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Abstract: Procuring material from commodity spot markets 

can flexibly fulfil a forward production demand, but increase 

the risk of high procurement cost due to spot price volatility. In 

this paper, a dynamic stack-and-roll hedging approach using 

futures contracts is proposed. The approach aims at mitigating 

the procurement cost risk and optimising the terminal revenue 

received from the procurement and hedging activities. It 

separates the procurement planning horizon into multiple 

stages, along with varying hedging positions in the nearby 

futures contracts. Hedging positions are adjusted in response to 

commodity price behaviour and contemporary perceived 

information about forward production demand. Guided by the 

mean-variance criteria over the terminal revenue, dynamic 

programming is applied to derive a closed-form solution for 

optimal hedging positions in a discrete-time Markovian setting. 

Numerical experiments are carried out to assess the proposed 

approach with explicit solution in a realistic stochastic 

environment. The price processes are modelled by a fractal 

nonlinear regression model using real price data of China‘s 

commodity market, while demand information process is 

modelled by Bayesian formula. The results show that the 

proposed approach outperforms naive hedging strategy, and 

effectively mitigates the procurement cost risk. 

Keywords: Dynamic stack-and-roll approach, Commodity 

procurement, Risk mitigation, Hedge 

 

ⅠIntroduction and Review of Related Literature 

 

Procurement planning and optimisation is a vital issue in 

managing supply chains, aiming at matching demand with 

supply at the lowest cost [1]. Emerging B2B technologies 

facilitate manufacturers‘ procurement of raw material in the 

commodity spot market, which can fulfil the production 

demand with negligible lead time. On the one hand, 

procurement in spot market can closely match supply and 

demand, and then is an attractive procurement mode especially 

for small-sized manufacturers with bargaining power that is too 

limited to win a flexible contract. On the other hand, 

manufacturers relying on spot market sourcing are prone to 

suffer from a high procurement cost risk due to spot price 

volatility. The cost risk could further be exaggerated by 

realised production demand. In this research, a dynamic 

stack-and-roll hedging approach using futures contracts is 

integrated with spot procurement, in order to mitigate the cost 

risk caused by fluctuating spot price and uncertain production 

demand, and finally optimise the terminal revenue received 

from the procurement and hedging activities. 

The stack-and-roll hedge refers to a strategy that rolls over a 

series of positions in short-maturity futures. Manufacturers 

with long-term procurement commitments may prefer this 

strategy to manage their procurement risk. Since in practice, 

the long-maturity futures that matches the long-term 

commitment tends to bear unreasonable price due to its lack of 

trading liquidity, while the short-maturity futures is frequently 

traded, and its price is closely correlated with the spot price. 

Especially when the long-maturity futures market is missing, a 

sequence of short-maturity rollover futures becomes a good 

substitution [2]. At the same time, strategically conducting the 

stack-and-roll hedge received increased academic scrutiny, 

after Metallgesellschaft AG incurred a heavy loss through the 

controversial using of a naive stack-and-roll strategy  [3-7]. 

Most of the studies focus on minimising the variance of hedged 

return assuming a complete frictionless market. Meanwhile the 

proposed hedging approach tries to make trade-offs between 

maximising expected hedged return and minimising the 

variance for that return in an incomplete market framework. 

Empirical studies will demonstrate that the proposed hedging 

approach robustly outperforms the naive strategy in managing 

procurement risk. 

The stack-and-roll approach is inherently a discrete multistage 

strategy, which renders perfect hedge infeasible, so an 

appropriate criterion as the hedging objective should be chosen 

to reflect a hedger‘s preference. There are increasing literatures 

on discrete multistage financial hedging, e.g. Schweizer [8], 

Gugushvili [9], Cerny [10], Basak and Chabakauri [11-12], 

among others. Considering a value-maximising manufacturer 

who wishes to grow the expected revenue as well as mitigate 

its variance risk, the mean-variance criteria over the terminal 

procurement revenue are selected in this research. Guided by 

mean-variance criteria, dynamic programming is applied to 

solve the procurement optimisation problem. The solving 

process is developed from the work of Basak and Chabakauri 

[11-12], and further elaborates their work mainly in two ways. 

