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Abstract

Background: Human object recognition degrades sharply as the target object moves from central vision into peripheral
vision. In particular, one’s ability to recognize a peripheral target is severely impaired by the presence of flanking objects, a
phenomenon known as visual crowding. Recent studies on how visual awareness of flanker existence influences crowding
had shown mixed results. More importantly, it is not known whether conscious awareness of the existence of both the
target and flankers are necessary for crowding to occur.

Methodology/Principal Findings: Here we show that crowding persists even when people are completely unaware of the
flankers, which are rendered invisible through the continuous flash suppression technique. Contrast threshold for
identifying the orientation of a grating pattern was elevated in the flanked condition, even when the subjects reported that
they were unaware of the perceptually suppressed flankers. Moreover, we find that orientation-specific adaptation is
attenuated by flankers even when both the target and flankers are invisible.

Conclusions: These findings complement the suggested correlation between crowding and visual awareness. What’s more,
our results demonstrate that conscious awareness and attention are not prerequisite for crowding.
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Introduction

Crowding is a breakdown in object perception whereby one’s

ability to recognize a peripheral target is severely impaired by the

presence of flanking objects [1,2]. Despite a significant number of

studies on crowding since the work of Flom and colleagues in 1963

[3,4], researchers have yet to agree on the mechanisms underlying

the phenomenon of crowding and the cortical locus in visual

processing at which crowding occurs (for a recent review, see

[1,2]). Attempts to pinpoint crowding to a specific stage in visual

processing have been unsuccessful. Specifically, studies on early

visual adaptation have reported substantially attenuated threshold-

elevation aftereffect (TEAE) when the adapting grating was

flanked (e.g., [5]). This has been taken to imply that crowding

inaugurates at an early stage of cortical processing as the adapt-

ation responsible for TEAE presumably occurs, at least in part, at

V1 [6]. Parkes and colleagues [7] demonstrated mathematically

that the compulsory averaging model might explain crowding (see

also [8,9]). Pelli [10], meanwhile, also showed mathematically that

some properties of crowding might reflect the retinotopic and

magnification properties of V1 and other visual areas. Tjan and

Nandy [11] further proposed a computational model in an attempt

to explain some properties of crowding by image statistics and

lateral connections of V1 neurons.

Meanwhile, another line of studies have suggested that

crowding originates beyond V1 (e.g., [12–14]). Bi and colleagues,

for instance, reported fMRI evidence that orientation-selective

adaptation in V2 and V3, but not in V1, was affected by crowding.

Besides, Liu and colleagues [15] argued V4 to be the likely neural

substrate of crowding. In particular, they capitalized on the

dissociation between visual spatial distance and cortical distance

and obtained results suggesting that the cortical locus of crowding

was likely to be at a stage with contiguous hemifield representa-

tion. It is worth pointing out that their empirical findings suggested

crowding at either V1 or V4. However, based on He et al’s [14]

findings, Liu and colleagues interpreted their findings as

supporting evidence for V4 but not V1. It is yet interesting to

note that one of the few neurophysiological studies on crowding

found that V4 lesion caused little or no effect in the magnitude of

crowding [16].

Few studies, to date, have investigated the role of conscious

awareness in crowding. Chakravarthi and Cavanagh [17]

attempted to determine the locus of crowding, considered to be

a breakdown of feature integration, by manipulating the visibility

of the flankers with three different kinds of masks: noise,

metacontrast, and object substitution. While their masks were

equally effective in masking the identity of the flankers, target

recovery from crowding was observed only in the noise and

metacontrast masking conditions but not with object substitution

masking. Their results appear to suggest that crowding happens

after V1 where noise masking sets in; at least it disrupts feature

integration until after the early stages in the visual hierarchy when

the low-level noise and metacontrast masks are effective in

removing the flankers from visual awareness. Their study

demonstrated that the effect of flanker visibility on crowding

strength is contingent upon the specific method used to render the

flankers invisible. Importantly, their study provided the only

evidence in the literature that crowding persists even with invisible
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flankers that are removed from awareness by object substitution

masking. Thus, the uncertain role of awareness in crowding seems

to be attributable to the various different masking methods for

controlling awareness.

