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Estimating the case fatality ratio (CFR) of a novel strain of influenza virus during the early stage of the pandemic is one of key
epidemiological tasks to be conducted as rapid research response. Past experience during the epidemics of severe acute respiratory
syndrome (SARS) and influenza A (H1N1-2009) posed several technical challenges in estimating the CFR in real time. The present
study aimed to develop a simple method to estimate the CFR based on readily available datasets, that is, confirmed cases and deaths,
while addressing some of the known technical issues. To assess the reliability and validity of the proposed method, we examined the
minimum length of time required for the assigned CFR to be included within the 95% confidence intervals and for the estimated
CFR to be below a prespecified cut-off value by means of Monte Carlo simulations. Overall, the smaller the transmission potential
was, the longer it took to compare the estimated CFR against the cut-off value. If policymaking and public health response have
to be made based on the CFR estimate derived from the proposed method and readily available data, it should be noted that the
successful estimation may take longer than a few months.

1. Introduction

When a new infectious disease emerges, the case fatality ra-
tio (CFR) informs how lethal the infection or the disease is,
measuring the virulence of the novel infection as the condi-
tional probability of death given infection or disease [1, 2].
To understand the severity of infection, assess the impact of
clinical and public health interventions, and anticipate the
likely number of deaths in the population given the total
number of infected individuals, quantifying the CFR in real
time during the early stage of an epidemic is of utmost im-
portance.

Among various uses of the CFR, the present study fo-
cuses on influenza, and in particular, the epidemiological
determination of the severity in relation to epidemiological

indices, such as the Pandemic Severity Index (PSI) in the
United States [3]. As a process of public health policymaking,
this index is used as a scientific criterion to choose and
determine public health countermeasures, and thus, the
CFR is regarded as key information for policymaking [4].
For instance, if the estimated CFR exceeds a prespecified
reference value of 2.0%, which is sometimes quoted as the
estimate of the CFR for the H1N1-1918 pandemic (Spanish
influenza) [5], the PSI suggests that the government should
recommend and implement all the nonpharmaceutical inter-
ventions listed, including voluntary isolation of clinically ill
individuals at home, quarantine of household contacts, and
social distancing [3].

However, while the CFR is theoretically calculated as
a proportion of deaths to infected individuals, the actual
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calculation practice involves several technical problems ow-
ing to a few epidemiological features.

First, one cannot directly count all infected individuals
during the course of an epidemic due to unobservable nature
of infection, and commonly available datasets may be only
confirmed cases through surveillance efforts. Moreover, the
mild nature of influenza involves multiple steps of bias
including ignorance of asymptomatic and subclinical infec-
tions, case ascertainment bias, imperfectness of a diagnostic
testing method, and reporting bias. In fact, approximately
10% of confirmed infections with influenza (H1N1-2009) in
households were shown to be fully asymptomatic [6, 7]. To
partly address the issue of underascertainment, a techni-
cal advancement in synthesizing epidemiological evidences
enabled us to estimate the symptomatic case fatality ratio
(sCFR), the proportion of deaths to all symptomatic cases
[8], although the denominator data are frequently based
on nonspecific disease information such as influenza-like
illness. As an alternative, a real-time serological study could
potentially offer the denominator based on all infected indi-
viduals [9], but the seroepidemiological survey is costly and
the diagnostic performance of serological testing in relation
to the estimation of the CFR has yet to be fully clarified.
While specific CFRs using confirmed cases and symptomatic
cases as the denominator have been expressed as cCFR and
sCFR, respectively, among studies of H1N1-2009 [2], the
present study consistently uses the simplest notation “CFR,”
intending it to represent the risk of death among all infected
individuals (and so may be abbreviated as iCFR when
necessary).

Second, the real-time estimation of the CFR has to take
into account the time delay from illness onset to death
and, thus, requires us to employ an appropriate statistical
method to address censoring. This point must be considered,
because all the cases are not fully exposed to the risk of
death at a point in time during the course of an epidemic,
and a simple ratio of the cumulative numbers of deaths to
cases can yield biased (mostly, underestimated) CFR [10–
13]. Third, it is critical to always keep it in mind that the
risk of death is heterogeneous. In particular, the higher risk
of influenza death than healthy adults is seen among those
with underlying health conditions [14], including chronic
obstructive pulmonary disease, asthma, pregnancy, chronic
kidney failure, and diabetes. Perhaps reflecting this feature,
the CFR clearly differs by age with the highest estimate
among elderly and infants and the lowest among school-
age children and young adults [15, 16]. Fourth, during an
early stage of a pandemic, the number of deaths still remains
very small and so the estimation of CFR suffers from broad
uncertainty. Given that the CFR of influenza is likely to be
small, and suffers from wide uncertainty, it is fruitful to
clarify the minimum number of cases that are required to
determine if the estimated CFR in real time is significantly
below a prespecified cut-off value such as 2.0%.