First, this research derives a discrete closed-form presentation 

of optimal stack-and-roll hedging policy under mean-variance 

objective. Second, hedging quantity risk, i.e. uncertain 

production demand, is also accounted for in the optimisation 

problem. Moreover, minimum-variance hedge will be applied 

as a benchmark for comparing with the mean-variance 

stack-and-roll hedge. 

Effective hedging requires the commodity price and production 

demand to be accurately modelled. As commodity prices are 

discovered to possess fractal structures in many studies [13-14]. 

In this research, the commodity prices are supposed to be 

driven by a fractal nonlinear regression model. The nonlinear 

function is represented by a wavelet neural network trained by 

the extended Kalman Filter (EKF) algorithm. Monthly return 

and volatility are estimated by daily returns data in order to 

increase the prediction accuracy [15]. Since the production 

demand is a stochastic variable at the end of procurement 

horizon, Bayesian inference is appropriate to formulate the 

demand information updating process along the procurement 

horizon [16-19]. Under such a realistic stochastic environment, 

Monte Carlo simulation will be implemented to evaluate the 
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procurement risk management performance. 

This research is essentially concerned with supply chain 

operations management in the presence of online commodity 

market [20-24]. Chod, et al. [23] find out that operational 

flexibility and financial hedging tend to complement each other 

when both are used to mitigate demand risk. Ni, et al. [24] 

mitigate spot procurement risk using a multistage financial 

hedging approach. Our research enriches the literature by 

providing a discrete closed-form expression of a multistage 

procurement policy for online commodity procurement, aiming 

to maximise the mean-variance utility of a manufacturer who is 

faced by a long-term production demand. 

 

Ⅱ Model Formulation for Spot Procurement with 

Stack-and-roll Hedging 
 

General consideration 

Consider a scenario in which a manufacturer plans to procure a 

certain kind of exchange-traded commodity as the raw material 

for forward production. The planning horizon is made up of T

stages. Instead of entering into a contract with certain suppliers 

in advance, the manufacturer tries to enhance the sourcing 

flexibility using spot procurement at time T . In order to avoid 

suffering from procurement cost risk at time T , during the 

planning horizon [ 0 T， ], the manufacturer takes a 

stack-and-roll hedging strategy in the  commodity future 

market. The manufacturer wishes to maximise the expected 

procurement revenue and meanwhile minimise the variance for 

that revenue. 

Without loss of generality, the nearby futures contract will be 

adopted as the short-maturity contract [5], since it often attracts 

a sizable amount of trading activity and has good trading 

liquidity. Then it is assumed that each decision stage lasts for 

one month over the planning horizon. At the beginning of stage 

0, the manufacturer initiates a position in the nearby futures 

contract based on the realised futures price, predicted 

commodity price behaviour and available information of 

production demand. At the end of stage 0, the futures position 

is liquidated before the outset of the next stage with updated 

information of production demand. At the end of the final stage, 

the futures positions are settled by cash while an actual 

procurement of commodities in the spot market is taken. The 

sequence of events in the hedging horizon is shown in Figure 1. 

P0 P1 PT

Futures price at time 0 is 

realized; Information of  

production demand is 

initialized.

Initiate a position in the 

nearby futures contract of 

stage 0

Liquidate previous futures 

contract

Information of production 

demand is updated.

Take a position in the 

nearby futures contract of 

stage 1

Settle the futures position

Take an actual 

procurement of 

commodity in the spot 

market

Figure 1 –Sequence of event in the spot procurement with stack-and-roll hedging  

Variables and parameters 

The mathematical notations and their definitions of the 

proposed model are listed below. 

TR
 

The wealth of manufacturer at the end of the 

planning horizon [ 0 T， ]. 

t  

Long or short futures positions taken at the 

beginning of stage t ,  0, , 1t T   

,f tR
 

The tradable wealth in the futures market at the 

beginning of stage. 

tS
 

Commodity spot price at time t .  

,tF   
Commodity futures price at the beginning of stage 

t  of a contract that matures at stage +t  .  

TD
 

Production demand realised at the end of the 

planning horizon. 