In an attempt to investigate the relationship of flanker

awareness and crowding in a tightly controlled manner, Wallis

and Bex [18] designed a study in which the flankers were rendered

perceptually invisible with the adaptation-induced blindness

paradigm that allowed them to assess subjective awareness on a

trial-by-trial basis. They found that crowding was not determined

by the number of flankers that were physically present; instead it

was correlated with the perceived number of flankers (i.e., visual

awareness). Importantly, the researchers concluded that crowding

is dependent on awareness such that interference from peripheral

objects will not occur prior to their entry into conscious awareness.

Given the apparent inconclusive findings on the role of

awareness in crowding in the limited literature, the present study

was designed to assess whether conscious awareness of the flankers

(and also the target) is necessary for crowding to occur. Dichoptic

suppression by means of continuous flash suppression (CFS) was

used to render the flankers and target stimuli invisible despite their

physical presence in the retina. CFS is an established means to

reliably suppress input from the non-dominant eye for an extended

duration [19,20]. Many studies have shown that the identity of

objects masked by CFS could still exert an effect on certain

behaviors (e.g., [21–23]). This means that CFS operates at a stage

after object identification and presumably no earlier than the site

of feature integration. The use of CFS will allow us to directly

examine, for the first time, whether crowding operates on target

and flankers that are both perceptually invisible using an

adaptation paradigm.

To address the question whether crowding is dependent on

flanker awareness and to test the faulty-integration hypothesis for

crowding, we measured the contrast threshold for identifying

grating patterns under condition in which the flankers were

perceptually suppressed by the simultaneous presentation of CFS

stimuli. Upon establishing the effectiveness of invisible flankers on

crowding, we proceeded to determine whether crowding would

persist in condition when both the target and flankers were

rendered invisible by measuring TEAE. We hypothesized that

crowding effect would still be observable even when people were

unaware of the flanking and flanked stimuli. Such findings would

support the faulty-integration hypothesis for crowding that it

occurs due to erroneous compulsory integration of signals from the

target and flankers [7,24]. Alternatively, however, if crowding was

completely released under perceptual suppression, this would

suggest that the locus of crowding occurs after the site of visual

awareness late in visual processing, and that it is possibly

modulated by voluntary attention [14]. A third possibility would

be a partial release from crowding under perceptual suppression.

This would suggest that visual awareness and voluntary attention

can modulate crowding strength, but are not prerequisite for

crowding.

Results

Grating Orientation Discrimination Experiment
In the first experiment, we assessed the effect of perceptually

suppressed flankers on the contrast threshold for identifying the

orientation of a target grating pattern (Figure 1A). Specifically, ob-

servers reported the orientation of the target grating (tilted left or

right). Their awareness of the flankers was also assessed by having

them indicate whether flankers were present or absent in each

trial. The visibility of flankers presented to one eye (in the same eye

to which targets were presented) was manipulated by the con-

current presentation of competing CFS stimuli in the other eye.

Linear mixed effects model was used to analyze the contrast

threshold data. As shown in Figure 1B, an ANOVA revealed a

significant interaction between the factors of Flanker and CFS

[F(1, 41) = 14.44, p,0.001]. In particular, post-hoc pairwise

comparisons showed significant crowding effects in both CFS

Figure 1. Results from the grating orientation discrimination
experiment. (A) Stimuli presented in the experiment. In the CFS trials,
flanking stimuli presented to the non-dominant eye of the observers in
the flanked condition were perceptually suppressed from awareness by
the CFS stimuli that were simultaneously presented to their dominant
eye. Thus, in any given CFS trial, only the target grating pattern and the
CFS stimuli were perceptually visible. Note that the actual contrast of
the stimuli presented to their non-dominant eye was much lower than
that illustrated here. (B) Contrast thresholds (in log scale) in the
unflanked and flanked conditions as a function of CFS (n = 4). Error bars
indicate the standard errors of the means.
doi:10.1371/journal.pone.0028814.g001
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conditions (both ps,0.001). In other words, despite the significant

Flanker by CFS interaction, higher contrast thresholds were

obtained for conditions when flankers were present than when the

target was presented in isolation, no matter whether the flankers

were suppressed or not. However, the magnitude of the crowding

effect was stronger when the flankers were visible than when they

were rendered invisible by the CFS stimuli. The main effect of

Flanker was also significant [F(1, 41) = 113.51, p,0.001], in-

dicating higher contrast thresholds for flankers present as com-

pared to flankers absent trials, regardless of their visibility. The

main effect of CFS was, however, not significant [F(1, 41) = 2.67,

p = 0.110].

