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Abstract: 
We propose two simple closed-loop transmit 
diversity schemes with a fixed number of 
feedback bits being allocated for each transmit 
antenna. Under a low mobility condition and 
with perfect channel knowledge at the receiver, 
we show that our proposed schemes can 
achieve signal-to-noise ratio (SNR) values 
close to the optimal solution but with greatly 
reduced complexity. We also show that our 
methods outperform other suboptimal schemes 
such as the co-phasing method. 
 
I. Introduction: 
Antenna diversity is a key technology to 
improve the capacity and enhance the service 
quality of the wireless transmission systems. It 
could be applied to both uplink (Receive 
Diversity) and downlink (Transmit Diversity) 
transmissions. However, Receive Diversity is 
not feasible since most of the remote units only 
have single receive antenna. Also, due to the 
cost, size and power limitations, Receive 
Diversity with multiple antennas at the 
receiving end is generally not a desirable 
arrangement  Thus, the multiple antenna 
technique is usually applied at the base station. 
When an additional antenna is introduced to 
the system, there is a general improvement in 
the reception quality of the remote mobile 
receiver within the system coverage area.   
 
The transmit diversity scheme has already 
been included in the 3G wireless standard. The 
transmit diversity scheme in W-CDMA [1] 
could be classified into 2 types, namely open-
loop and closed-loop. Open-loop scheme does 
not provide any feedback information to the 
transmit antennas while the closed-loop 
scheme does. Space-Time Transmit Diversity 
(STTD) using the technique described in [2] is 
an open-loop transmit diversity scheme being 
adopted by the Third Generation Partnership 
Project (3GPP) to maximize the diversity gain. 
The advantage of open-loop scheme is that the 
receiver complexity of the mobile station is 

kept low and no signaling overhead is required. 
However, the channel information is not 
utilized and may greatly affect the signal-to-
noise ratio (SNR) performance at the receiving 
end. On the other hand, the closed-loop 
diversity technique makes full use of the 
changing transmission environment and 
adjusts the antenna gains adaptively. Gerlach 
and Paulraj first proposed the closed-loop 
transmit diversity scheme in 1994 [3], in which 
the receiving end calculates and feeds back to 
the transmitting side the optimal weight vector 
of each transmit antenna based on the received 
channel gain values. With the additional 
channel information, the closed-loop diversity 
scheme outperforms the open-loop scheme 
under low-mobility environments in which the 
delay of feedback signaling does not exceed 
the coherence time of the channel.  
 
Partial channel feedback using a limited 
number of feedback bits under a limited 
bandwidth condition has been investigated in 
[4]. There should still exist an optimal 
quantized transmit weight vector which could 
achieve the maximum SNR value under 
different varying fading channel environments. 
However, the complexity would increase 
exponentially with the number of transmit 
antennas. In this paper, we study the difference 
between the SNR of the optimal scheme and 
our proposed methods under the limited 
quantized-feedback-bit condition and show 
that our proposed algorithms can yield a SNR 
value closed to the optimal scheme but require 
fewer computations. We also show by 
simulations that with different numbers of 
transmit antennas, the deviation of the SNR 
from the optimal scheme is small. This could 
greatly reduce the computation load of the 
receiving end in calculating the transmit 
weight vector but at the same time enjoy an 
excellent SNR performance.      
 
The paper is organized as follows. We present 
the transmit diversity system model in section 
II. Our proposed transmit diversity methods 
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and the computation complexities are 
described in section III. The simulation results 
and the comparison with other sub-optimal 
searching scheme are reported in section IV. 
Finally, we summarize our conclusion in 
section V. 
 