K  

Unit procurement cost for the manufacturer, if he 

chose to procure from spot market at the beginning 

of stage 0 and hold the commodity until time T .  

tc
 

Transaction cost in futures market. 

r  Risk-free interest rate. 
m  Futures margin per each futures contract. 

  Risk-averse parameter 

Mathematical model formulation 

The procurement planning horizon can be regarded as a 

discrete-time incomplete-market Markovian setting with finite 

horizon [ 0 T， ]. The uncertainty of the setting is represented 

by a filtered probability space ( , , P ) endowed with two 

Brownian motion in discrete time with a correlation  , 

denoted as 
,s tw  and 

,f tw . The evolution of commodity spot 

and nearby futures prices are described by two stochastic 

processes { , 0,1,...,tS t T } and { , 0,1,...,tF t T } on this 

probability space. All stochastic processes are assumed to be 

well defined and adapted to a filtration  
0t t T 

 , which 

can be regarded as the information perceived at the beginning 

of each stage [19]. Let N  be the number of trading period, 

the time increment can be denoted by t T N  . In this 

stack-and-roll strategy, the increment t  is taken to a month. 

Let  , lns t t t tr S S  and  , ,0 ,lnf t t t t tr F F   

respectively represents monthly return rate of spot price and 

nearby futures price. Their conditional mean and variance are 

defined in equations (1) and (2). 
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2 2 2

, , , , ,|       | ,    0s t s t t s t s t t s tE r E r t T            (1) 
2 2 2

, , , , ,|       | ,    0f t f t t f t f t t f tE r E r t T             (2) 

The spot and the nearby futures price follow the dynamics 

given by 

, , ,t s t s t s tS t w     
                (3) 

, , ,t f t f t f tF t w     
               (4) 

The variation of spot procurement cost from time 0 to T  is 

denoted by 
TL , where 

 T T TL D S K  
                    (5) 

In such an incomplete market setting, self-financing strategy 

using nearby futures is employed to hedge 
TL , given an initial 

wealth 
,0fR . The manufacturer chooses a hedging policy  , 

where 
t  denotes the position in the nearby futures contract in 

stage t . Since 
t  is decided based on the information 

perceived at the beginning of stage t , 
t  should be 

t
 

measurable. Let  ,t tM   be the function space that consists 

of all 
t
 measurable random variables, the hedging policy 

should fulfil the condition 

 ,t t tM                               (6) 

The tradable wealth 
,f tR  at the beginning of each stage is 

given by 
,

, , 1 1( ) ( )f trr t r t

f t f t t tR e R c e m e 

     
      (7) 

The wealth of the manufacturer at the end of the planning 

horizon is given by 

,T f T TR R L                              (8) 

The mean-variance criterion over the terminal wealth 
TR  is 

selected as the objective function. Due to this criterion, the 

manufacturer could maximise 
TR  for given level of its 

variance. The optimisation problem is formulated by 

max  [ ] [ ]
2

T TE R Var R 








                    (9) 

where 
TR  is used to signify the dependence of the terminal 

wealth on  .   is the set of admission policies conditioning 

on  ,t tM  .  

Based on the above discussion, the optimal stack-and-roll 

hedging policies can be obtained by solving the optimisation 

problem in equation (9), subject to constraints in equations (6), 

(7) and (8). 

 

ⅢDetermination of Optimal Stack-and-roll Hedging 

Policy  
 

The problem formulated in Section 3 will be solved using 

dynamic programming to obtain optimal stack-and-roll hedging 

policies. For the dynamic hedging problems over terminal 

wealth 
TR , dynamic programming is readily applicable to 

solve the problem with objective function in the form  TE u R  
, 

since the value function has the iterated-expectation property 

   t T t t t TE u R E E u R
        

based on the law of total 

expectation. However, the mean-variance objective function in 

equation (5) does not have such a property. According to the law 

of total variance, the value function is given by 

   

     

t T t T

t t t T t t T t t t T

E R Var R

E E R Var R Var E R  



        

  
  (10) 

Due to the presence of the term  t t t TVar E R
  

, direct 

application of the classical dynamic programming solution 

procedure is not feasible because Bellman‘s principle of 

optimality will be violated. To resolve this difficulty, Basak and 

Chabakauri [12] first derive a tractable recursive formulation for 

the mean-variance objective in equation (9), and obtain 

time-consistent analytical optimal policies in continuous time 

using dynamic programming. Based on their work, a 

discrete-time closed-form expression of optimal stack-and-roll 

hedging policy is developed. Moreover, in our approach, the 

optimal policy can be adjusted to the evolution of nonfinancial 

operating information, i.e. production demand. 