Forced-choice report on the visibility of flankers further asserted

the effectiveness of our CFS manipulation. The observers correctly

reported the presence (or absence) of flankers on 92.2% of trials

(SEM = 3.1%) when no competing CFS stimuli were presented,

with accuracy dropping to chance at 50.0% (SEM = 0.0%) in the

CFS trials.

Orientation-specific Adaptation Experiment
In this experiment, we investigated further whether attenuated

effect of flankers could still be observed when both the target and

flankers were suppressed from awareness by measuring TEAE

(Figure 2A). Specifically, upon prolonged exposure to target

gratings (tilted left or right), contrast thresholds for test gratings (in

the same or orthogonal orientation as the adapted gratings) were

measured in two-interval-forced-choice (2IFC) detection task. A

concurrent rapid serial visual presentation (RSVP) central task was

also presented to ensure that observers maintained their fixation

during the adaptation phase.

As shown in the left panel of Figure 2B, the analysis of threshold

elevation data for the same orientation gratings with factors of

Flanker and CFS revealed no interaction effect [F(1, 9) = 0.49,

p = 0.549]. There were, however, significant main effects of

Flanker [F(1, 9) = 22.43, p = 0.001] and CFS [F(1, 9) = 14.12,

p = 0.005]. In particular, post-hoc pairwise comparisons showed

the crowding effect for the same orientation gratings to be

significant in both the No CFS (p,0.001) and CFS (p = 0.007)

conditions, with a stronger crowding effect observed when CFS

stimuli were not presented than in their presence.

A similar analysis of threshold elevation data after adapting

to orthogonal target gratings revealed no interaction effect be-

tween the two factors [F(1, 9) = 3.81, p = 0.083]. In addition, both

the main effects of Flanker [F(1, 9) = 0.25, p = 0.628] and CFS

[F(1, 9) = 2.39, p = 0.16] were not significant. As shown in the right

panel of Figure 2B, the TEAEs were relatively small (if present)

and no effect of crowding was observed in either CFS conditions,

consistent with previous findings on orientation-specific adaptation

(e.g., [12]).

For the central fixation task, observers correctly counted the

number of target crosses on 90.2% of trials (SEM = 0.9%) and

90.8% of trials (SEM = 2.2%) in the No CFS and CFS condi-

tions, respectively. This suggests that our observers followed the

instruction to fixate and performed the central task in a similar

manner across different conditions during the experiment.

Critical Spacing Experiment
One of the important criteria that define crowding relates to the

critical spacing between the target and flankers [1,25]. Essentially,

the critical spacing of crowding operates as a function of target

eccentricity, independent of target size. Bouma’s rule further

postulates the critical spacing at a given eccentricity to be

approximately half the distance in eccentricity [26]. In this

follow-up experiment, we investigated whether the critical spacing

for crowding by invisible flankers would be consistent with

Bouma’s rule.

Critical spacing (c) at each eccentricity was estimated by fitting

the following two-line function:

f (x)~azbx, if xƒc

f (x)~azbc, if xwc

where f(x) was the log contrast threshold, x was the center-to-

center distance, a was the y-intercept, b was the slope of the

decreasing part of the function. With reference to Figure 3A, it can

be seen that contrast thresholds for identifying a target grating

decreased as the distance between the target and invisible flankers

Figure 2. Results from the orientation-specific adaptation
experiment. (A) Stimuli presented in the experiment. In the CFS trials,
both the adaptor and flanking stimuli (if present) presented to the non-
dominant eye of the observers were rendered perceptually invisible by
the simultaneously presented CFS stimuli in their dominant eye
throughout the adaptation phase. Thus, in any given CFS trial, only
the CFS stimuli were perceptually visible during adaptation. Note that
the actual contrast of the stimuli presented to the non-dominant eye
was much lower than that illustrated here. (B) Strength of threshold-
elevation aftereffect for test grating in the same orientation as the
adapted grating (left panel) or orthogonal orientation relative to the
adapted grating (right panel) in the unflanked and flanked conditions as
a function of CFS (n = 4). Error bars indicate the standard errors of the
means (in log scale).
doi:10.1371/journal.pone.0028814.g002
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increased. In particular, the critical spacing at which the flankers

ceased to have an effect on target identification set in at 1.47u,
2.26u and 4.11u (for S1), and 1.32u, 2.32u, and 3.15u (for S2)

respectively for targets presented at 4u, 6u, and 8u eccentricity.