II. System model: 
We assume the system operates under a 
Rayleigh Fading Channel condition. The 
channel coefficients are assumed to be 
accurately estimated at the receiving end and 
there is no feedback delay between the 
transmitter and the receiver. The antennas are 
spaced far enough apart so that the signals can 
be assumed to suffer from  independent fading. 
Using a model of M transmit antennas and one 
receive antenna, the transmitted signal could 
be expressed as:  
 

X PdW=  
 
where P is the total transmit power, d is the 
data symbol, 1 2[ , ,...... ]T

MX x x x= is the transmit 
signal vector and 1 2[ , ,...... ]T

MW w w w=  is the 
transmit weight vector assumed to be of unit 
norm. The channel gain is modeled by a 1xM 
complex matrix G with components gi , where i 
= 1, …, M, representing the independent 
complex gain of the signal from transmit 
antenna i to the receiver with zero mean and 
unity standard deviation. The received signal 
could thus be expressed as follows: 
 

Y GX N= +   
 

where N is a white Gaussian noise vector with 
independent zero mean complex Gaussian 
random variable elements and standard 
deviation σn. If maximal ratio combination is 
used at the receiver, the SNR is given as :  
 

2
H H

n

PSNR W G GW
σ

=   

 
Without any restriction on the number of 
feedback bits, the maximum SNR can be 
achieved by choosing a suitable W which is the 
eigenvector associated with the maximum 
eigenvalue of the Hermitian matrix HG G . 
However, under the fixed number of feedback 
bits restriction, the transmit weight w has to be 
quantized. Assuming two feedback bits are 
used for each transmit antenna, the weight w  
can only be one of the elements of the 
quantization set specified in product form 
below: 
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To obtain an optimal quantized weight vector 
for maximizing the SNR, a complete search 
with a complexity of the order 4M is required 
and the complexity will get very high with 
large M.  
 
III. Proposed scheme: 
Here we propose two simple transmit diversity 
schemes assumed under two feedback bits 
condition using simple and fast searching 
algorithms, yet producing a weight vector 
which could yield performance close to the 
optimal one. We model the channel gain of 
each transmit antenna as a vector in a complex 
plane, then the problem becomes to study how 
to rotate the complex vectors according to the 
weights so that the final combined vector has 
the maximum magnitude and thus maximum 
SNR. With two feedback bits, each vector is 
allowed to turn * / 2z π where z=0, 1, 2, 3 
before it is combined with other vectors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 illustrates the M=2 case, where C0 and 
D0 are the original complex channel gain 
elements. The vectors are to be rotated so as to 
obtain the smallest angle difference. Under 2 
feedback bits restriction, there should exist 
four groups of optimal vector combination 
such that the angle difference between the 
vectors is less than or equal to / 4π . Thus, 
there exist four groups of optimum vector 
combination: C0 and D2; C3 and D1; C2 and D0; 
C1 and D3. Any one of the above combinations 
would yield a final combined vector with 
maximum magnitude and hence maximum 
SNR. This approach can be extended to the 
search algorithms in the multi-antenna case as 
described below. 
 
  
Method 1:  
Firstly, the angles between any pair of the M 
channel vectors are compared. Thus there are 

C3 
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Figure 1. M=2 case 
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M(M-1)/2 possible pairs for comparison. The 
two vectors which form the smallest angle are 
combined. For the newly combined vector and 
the remaining M-2 vectors, the comparing 
process is repeated to search for the next pair 
of vectors which forms the smallest angle . The 
procedure is iterated until only one vector is 
left. 
 
 
 

          (a)                   (b) 
 
 
 
 
 
 
 
 
 
 
           (c)         (d) 
Figure 2. Steps of combining Complex 
Gaussian channel vectors using Method 1. 
 
Figure2 illustrates the M=4 case. In Fig. 2a, 
vectors a and b forms a smallest angle and so 
are combined to form a new vector f as shown 
in Fig. 2b. Vectors c, d, f are then compared to 
search for the 2 vectors which forms a smallest 
angle. Here, vector c and d form a smallest 
angle, so they are combined to form vector e as 
shown in Fig. 2c. As the angle between vectors 
e and f are greater than / 4π , vector e is 
rotated by / 2π  anti-clockwise to give vector 
e1 which is finally combined with f as shown in 
Fig. 2d.  
 