While directly addressing clinically mild features and
case ascertainment bias calls for synthesizing epidemiological
evidence, for example, by employing hierarchical modeling
approach [8], it is also important to clarify what can be done
with readily available epidemiological information, such as

confirmed cases and confirmed deaths. In the present study,
we aim to propose a method to estimate the CFR based on
the limited epidemiological data during the early stage of an
epidemic. Through this investigation, we also aim to clarify
the minimum number of days that are required to explicitly
compare the estimated CFR to predetermined cut-off values
of the CFR.

2. Materials and Methods

2.1. Assumptions. For clarity, here we describe the underly-
ing epidemiological assumptions and settings. First, we focus
on the early stage of a pandemic and ignore the depletion
of susceptible individuals during this particular time period
in which the number of newly infected individuals i(t)
increases exponentially; that is, we focus on the log-linear
phase alone for simplicity. Second, in realistic settings, i(t)
cannot be directly counted as a function of time, and it is
possible to observe only the confirmed cases, c(t). Third,
during the early epidemic phase, a constant factor, k which
scales the ratio of confirmed cases to all infected individuals,
is assumed to remain a constant. In other words, we as-
sume that the frequency of confirmed diagnosis among
infected individuals does not vary over time. Fourth, we
assume that the time delay from infection to death is
independently and identically distributed and denotes the
conditional probability density function as f (s) of length s
days since infection. Moreover, among the confirmed cases,
we assume that all death counts are recorded over time
through surveillance system. Except for being reflected in the
generation time distribution and the reproduction number,
the event of death is assumed to be independent of the
process of renewal. Finally, we consider a public health
setting in which the time of emergence (or the time to initiate
exponential growth) t0 is known (even approximately) as was
the case in a specific epidemic study in which the starting
time point of an epidemic was estimated [17, 18]. In the next
subsection, we describe the estimation procedure of only a
homogeneous population. However, the estimation problem
of a population with heterogeneous risks of infection and
death is discussed in Section 3.

2.2. Model Structure. We first describe the model structure
deterministically. Throughout the paper, we ignore demo-
graphic stochasticity in infection process (see Section 4). Let
i(t) be the incidence of infection at calendar time t. Also, let
t0 be the time at which an epidemic starts with a single index
case. Then i(t) increase exponentially as follows:

i(t) = exp{r(t − t0)}, (1)

where r is the exponential growth rate of incidence. It
should be noted that r may be referred to as the intrinsic
growth rate, if the incidence data in question deals with
only the very early exponential growth phase of an epidemic.
However, as long as we consider the exponential growth as
crude approximation of the epidemic curve, the exponential
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growth phase can be longer than that governed by the
intrinsic growth rate and r is not restricted to be the very
early epidemic phase (e.g., as was practiced previously [19,
20]). Let p be the CFR among all infected individuals.
Assuming that the conditional probability density function
of the time from infection to death f (s) is known, the num-
ber of deaths d(t) is modeled as

d(t) = p
∫∞

0
i(t − s) f (s)ds, (2)

which can be rewritten as

d(t) = p exp{r(t − t0)}
∫∞

0
exp(−rs) f (s)ds

= p exp{r(t − t0)}M(−r),
(3)

where M(−r) represents the moment-generating function
of the time from infection to death given the exponential
growth rate r. One may integrate both sides and use the
cumulative number of deaths by day t, D(t) for the estima-
tion of CFR. The estimator of the CFR is then given by

p̂ = D(t)[
exp(r{t − t0})− exp(−rt0)

]
(M(−r)/r)

. (4)

Other than parameters for f (s), which we will assume as
known, the estimator (4) indicates that, to estimate the CFR,
an unknown parameter r has to be estimated from an ad-
ditional series of data other than the death process, for
example, from the confirmed case series. The exponential
growth rate r quantifies the denominator of the above-men-
tioned estimator. To estimate r, we analyze the incidence of
confirmed cases, c(t). Let l denote the proportion of con-
firmed cases to the total of infected individuals the data-
generating process of c(t) is described by

c(t) = l
∫∞

0
i(t − s)h(s)ds

= lQ(−r)i(t)

= ki(t),

(5)

where h(s) is the density function of the time from infec-
tion to confirmatory diagnosis and Q(−r) represents the

moment-generating function given the exponential growth
rate r. We refer to the parameter k as the confirmed coef-
ficient (i.e., k = lQ(−r)) which acts as a constant factor to
translate i(t) into c(t).