The solution procedure is as follows. First, a recursive 

formulation for value function in dynamic programming will 

be derived. Given the objective function in equation (9) with 

optimal hedging policy 
s
 ,  ,..., 1s t T  , the value function 

V , is defined as 

 , , , ,
2

f t t t t T t TV R F L t E R Var R
         

       (11) 

According to equation (10), the recursive presentation of value 

function is as follows 

 
   1 1

, ,..., 1
max

2s

t t t t t T
s t T

V E V Var E R



  

 

 
     

      (12) 

where 
tV  is shorthand for  , , , ,f t t tV R F L t . Since the 

transaction cost is proportional to futures position, let 
r r

t tm e c e        , equation (7) can be rewritten as 

,

, , 1 1( )f trr t

f t f t tR e R e 

   
              (13) 

Then the tradable wealth at the end of the planning horizon is 

given by 

    ,

1

, , ( )f t

T
rr T t t r T s t

f T f t s

s t

R e R e e 


   



  
       (14) 

Substituting equation (14) into (12) and letting 

  ,

1

( )f t

T
rr t s t

t t s

s t

H L e e 


 



  
               (15) 

Then the evolution process of 
tV  is as follows 

 
   2 1

, 1 1
, ,..., 1
max 0

2s

r T t t

t t t f t t
s t T

E V e Var R H





  

 
 

 
       

   (16) 

Substituting equation (14) into (11), the value function is 

shown to be linear in tradable wealth 
,f tR , then the value 

function can be represented as 

     , ,
ˆ, , , , ,

r T t t

f t t t f t t tV R F L t e R V F L t
 

 
     (17) 

Substituting equation (17) into (16) and computing the variance 

term, we get 
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,

, ,

( 1)

, ,..., 1

2 1 2

1 1

ˆmax {

( ) 2 , ( ) } 0
2

f t

s

f t f t

rr T t

t t
s t T

r rr T t t

t t t t t t t

V e e

e Var H Cov H e Var e


 


 



 

 

  

 

  

    
 (18) 

Then the optimal hedging policy is given by 
, ,

, ,

1
( 1)

, 1
+

var ( ) var ( )

f t f t

f t f t

r r

t t t
r T t t

t r r

t t

Cov H e E e
e

e e







     

   
   

  

    (19) 

According to the definition of 
tH  and the tradable wealth, we 

can get 
( ) ( )

, ,T

r T t t r T t t

t t t f T f tH E L e E R e R                 (20) 

where 

 

( ) ( 1)

1

( 1)

1 +1 , , 1

( )

1 , , 1

                      

                      

T T

r T t t r T t t r t

t t t

r t r T t t

t t t f T f t

r t r T t t r t

t t t f T f t

E L e E E L e e

e E H E R e R

e E H E R e e R

        



      

 

       

 

        

      

       (21) 

The recursive expression of 
tH  is given by 

 

    
   

,

,

1 , 1 ,

1 , ,

1

    

    

f t

f t

r t r t

t t t t f t f t

rr t r t r t

t t t f t t t f t

rr t r t

t t t t

H e E H E e R R

e E H E e e R E e R

e E H E e e

 

 

   

 

     



    



     

         
   

    
     (22) 

The optimal hedging policy is given by 

 

 ,f t

r t

t t t t

t r

t

E H e H

E e










 
                       (23) 

Substituting (19) into (22), the recursive expression of 
tH is as 

follows 

   

, ,

, ,

, ,

2

1
var var

f t f t

f t f t

f t f t

r r

t tr r r T t tr t

t t t t tr r

t t

E e E e
H e E E e e H e

e e

 



   



                                 
(24) 

With the terminal condition 
T TH L , the discrete-time 

closed-form expression of optimal hedging policy is as follows 
 

 
 