This pattern of results was consistent with the widely reported

findings that lie somewhere between 0.4–0.5 [25].

Forced-choice report on the visibility of flankers was again at

chance level (33.3% as each block consisted of the unflanked

condition and two flanked conditions with different center-to-

center distances).

Discussion

The present study was designed to investigate whether conscious

awareness of the existence of the peripheral target and flankers is

necessary in order for crowding to occur. Across different

experiments, we manipulated the visibility of the target and

flankers by suppressing them from perceptual awareness through

the CFS technique. The results of the grating orientation

discrimination experiment showed that the contrast thresholds

required to identifying the orientation of a grating increased when

the target was flanked, even when the flankers were rendered

perceptually invisible. Our results therefore suggest that crowding

represents a bottom-up information processing bottleneck. Such

bottleneck persists even when people are unaware of the existence

of the flanking objects that impair their ability to recognize objects

in their peripheral visual field. The results of the orientation-

specific adaption experiment further demonstrated the attenuation

effect of invisible flankers. Parkes et al. [7] found that flanked local

orientation signal of a target was averaged with that of the flankers.

Consistent with the preattentive account of crowding [9], our

results showed that adaptation of such flanked local orientation

signal was being weakened relative to the unflanked adaptor even

when the observers were completely unaware of the existence of

both the target adaptor and flankers. Taken together, our results

complement previous findings that flanker strength correlates

with visual awareness [18] and demonstrate that flankers can

act to impair feature integration prior to entering into conscious

awareness.

Alternatively, one possible account for our observed pattern of

results was lateral masking, that is, decreased sensitivity to target

due to lateral inhibition by neighboring flankers at the sensory

level early in visual processing [27,28]. If our earlier results were

indeed caused mainly by lateral masking rather crowding, one

would expect to observe no proportionality constant between

critical spacing and eccentricity [10]. Nevertheless, the results of

the critical spacing experiment revealed evidence against such

prediction. In particular, in line with Bouma’s rule, crowding

ceased to exist when the flankers were presented at locations

beyond about 0.4 times the target eccentricity. These results

therefore provide supportive evidence that our results indicate that

crowding can occur even when the flankers are rendered invisible

by CFS, and that a lateral masking account of our observation can

be ruled out.

Previous studies of crowding in early visual adaptation were in

favor of a voluntary attentional modulation account of crowding

[12,14,29]. Covert attention has been shown to enhance spatial

resolution via signal enhancement in the periphery where the

original resolution may be too low for the task [30]. For instance,

Bi and colleagues reported that orientation-specific TEAE was no

longer affected by crowding once the attention of subjects were

controlled for by having them perform a central luminance change

detection task (cf. [5]). By contrast, the results of the present

orientation-specific adaptation experiment advocate a dissociation

of attention and awareness in the mechanism of crowding.

Crowding exerted an effect on TEAE even when our observers

were required to perform the central task having to count the

number of red crosses that periodically showed up in amongst a

rapidly-presented stream of distractor crosses. The attentional

demand of our central task was presumably similar to that of the

luminance change detection task in Bi et al.’s study. It should also

be noted that attention is neither necessary nor sufficient for

awareness [31,32]. Given that orientation-specific adaptation

occurs in the primary visual cortex [33,34], our findings suggest

that the site of crowding can occur at a relatively early stage in

visual processing, apparently at or before the site of adaptation.

Other researchers, on the other hand, have argued that

crowding happens beyond V1, or possibly in V4 or LOC, but

definitely not in V1 (e.g., [1,15]). In particular, Liu and colleagues

provided evidence that crowding happens at a stage with

contiguous hemifield representation, that is, either V1 or V4.

Based on the results of other studies (e.g., [14]), they concluded

that V4 was more likely to be the locus of crowding. The

significant interaction between Flanker and CFS in our grating

orientation discrimination experiment also seems to imply that

crowding may happen at stages both before and after the locus of

suppression by CFS. Some other studies have also reported

crowding at high level (e.g., [35,36]). When taken together, while

Figure 3. Results from the critical spacing experiment. (A)
Individual observer data. Contrast thresholds (in log scale) for
identifying target grating patterns presented in various degrees of
eccentricity as a function of center-to-center distance between the
target and flanking gratings. Error bars indicate the standard deviations
(3 data points per condition was collected from each observer). Stimuli
presented in this experiment were identical to those used previously in
the CFS trials of the grating orientation discrimination experiment
(Figure 1A). (B) The critical spacing of crowding (in degree) as a function
of eccentricity (n = 2). Bouma’s proportionality constant [23] is
illustrated here for reference.
doi:10.1371/journal.pone.0028814.g003
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these findings seem to suggest that crowding happens indepen-

dently at multiple stages in visual processing [25], one may also

argue that visual awareness and attention can modulate the

strength of crowding at high level [37], with crowding itself being

the result of faulty integration of features at relatively low level. It

will be important for future studies to resolve this.