Let us consider an adjusted calendar time based on
known t0 (i.e., t + t0), we simplify all the following equations
by eliminating t0 (and hereafter we consistently use t as the
adjusted time in which t0 is equated to be zero). In addition
to this adjustment, we discretize both the series of confirmed
cases and deaths, because the observed dataset is given with
discrete time (i.e., daily data), that is,

ct =
∫ t

t−1
c(x)dx

= k

r

[
exp(rt)− exp{r(t − 1)}],

dt =
∫ t

t−1
d(x)dx

= p
(
exp(rt)− exp{r(t − 1)})M(−r)

r
.

(6)

The proposed estimation method based on these linear
approximations would work even when the exponential
growth rate varies with time (e.g., varies as a step function)
as was considered when evaluating the effectiveness of public
health interventions such as school closure [21, 22]. The
number of parameters would have to increase to capture
the time variation (e.g., from a single r alone to r0 and r1

for two consecutive epidemic phases), and thus the required
sample size for estimation would also increase. However, all
we have to do to cope with the time dependence is to update
(1) and (2) using multiple growth rates and, thus, revise (6),
accordingly.

2.3. Maximum Likelihood Estimation. Assuming that the
observed number of confirmed cases on day t results from
Poisson sampling process with mean ct = k [exp(rt) −
exp{r(t−1)}]/r, where r and k are parameters, the likelihood
function is given as follows:

L1(r, k;mt) =
T∏
t=1

(k/r)mt
[
exp(rt)− exp{r(t − 1)}]mt exp

[−(k/r)
[
exp(rt)− exp{r(t − 1)}]]

mt!
, (7)

where mt is the observed daily number of confirmed cases on
day t and T represents the latest time of observation.

Let πt be a random variable which yields an estimator of
the CFR on day t since the start of an epidemic and is the
realized value in the particular epidemic. Assuming that the
realized CFR is the result of binomial sampling process of
death with sample size [exp(rT)−1]M(−r)/r, the likelihood
to estimate the CFR based on the total number of deaths up

to the latest time of observation T is

L2(πT ;D(T), r) =
⎛
⎝
(
exp(rT)− 1

)M(−r)
r

D(T)

⎞
⎠πTD(T)

× (1− πT)(exp(rT)−1)(M(−r)/r)−D(T).
(8)
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Because of an assumption of conditional independence
between the renewal process and death, the total likelihood
L is given by

L = L1L2. (9)

Minimizing the negative logarithm of the total likelihood L,
we jointly estimate three parameters, πT , r, and k. The 95%
confidence intervals (CIs) are derived from the profile likeli-
hood, the idea of which is to invert a likelihood ratio test to
obtain a CI for the parameter in question [23].

2.4. Simulations. Whereas the above-mentioned estimation
procedure enables us to estimate the CFR based only on the
confirmed cases and deaths, the estimation rests on limited
epidemiological information as compared to other methods
involving additional symptomatic case data or serological
dataset. Thus, it is important to examine if we can overcome
uncertainty and realistically employ the proposed method
during an early phase of a pandemic. Specifically, we explore
the time required to confidently suggest the range of the CFR
and compare the CFR against a pre-specified cut-off value
during the early stage. We assess the reliability and validity
by means of random simulations.