 
 

, ,

,, , ,

1 2
1

1 1

1 varvar

f s f t

f tf t f t f s

r rr T t t
T

s tt T r T t t r T t t

t rr r r
s t

tt t s

E e E eE L e
e e

eE e E e e

 


  

   


       

 

       
     

  
             



  
(25) 

where 

    

   

, , , ,

, , , ,

1

1

var

       1 var

f t f t f t f t

f s f s f s f s

r r r r

t t t

T
r r r r

s s s

s t

e E e E e e

E e e E e e

 




 

         
     

       
     

  (26) 

 

ⅣModel Evaluation and Monte Carlo Simulation 

 

In this study, Monte Carlo simulation is carried out to evaluate 

the performance of the proposed model with optimal policy 

derived in Section 4.  Another major research issue concerns 

the modelling of the commodity price and production demand, 

which will also be discussed in this section. 

Stochastic processes of copper prices at China‘s commodity 

market  

Copper is very widely used in industrial production, and yet its 

volatile price movements over the past several years have been 

a major concern for manufacturers. Without loss of generality, 

the proposed model is applied to help a manufacturer procure 

copper from China‘s commodity market. The proposed model 

requires an accurate prediction of monthly return and volatility 

of copper prices, as indicated in equation (25) and (26). In 

order to increase the accuracy, daily returns of copper prices 

are first modelled and then used to estimate the monthly return 

and volatility [15]. 

The most prevailing commodity price models are the term 

structure model [25] and its extensions. However these models 

are inappropriate to be incorporated in the stack-and-roll 

strategy, because the models assume all futures are fairly priced 

relative to each other, and hence assume away the trading 

liquidity risk [6]. Since recent studies on testing fractal 

structure of commodity price confirm the nonlinear 

dependence of the prices series, nonlinear regression models 

are developed to model daily return rates of copper spot price 

and nearby futures price. A wavelet neural network is adopted 

to represent the nonlinear function, which can capture the 

fractal property of copper prices [26]. At the same time, copper 

spot and futures price are frequently find to be co-integrated 

[27]. To accommodate the fractal structure and the possibility 

of a long-run equilibrium relationship, spot and nearby futures 

return rates are modelled as follows 

, 0 , 1 , , 1 1 ,( , )d d d d

s t s s t s t i f t t s tr f r r r B        
    (27) 

, 0 , 1 , , 1 1 ,( , )d d d d

f t f f t f t i s t t f tr f r r r B        
  (28) 

where    1 , 1 , 1ln lnt s t f tB p p      represents the long-run 

equilibrium relationship; 
,

d

s tr  is the daily return rate of copper 

spot price; 
,

d

f tr  is the daily return rate of the nearby copper 

futures price; f  is the function of wavelet neural network. 

The Akaike information criterion (AIC) is applied to select the 

self-correlation lagged order i . EKF algorithm is employed to 

determine the model parameters in (27) and (28), using daily 

closing copper spot price of Shanghai Changjiang Nonferrous 

Metals Market and nearby copper futures price of Shanghai 

Futures Exchange. The in-sample training data covers from 

January 4th, 2005 to February 15th, 2011, while the 

out-of-sample testing data covers from Feb 16th, 2011 to 

September 26, 2011. A forecasting performance comparison 

between wavelet neural network (WNN) model and linear 

autoregressive model is carried out. The results shown in Table 

1 indicate that WNN model can improve the prediction 

accuracy of copper prices. 

Table 1: Performance comparison when forecasting 

out-of-sample data 

spot/futures NMSE  MAE DS 

WNN 1.3993/1.3548 0.0115/0.0144 56/55 

AR 1.7542/1.7154 0.0187/0.0179 51/50 

After we have obtained the daily return data, the monthly 

return and volatility can be calculated using equation (29). It is 

assumed that there are 22 trading days in a month. 

