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Data Analysis
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Period: 10th Jan - 2nd Feb (2008)

The shaded areas 
present the different 
numbers of freezing 
days during the 2008 
ice/snow storm event 
in South China. 



(a) Average EVI values over the EVI study period were calculated, and the rectangular is the location of the study area (latitude between 24°N 
and 30°N, and longitude between 110°E and 118°E) in South China. (b) The shaded areas are the Extensive Vegetation-Impacted Areas 
(EVIAs), and the contour lines represent the number of freezing days.
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Delineation of Extensive Vegetation-Impacted Areas

where j is one of seven EVI study phases (i.e., DOY81, 
DOY97, DOY113, DOY129, DOY145, DOY161 and DOY177 
phases). 

The enhanced vegetation index (EVI) is an 
'optimized' index designed to enhance the 
vegetation signal with improved sensitivity in high 
biomass regions and improved vegetation 
monitoring through a de-coupling of the canopy 
background signal and a reduction in atmosphere 
influences



Delineation of Severe Vegetation-Impacted Areas
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where is the average EVI at phase j over the period of 2000 to 2007. 
Sanomaly(i, j) and Sstd(j) are related EVI anomaly and standard deviation.



The distribution of Severe Vegetation-Impacted 
Areas (SVIAs) shaded in the Study Area and (b) a 
zoom in view of the SVIAs in Nanling National 
Forest Park (NNFP).

(Stone, 2008, Science)



Confirmation of the vegetation damages in the SVIAs. (a) Landsat 7 ETM pre-storm image of 
Path 123 Row 043 acquired on 17 Jan. (b) Landsat 7 ETM post-storm image of Path 123 Row 
043 acquired on 3 March 2008. The influence of SLC-off problem (see the text for the details) 
was removed. (c) and (d) are the 2008 Leaf Area Index (LAI) and Land Surface Temperature 
(LST) anomalies for the period of DOY81 to DOY192, respectively.





Latitude: 21oN~25oN
Longitude: 111oE~116oE
21 stations involved            

• Data: from 1960 to 2005

Monthly average of 
daily Tmax, Tmin, 
precipitation, relative 
humidity 

(from: Chinese National 
Meteorological Center) 

Area interested and Dataset (1960 to 2005)



land use in 1980 and Locations of 
21 measuring stations

land use in 2000 and 17 grids 
with resolution 1º×1º 
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annual time series of the 
anomalies of the RH

annual time series of the 
anomalies of the P
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numerical modeling



• Total basin area 453,690 km2

• Average Annual precipitation 1477mm/yr
• Four river systems: West River, North River, East River, Pearl River Delta

The Pearl 
River basin 



From:  http://www.hydro.washington.edu/Lettenmaier/Models/VIC

 The VIC-NL model represents 
surface and subsurface hydrologic 
processes on a spatially distributed 
(grid cell) basis. 

 Energy and water balance terms 
are computed independently for 
each coverage class (vegetation 
and bare soil) present in the model.

 Processes governing the flux and    
storage of water and heat in each 
cell-sized system of vegetation and 
soil structure include 
evaporation from the soil layers (E) 
evapotranspiration (Et)  
canopy interception evaporation (Ec)
latent heat flux (L) 
sensible heat flux (S) 
longwave radiation (RL) 
shortwave radiation (RS)
ground heat flux (  G) 
infiltration (i)     percolation (Q)
runoff (R)          baseflow (B)

Variable Infiltration Capacity (VIC)
Macroscale Hydrological Model



Run the VIC model over Pearl River basin
 Define area of interest

DEM: GIS with HYDRO 1K data Grid resolution:  11 

m



Comparison of 
Simulations and Observations 

at Gaoyao Station of the West River
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West River
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(c) 