As a plausible parameter range, we examine three dif-
ferent exponential growth rates, r, of 0.05, 0.15, and 0.25
per day. These are chosen as plausible, because, assuming
that the mean generation time of influenza is 3 days and
exponentially distributed, the basic reproduction number
ranges from 1.15 to 1.75. If the generation time is a con-
stant 3 days, the reproduction number ranges from 1.16
to 2.11. These are in line with published estimates of the
reproduction number for H1N1-2009 [24]. In fact, the
growth rate of influenza A (H1N1-2009) is estimated as 0.08
[25] and 0.10 per day [18] in Japan and Mexico, respectively.
The reference values of CFR, p, are set at 0.1%, 0.5%, and
2.0% that are in line with the PSI in the United States.
The CFR of Spanish influenza is sometimes thought to be
approximately 2.0% [5, 24] and those of Asian and Hong
Kong influenza pandemics are thought to be up to 0.5%
[26]. The CFR of seasonal influenza is thought to be below
0.1% [27]. Although the CFR of the H1N1-2009 pandemic
among all infected individuals is estimated to be smaller
than 0.1% [28], we do not examine smaller estimates of
the CFR, because 0.1% may be most reasonably defined as
the lowest cut-off value in practical setting to distinguish a
mild influenza strain from severe ones, and it is likely to
be infeasible to robustly estimate a CFR below 0.1% during
the early epidemic phase due to sampling errors. Since the
empirically estimated proportion of confirmed cases among
all infected individuals is 5% [15], we fix k at 0.05 assuming
that the time delay from infection to confirmed diagnosis
is sufficiently short. Ignoring small delay from infection to
illness onset (as it does not influence the above-mentioned
estimation framework), the conditional probability density
function of the time from infection to death of influenza
A (H1N1-2009) f (s) is assumed to be gamma distribution
with the mean and standard deviation being 9.5 and 4.7 days,
respectively [29].

As for simulation-based assessment, we first perform
Monte Carlo simulations for 1000 times for each specified
combination of parameter values, calculating the coverage
probability of including the assigned CFR value within the
95% confidence intervals. Second, we assess the time at
which the estimated CFR is confidently said as smaller than
the pre-specified CFR value. Again, the model is randomly
simulated for 1000 times per each parameters setting, calcu-
lating the number of simulation runs in which the upper 95%
confidence interval is below the reference CFR value.

2.5. Heterogeneous Population. The proposed method can
be extended to a heterogeneous population with differential
risks of infection and death, perhaps by age and risk groups.
We present the extended model analytically and demonstrate
that the above-mentioned approach is directly applicable to
a multihost population and, thus, the age-stratified epide-
miological data.

3. Results

3.1. Reliability. Figure 1 illustrates a single simulation run
and the resulting maximum likelihood estimates with the
95% confidence intervals with the assigned parameters, the
CFR of 0.5%, and r = 0.15 per day. As one can imagine,
the confidence intervals for each parameter are gradually
narrowed down as the epidemic progresses due to reduced
sampling errors. During the very early stage of the pandemic
(e.g., for the first 40 days given the assumed parameters), it is
not feasible to expect the narrow confidence interval for the
CFR, and thus, one may fail to assess the reliability using only
the very limited early epidemiological data.

Table 1 shows the coverage probability of the CFR for
each set of parameters. When estimating the CFR based on
early epidemic data, the exponential growth rate appears
to play a critical role in determining reliability. To attain
the coverage probability greater than 90% with r = 0.05,
0.15, and 0.25 per day, respectively, the latest times of
observation, T , should be at least 80, 40, and 30 days with
the reference CFR value of 0.5%. This indicates that the
smaller the transmission potential is, the longer the time it
would take to obtain a reproducible estimate of the CFR.
Of course, the coverage probability converges to 95% with
longer observation times. Given a larger CFR, the coverage
probability converges earlier due to smaller sampling errors.
However, the coverage probability appears to be more
sensitive to variation in r than that in the CFR value.

3.2. Validity. The validity of comparing the CFR against pre-
specified cut-off values is summarized in Table 2. The overall
qualitative patterns are similar to those of the coverage
probability in Table 1. The minimum number of days that
is required to declare that the CFR is below cut-off values
is very sensitive to the exponential growth rate of cases. In
other words, smaller transmission potential requires us to
wait for longer time to compare the estimated CFR against
the cut-off values. In addition, the validity is also sensitive
to the estimated CFR relative to the cut-off value. When the
relative ratio of the CFR to the cut-off value gets smaller,
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Figure 1: A single simulation run and the joint estimation results of the case fatality ratio and the exponential growth rate. The assigned
CFR value is 0.5%, and the exponential growth rate r is set at 0.15 per day. ((a) and (b)) Incidence of confirmed cases and deaths as a
function of epidemic days. The epidemic day 0 is the date on which an index case is infected. The numbers of confirmed cases and deaths
increase exponentially. ((c) and (d)) The maximum likelihood estimates of (c) the exponential growth rate r and (d) the case fatality ratio
with the 95% confidence intervals. The 95% confidence intervals were computed by employing the profile likelihood. Unfilled circles are the
maximum likelihood estimates accompanied by the whiskers extending to lower and upper 95% confidence intervals. The dotted horizontal
line shows the assigned parameter value.