Method 2: 
This method is similar to method 1 but with 
less computational complexity. Again, this 
method first combines the vectors which form 
the smallest angle to form a new vector. 
However, further comparisons on the smallest 
angles formed are on vectors pair formed by 
the newly combined vector and any one of the 
remaining vectors. The remaining vectors can 
be rotated to within / 4π of the new vector, 
thus, the newly formed vector will then 
combine with its closest neighbor to form 
another new vector. The process continues 

until the final single vector is obtained.  Figure 
3 shows an example of our second proposed 
method: 

 
            (a)                   (b) 

 
Figure 3. Steps of 
combining Complex 
Gaussian Channel vectors 
using Method 2 
 
In Fig. 3a, there are 4 
vectors. Vectors a and b 
form the smallest angle 
and so are combined to 
produce a new vector f as 
shown in Fig. 3b. Vector f 
is then compared with the 
remaining vectors c and d 

which are allowed to rotate to within / 4π of 
vector f. Here, vector d is rotated 

/ 2π anticlockwise to give d1 so as to fall 
within / 4π  of vector f. Thus, vectors f and d1 
are combined to form e. Finally, the remaining 
vector c also has to be rotated by 

/ 2π anticlockwise to form c1 in order to fall 
within the / 4π region of vector e. The final 
vector is then formed by combining vectors e 
and c1.  
 
Complexity of the proposed scheme: 
 
Method 1: 
With only 2 feedback bits for each antenna, the 
weight vector is allowed to rotate 

* / 2z π where z=0, 1, 2, 3.  Initially, 
comparisons are made among all M vectors in 
order to find a smallest angle pair. This 
amounts to M(M-1)/2 possible pairs for 
comparison. After the first combination, there 
are (M-1) vectors left and the number of 
comparisons becomes (M-1)(M-2)/2. 
Repeating the process, the total number of 
comparisons is M(M-1)(M+1)/6. As the 
vectors are allowed to rotate, the maximum 
complexity for this proposed scheme is thus 
2M(M-1)(M+1)/3, having a computational 
complexity of the order of M3 which is much 
lower than that of the optimal searching 
technique as M increases.  
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Method 2:  
Same as method 1, initially there are M(M-1)/2 
possible pairs for comparison. As vector pairs 
are formed between the newly combined 
vector and any one of the remaining vectors, 
there are only (M-2) comparisons. The process 
continues and the final number of comparisons 
is (M-1)2.  After accounting for the rotations, 
the maximum complexity of method 2 is 4(M-
1)2 which is of the order of M2 only.  
 
IV. Simulation results: 
We simulate the SNR performance of methods 
1 and 2 and compare the results with another 
sub-optimal searching algorithm, the co-
phasing algorithm [5]. Simulations are 
performed with different numbers of transmit 
antenna cases. The number of feedback bits is 
restricted to two for each transmit antenna in 
all cases. Tables I and II show the difference in 
SNR(Si) and the average distance (Di) between 
the proposed methods and the optimal solution. 
Results show that the SNR values achieved by 
both method 1 and method 2 are very close to 
that of the optimal one especially when the 
number of antennas is small. When compared 
to the co-phasing method shown in Table 3, 
the two proposed methods outperform the co-
phasing scheme SNR difference and also show 
superior performance in terms of the average 
distance. 
 

  M =3 M=4 M=5 M=6 
Si <0.01 99.41% 97.44% 94.96% 92.16% 
Di  2.4385e-

004 
0.0014 0.0032 0.0056 

Table 1. Result from Method 1 
 

  M =3 M=4 M=5 M=6 
Si <0.01 99.41% 98.09% 96.66% 95.42% 
Di  2.4385e

-004 
0.0010 0.0020 0.0031 

Table 2. Result from Method 2 
 

  M =3 M=4 M=5 M=6 
Si <0.01 84.58% 72.35% 63.39% 56.12% 
Di  0.0331 0.0737 0.1067 0.1410 

Table 3. Result from Co-Phasing Algorithm 
 

 
 
 
V. Conclusion: 
In order to maximize the SNR, an optimal 
weight vector has to be determined. Optimal 
searching method is seldom used due to the 
high complexity. This paper has introduced 
two sub-optimal searching algorithms to obtain 
the weight vectors of the closed-loop transmit 

diversity scheme under a limited number of 
feedback bits condition.  
 
It has been shown that the proposed methods 
can achieve the SNR performance close to the 
optimal solution and are superior to the other 
sub-optimal method, co-phasing scheme, 
especially in a higher number of antenna cases. 
Furthermore, compared with the optimal 
search, the computational complexity of the 
proposed methods is greatly reduced. 
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