Monthly observed precipitation (noted as P) and hydrological components from the VIC 
simulation for three tributaries of the Pearl River over the period 1980 to 2000. The 
notation dS/dt represents the monthly change of soil water storage. R and E represent 
the monthly average of model simulated runoff and evapotranspiration, respectively. 
The cross mark refers to the sum of dS/dt, R and E. 
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Hydrologic cycle in SWAT (Soil 
and Water Assessment Tool)

Soil profile

Groundwater

(Neitsch et al. 2005)
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Four hydrological processes in SWAT

Hydrological 
Processes Calculation and Parameters involved Limitations

Overland flow Sa
without considering  
direct overland flow 
from saturated area

Revap βrevap

to be calibrated
time invariant
spatially unchanged

Baseflow αgw
to be calibrated
f (Wr)

Percolation to 
deep aquifer

to be calibrated
this amount of water 
is returned to 
hydrologic cycle only 
by pumping 
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Relationship Between the Saturated Area and Water Table Depth

Map of saturated areas showing expansion during 
a single rainstorm.                  (Dunne and Leopold, 1978)
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sat Saturated fraction

a

ßβ
a

tan
lnTopographic Index

α is the upstream contributing area
tanβ is the local slope

(Beven and Kirkby 1979)
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computational technology



(a) Array-based binary tree. Connected nodes can be directly located by sequential 
indices. (b) Two-component code for a binary tree. Component L indicates level of a 

node in tree, and component V (in circles denoting nodes) indicates index of a node in 
its level L and grows from left to right from 0 to 2L-1-1. 

A typical section of a drainage network 



Digit overflow problem of binary-
tree-based codification. Values of 

component V grow exponentially in 
a tributary; if a tributary is 

sufficiently long, component V will 
exceed a digit limit 2max, which is 

defined by the computer system or 
programming language. Therefore, 
a long tributary is disassembled as 
a zone with own binary-tree-based 

codes to avoid digit overflow.

Hierarchically coded zones in a 
drainage network. Each zone has its 
order and sequence, which are 
recomposed to a unitary zone index. 
Reaches via which higher order 
zones converge to a lower order 
one are recorded in (Z, L, V) (e.g., 
(0, 15, 1)) to make river reaches in 
drainage network connect as a 
whole. 



Hierarchical structure of the 
Yellow River basin. (a) Shaded 
region shows extent of coarse 
sediment source area in the 
Middle Yellow River basin. (b) 
Main tributaries covering coarse 
sediment source area are shown 
with zone indices, and the 
Chabagou River basin locates 
near doted region. (c) Drainage 
network of Chabagou River basin 
is shown. (d) A part of Chabagou 
drainage network is displayed to 
show connection between map 
and data records. 



Simulated distributions of soil erosion from different sources

hillslope erosion

channel erosion

gravitational (i.e. gully) erosion



The diagram of dynamic decomposition of a drainage network, and the subbasins 
with the boundary line colors of brown, green and pink are dispatched to the 
computing processes 1, 2 and 3, respectively 



The flowchart 
for dynamic 
decomposition 
of a basin. 



Flowchart of the 

execution of master, 

slave and data transfer 

processes, in which the 

bold arrow lines denote 

the transfer of message 

and/or data. 



Schematic of the realization of the simulation monitor with graphical user interface 
(GUI), MPI control. The passes of commands and messages are: a) the GUI sends a 
mpiexec command to start the MPI running environment, b) the mpiexec command 
starts the DWM.main program in multiple processes, c) messages from DWM.main 
processes are gathered by mpiexec and written in the Windows command console, d) 
messages in the command console are passed to the GUI via anonymous pipe, and e) 
Messages are interpreted so as to draw the chart and map to show the performance 
and progress of simulation. 



The topological width function, which is derived from a corresponding coarse resolution 
drainage network and is used to reflect the inter connection of subbasins. The straight 
line reflecting the number of p slave processes. 

Different portions of computer time and the value of the total computation capacity (i.e. 
Tp*p) for the different number of slave computing processes. 
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