the difficulty in differentiating the CFR is magnified. Given
identical transmission potential and an identical assigned
value of CFR, there was approximately a 20-day lag in the
minimum numbers of days for differentiation between the
relative case fatality ratios of 50% and 80%. With the smallest
growth rate of r = 0.05 per day, the estimation framework
failed to yield any successful differentiation of CFR, even
observing the epidemic for T = 100 days. Of course, the
estimated CFR also influences the feasibility, but the suc-
cessful differentiation appears to be most sensitive to the
exponential growth rate.

3.3. Heterogeneous Population. The proposed method is not
directly applicable to realistic setting in which we observe
substantial heterogeneities in the risks of infection and
death. Accordingly, here we show the modeling approach
to heterogeneous populations analytically. Specifically, we
consider age-dependent dynamics: while the risk of infection
may be higher among children than among elderly in the case
of influenza, the conditional risk of death given infection is
likely to be higher among elderly than school-age children,
perhaps reflecting higher proportion of elderly with the
underlying comorbidities.
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Table 1: Coverage probability of the case fatality ratio (CFR) for each set of parameter values.

T (epidemic day to estimate the CFR; days)

0.1%

0.05 1.5% 1.8% 7.8% 19.1% 34.2% 49.1% 66.0% 82.6%

0.15 13.2% 52.4% 93.8% 94.6% 95.0% 94.9% 95.0% *

0.25 62.1% 94.4% 95.3% * * * * *

0.5%

0.05 4.4% 8.0% 25.1% 57.3% 82.6% 91.9% 94.8% 95.7%

0.15 55.3% 93.6% 95.2% 95.0% 95.9% 93.8% 94.2% *

0.25 94.4% 95.4% 95.3% * * * * *

2.0%

0.05 15.2% 26.9% 51.8% 86.4% 94.4% 95.2% 95.1% 96.2%

0.15 90.9% 95.3% 96.0% 96.4% 96.2% 95.9% 95.0% *

0.25 95.5% 95.8% 95.0% * * * * *

CFR 30r 40 50 60 70 80 90 100

CFR: case fatality ratio (assigned value). All the values were calculated as the proportion of successful simulation runs with the 95% confidence intervals
that include the assigned CFR value among the total of 1000 simulation runs. The parameter r is the exponential growth rate of infection (per day). T is the
epidemic date on which the estimation is performed. Those exceeding the coverage probability of 90% are highlighted in dark grey, while the cells with ∗mark
and shaded in light grey represent combinations of parameter values which generate too large numbers of cases and for which we refrained from estimation.

Let is(t) be the incidence of infection among subgroup
s at calendar time t. Also, let Rqs be the average number of
secondary cases in subgroup q generated by a single primary
case in subgroup s, which would act as a single entry of the
age-dependent next-generation matrix [30]. Assuming that
the density function of the generation time g(τ) of length
τ days is shared among subgroups, the multivariate renewal
process is described by

is(t) =
∑
q

Rsq

∫∞
0
iq(t − s)g(s)ds. (10)

Let ps be the group-specific CFR (e.g., age-specific CFR)
among all infected individuals of subgroup s. As was shown
with application to the homogeneous population, we employ
the confirmed coefficient ks, reflecting both the proportion
of confirmed cases to all infected individuals of subgroup s
and the time delay from infection to confirmatory diagnosis.
Then the confirmed cases among subgroup s cs(t) are

cs(t) = ksis(t). (11)

Since the observed dataset is discrete time series, that is, daily
data, we integrate the confirmed cases as follows:

cs,t =
∫ t

t−1
cs(x)dx. (12)

Assuming that the conditional probability density function
of the time from infection to death, f (s) is known and

is shared among subgroups, the number of new deaths of
subgroup s at time t ds(t) is described as

ds(t) = ps

∫∞
0
is(t − s) f (s)ds, (13)

which is rewritten as

ds(t) = ps

∫∞
0

∑
q

Rsq

∫∞
0
iq(t − τ − s)g(τ)dτ f (s)ds. (14)

As was integrated in the homogeneous case, one may focus
on the cumulative number of deaths Ds(T) by the latest time
of observation T . The estimator of the group-specific CFR is
given by

p̂s = Ds(T)∫ T
0

∫∞
0

∑
q Rsq

∫∞
0 iq(t − τ − s)g(τ)dτ f (s)dsdt

. (15)