In addition, it should be noted that the present study provides

one of the first pieces of evidence suggesting that crowding involves

neuronal structures that do not correspond to, nor depend on, the

neuronal correlates of conscious awareness. Other studies, to date,

have reported an ‘all-or-none’ release of crowding when flankers

are suppressed from visual awareness (e.g., [17,18]). Consistent

with Chakravarthi and Cavanagh’s [17] object substitution

findings, the first two experiments presented here showed a

reduction of crowding in the CFS conditions, albeit not complete

abolishment of crowding. Our findings therefore complement

other studies that have demonstrated complete abolishment of

crowding, with the discrepancy in ours and their findings being

attributable to the extent of interference induced by the different

paradigms chosen to suppress the flankers (e.g., adaptation-

induced blindness in [18]; noise and metacontrast masks vs.

object substitution mask in [17]). It is likely that the cortical locus

of CFS occurs after the site of adaptation-induced blindness. In

this respect, these results imply that awareness can modulate

crowding strength even though it is not a prerequisite for

crowding. Here, we argue that our manipulation of awareness

by CFS provided clearly defined conscious and unconscious

conditions for studying the role of awareness in crowding, the

effectiveness of which was asserted by objective forced-choice

report of awareness (cf. [22,38]).

One may argue that the presentation of the central task in our

orientation-specific adaptation experiment, if anything, compli-

cates the design of our study given the proposal that attentional

limits are the basis of crowding [14]. Since we have only presented

a low attentional load task (cf. [39]), it would be interesting in

future studies to examine what effects the presentation of putative

high attentional load central task will have on crowding in the

periphery. Specifically, it is important to investigate whether

crowding occurs when the attentional limits of people are reached.

It is worth pointing out that although CFS and crowding are

often used to manipulate visual awareness (e.g., [5]), the

interaction between the two had not been addressed before. The

results here imply that the two mechanisms operate separately.

Crowding influences awareness by destroying the representation of

object identity, while CFS does not. Thus, it is important for

researchers to choose the technique appropriate for their research

question concerned.

In summary, crowding represents faulty feature integration in

peripheral vision. The experiments in the present study reliably

demonstrated the findings of an attenuated effect of perceptually

suppressed flankers on target identification. Taken together, these

findings imply that crowding limits the spatial resolution of

peripheral visual perception irrespective of conscious awareness

and attention. The mechanism of crowding can occur at a

relatively early stage in visual processing and it does not depend on

visual awareness.

Materials and Methods

Four young adult observers participated in each experiment,

except for the critical spacing experiment in which two observers

were tested. All observers had normal or corrected-to-normal

visual acuity. The experiments were conducted in accordance

with the guidelines laid down by the Human Research Ethics

Committee for Non-Clinical Faculties, HKU. Written informed

consent was obtained from all participants. Visual stimuli were

displayed on a calibrated 17-inch CRT monitor set at a refresh

rate of 85 Hz and 1024 by 768 pixels resolution. The background

luminance was 17.8 cd/m2. Observers viewed the dicoptic display

through angled mirrors in a darkened room from a distance of

40 cm, with the aid of a headrest and chinrest to stabilize fixation.

In all experiments, target, flanker, and adaptor stimuli were always

presented to the non-dominant eye of the observers, with the CFS

stimuli being presented to their dominant eye.