      
22 22

2

, , , , , 1 , ,

1

var ( ) 2 cov , cov ,d d d d d d

x t x t k x t x t k x t k x t k x t k i

k k i

r r r r r r r      
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22

, ,

1

, ,d

x t x t k

k

r r x f s



 
                            (29) 

Random demand and information updating 

Following the demand uncertainty structure as that of Iyer and 

Bergen [17], production demands assumed to follow a normal 

distribution as follows 

  2| ~ ( , )f D N  
                     (30) 

where   is the mean of D  and is also normally distributed 

as follows 

  2~ ( , )g N                          (31) 

At the beginning of stage 0, the production demand is a normal 

distribution    2 2~ ,m D N    . As more information about 

demand will be received along the planning horizon, the 

knowledge of the demand distribution will be improved by 

applying Bayesian inference. Assuming that information 

collected during each stage is converted by the manufacturer 

into an estimation of the production demand, i.e. 
td , the 

demand distribution conditioning on 
td  is 

     2| ~ ( , )t t tg d N d d   , where 

   2 2 2

1

1 1 1

t td d   

 
 and 

 
   

 

2 2

1 1

2 2

1

t t t

t

t

d d d
d

d

  


 

 








, which implies that 

      2 2| ~ ,t t tm D d N d d   . Then we can see that with 

information gathered along the planning horizon, demand 

uncertainty will be reduced as time goes on. 

 

ⅤSimulation results and discussion 

 

To simulate the monthly return and volatility of copper spot 

price and nearby futures price, the initial spot price is set to be 

60,000 Yuan/ton while the nearby futures price is set to be 

60,100 Yuan/ton. The unit procurement cost at stage 0 is set to 

be 63000 Yuan/ton. Besides, at stage 0, we assume that 

 | ~ ( , 0.1)f D N   and   ~ (1,0.1)g N . For simplicity, we 

assume that 1td   , where  0, , 1t T  , which means 

that information received along the planning horizon enhance 

the probability of expected demand  , and thus gradually 

reduce the variance of demand estimation. A total 5000 pairs of 

sample paths are generated by Monte Carlo simulation for 

copper price returns and production demand. 

First, the proposed stack-and-roll hedging strategy is assessed 

by comparing the hedged with unhedged procurement revenue. 

The result is shown in Figure 2. From Figure 2 we can see that 

the hedged revenue is much less volatile than the unhedged one 

and the expected value of the hedged revenue is much larger 

than the unhedged one. 

 
Figure 2. Comparison of hedged and unhedged procurement 

revenue 

Second, the performance of the proposed mean-variance 

hedging strategy, minimum-variance and naive hedging 

strategy are assessed through comparing the cumulative 

probability distribution of the three, as shown in Figure 3, from 

which we can see that the proposed stack-and-roll strategy has 

the best hedging performance. 

Figure 3 Performance comparisons of different hedging 

strategies 

Third, the effect of risk-averse parameter on the stack-and-roll 

strategy is shown in Figure 4, from which we can see that 

hedging strategy with high risk-averse level can reduce more 

revenue volatility risk only at the expense of lower expected 

revenue. 

 
 

 
Figure 4. Effective of risk-averse parameter on the 

stack-and-roll strategy 

Fourth, experiments are implemented to evaluate the effect of 

updating demand information on stack-and-roll strategy. From 

Figure 5, we can see that ignoring the updating information can 

deteriorate the hedging performance, especially when the 

information is more reliable. 
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ⅥConclusions 

 

A dynamic stack-and-roll hedging strategy is developed in this 

study to manage the risk of spot procurement and optimise the 

terminal revenue received from procurement and hedging 

activities. A discrete-time closed-form expression of optimal 

hedging policies is derived by dynamic programming, which is 

determined by commodity price behaviour and timely 

perceived production demand. The performance of proposed 

model is evaluated by Monte Carlo simulation, when it is 

applied to procure copper in China‘s commodity market. In 

order to simulate a more real stochastic environment, Bayesian 

inference is adopted to model the demand information updating 

process, while a nonlinear regression model is developed to 

model the copper price behaviour. Since monthly data are 

weakly correlated and contains less market information, daily 

returns are used to compute monthly return and volatility of 

copper prices, in order to increase the estimation accuracy. 

From the simulation results, the proposed procurement risk 

management model can perform robustly better than unhedged 

spot procurement and other existing hedging strategies. 

 

 
Figure 5. Effect of demand information updating on 

stack-and-roll strategy 
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