.t. � is

@
�
e��� � e����R

�
@�

= ��
�
e��� � e���

�
R
@��R (u; u; �; �)
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�
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�
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�
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�
< 0.

6.4 Frontloaded Primary System

Lemma 6.6 For � large enough and � small enough such that there exists
a unique both responsive equilibrium, �F

�

R (u) > ��R (u) for all u < log 2 and
1
2 e

����R(u)

1�e���
�
R
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1
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1
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1
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Proof. Because uR = uL = u, a�� = 0 and thus
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2
.
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and this is a both responsive equilibrium,
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De�ne ~�F to be the mapping in the front loaded election.

~�F (�;�) = ��R
�
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�
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�
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Then
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Thus for all � such that uF (�; �) is well-de�ned, i.e. for all � such taht cF < �,

we have @~�F (�;�)
@� > 0 because @��R(u;u)

@u < 0 because � < 1,

Because � < 1 and
1
2 e

����R(u)

1�e���
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(u) < 1, u

F
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R (u) ; �) < u, and thus �FR (�
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��R (u). For all � such that cF (�) > 0, we have uF (�; u) < u, and thus
�FR (�; u) = ��R
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�
> ��R (u) because �
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R (u) < 0. Because equilibrium is

both-responsive, � � �, thus cF (�; u) > 0 for all � � � if 12e
��� < 1

3 . Thus
either the �xed point of �FR as a function of � is above �
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R (u), or it is equal to

1, and thus in equilibrium everyone votes for M . Even if 12e
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3 , for �
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Thus there exists no �xed point smaller than ��R (u) given that �
F
R (�

�
R (u) ; u) >

��R (u).
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