Grating Orientation Discrimination Experiment
In this experiment, target sinewave gratings of 2 cpd, 2.5u in

diameter, randomly tilted at 645u, were presented at an

eccentricity of 10u in the upper visual field from the 0.25u fixation

cross. In the flanked trials, four flanker sinewave gratings (two of

which randomly oriented at 45u and the other two at 245u) of

15% Michelson contrast were presented around the target grating

at center-to-center distance of 2.7u (Figure 1A). The CFS stimuli

consisted of randomly generated red and green noise dots of size

0.25u that changed at 8.5 Hz. A 2.5u circular opening in the center

of the CFS patches allowed visible perception of the target gratings

(but not the flankers) when the patches were presented in the CFS

condition. Contrast threshold was measured by two interleaved

QUEST staircases (unflanked or flanked conditions) of 40-trial

runs with a criterion of 82% and b of 3.5 [40,41]. In each trial, the

presentation of the 471 ms CFS stimuli (if present) led the 118 ms

target by 353 ms. The observers had to report the orientation of

the target grating (tilted left or right) and whether flankers were

present in the trial (yes or no) by depressing the corresponding keys

on the keyboard at the end of each trial. The order in which the

observers performed the interleaved blocks of CFS trials (with or

without) was counterbalanced across subjects. Log thresholds were

averaged over three runs for each condition.

Orientation-specific Adaptation Experiment
At the beginning of the experiment, the baseline contrast thres-

hold (82% correct) for detecting the target grating in isolation

was determined for each observer individually in a 2IFC task. The

contrast of the adapting stimulus was then set at 4 times this

baseline threshold, with the flanker contrast set at 8 times the

baseline. The adapting stimulus consisted of a sinewave grating of

2 cpd, 2.5u in diameter that flickered in counterphase at 0.99 Hz

to preclude afterimages. The orientation of the adaptor was

randomly chosen to be either 645u, which remained unchanged

throughout each block. In each trial, an adaptor was presented at

10u eccentricity in the upper visual field for 5 s. This was followed

by a 200 ms gap, after which a test grating of 153 ms was

randomly presented in one of two successive intervals. The two

intervals were delimited by 500 Hz beeps, separated by a gap of

400 ms. The test grating was either presented in the same or

orthogonal orientation as the adaptor. In the flanked trials, four

flanker sinewave gratings (two in the same and two in orthogonal

orientation as the adaptor at random) were presented around the

adaptor (at center-to-center distance of 2.7u) throughout the

adaptation phase. In the CFS trials, patches of random grayscale

noise dots (0.25u in size; changing at 8.5 Hz) were presented

throughout the entire adaptation phase. Unlike the grating

orientation discrimination experiment, the CFS patches had no

opening and thus rendered both the adaptor and flankers

perceptually invisible.

Contrast threshold for detecting the grating in the 2IFC task

was measured by interleaved QUEST staircases (same or

orthogonal test orientation relative to the adaptor) of 40-trial

Crowding by Invisible Flankers
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runs, with a criterion of 82% and b of 3.5. Threshold elevation

was then calculated by dividing the contrast threshold for each

condition by the baseline threshold. The order in which the

observers performed the blocked Flanker (unflanked or flanked) by

CFS (with or without) conditions was randomized across subjects.

A central attention-demanding RSVP task was also presented to

ensure that the observers maintained fixation during the entire

adaptation phase. The task was modeled after the low attention

central task in van Boxtel et al.’s [39] study. Specifically, observers

had to count the number of times (1, 2, 3, or 4) an upright or

inverted red cross, presented in amongst crosses of different colors

and randomized orientation, had appeared. Each cross (0.8u in

height; 0.5u in width) in the RSVP stream was presented at

fixation for 141 ms, followed by a blank of 141 ms, with two

successive target crosses separated by at least one nontarget cross.

At the end of each trial, the observers had to report the interval in

which the test grating had appeared (first or second) and the

number of red crosses that they had counted by depressing the

corresponding keys on the keyboard.

Critical Spacing Experiment
The design and procedure of the critical spacing experiment

were identical to that of the grating orientation discrimination

experiment, with the following exception. Target sinewave

gratings presented were 4, 3, or 2 cpd; 0.75u, 1.125u, or 1.5u in

diameter; for 4u, 6u, or 8u eccentricity, respectively. The flankers

were fixed at 12.5% Michelson contrast and were presented at

center-to-center distance of 0.25, 0.3125, 0.375, 0.4375, 0.5, or

0.5625 times the eccentricity. An opening in the center of the CFS

patches with dot size of 0.125u, 0.1875u, or 0.25u respectively for

4u, 6u, 8u eccentricity allowed visible perception of the target

gratings but not the flankers. In each block of trials, interleaved

QUEST staircases (32-trial runs) of the unflanked condition and

two flanked conditions with randomly chosen center-to-center

distance, all in the same eccentricity, were presented. Log

thresholds were averaged over three runs for each condition.

Thus, in total, each observer performed 27 blocks of trials, in

randomized order across subjects.
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