The likelihood function to estimate the next-generation ma-
trix may partially account for stochastic dependence struc-
ture of the transmission dynamics, and thus, conditions for
every future expectation on the past history of the epidemic.
Let Z(t) represent the history of age-specific confirmed cases
from time 0 up to time t − 1. Given the series up to t − 1,
and assuming that the incidence of confirmed cases on day
t is sufficiently characterized by Poisson distribution, the
conditional likelihood is written as
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Table 2: Proportion of simulation runs in which the upper 95% confidential interval of CFR (p) falls below specified cut-off values.

T (epidemic day to estimate the CFR; days)

Relative 

CFR
CFR r 30 40 50 60 70 80 90 100

80%

0.1%

0.05 0.0% 0.1% 0.3% 0.1% 0.0% 0.0% 0.0% 0.0%

0.15 0.0% 0.0% 1.5% 10.5% 31.3% 86.1% 100.0% *

0.25 0.0% 11.1% 67.5% * * * * *

0.5%

0.05 0.4% 1.0% 1.7% 0.3% 0.7% 1.9% 5.9% 8.2%

0.15 0.0% 3.2% 11.5% 23.3% 64.8% 99.3% 100.0% *

0.25 6.6% 26.3% 98.1% * * * * *

2.0%

0.05 2.5% 6.2% 6.6% 5.0% 6.9% 6.5% 7.2% 8.8%

0.15 2.1% 7.1% 13.2% 34.8% 80.4% 99.9% 100.0% *

*0.25 10.0% 41.9% 99.6% * * * *

50%

0.1%

0.05 0.0% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.1%

0.15 0.0% 0.0% 3.3% 54.0% 99.2% 100.0% 100.0% *

0.25 0.0% 49.1% 100.0% * * * * *

0.5% 0.05 0.2% 0.6% 0.6% 0.6% 0.2% 3.4% 15.5% 27.8%
0.15 0.0% 7.8% 45.3% 95.8% 99.9% 100.0% 100.0% *

0.25 17.7% 95.6% 100.0% * * * * *

2.0% 0.05 2.7% 5.1% 5.0% 8.1% 21.1% 28.7% 38.1% 48.7%

0.15 3.7% 33.0% 74.0% 99.8% 100.0% 100.0% 100.0% *

0.25 44.8% 99.9% 100.0% * * * * *

30%

0.1%

0.05 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%

0.15 0.0% 0.0% 2.7% 91.1% 100.0% 100.0% 100.0% *

0.25 0.0% 86.7% 100.0% * * * * *

0.5%

0.05 0.3% 0.4% 0.4% 0.3% 0.4% 5.5% 24.5% 49.5%

0.15 0.0% 8.3% 84.7% 100.0% 100.0% 100.0% 100.0% *

0.25 29.6% 100.0% 100.0% * * * * *

2.0%

0.05 1.4% 3.3% 4.2% 10.4% 33.9% 55.0% 72.8% 86.4%

0.15 4.3% 64.9% 98.7% 99.9% 100.0% 100.0%

0.25 86.1% 100.0% 100.0% * * * * *

CFR: case fatality ratio (assigned value). Relative CFR: the ratio of assigned CFR value relative to the cut-off value. The proportion of successful simulation runs
with the upper 95% confidence interval below the pre-specified cut-off value is shown. The parameter r is the exponential growth rate of infection (per day).
T is the epidemic date on which the comparison is performed. Those exceeding the proportion of 90% are highlighted in dark grey, while the cells with ∗mark
and shaded in light grey represent combinations of parameter values which generate too large numbers of cases and for which we refrained from estimation.

L1

(
Ri j , k; Z(t)

)
=
∏
s

n∏
i=1

exp
(
−∑q Rsq

∫∞
0 cq(t − s)g(s)ds

)(∑
q Rsq

∫∞
0 cq(t − s)g(s)ds

)mt,s

mt,s!
, (16)

where mt,s represents the observed number of confirmed
cases in subgroup s on day t. This likelihood function is

useful to describe the underlying epidemic dynamics of the
heterogeneous population. Let πt,s be a random variable
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which yields an estimator of the CFR of subgroup s at day
t since the start of an epidemic. The other likelihood to
estimate πt,s is assumed to be given by binomial sampling
process as follows:

L2,s

(
πs,T ;Ds(T), Ri j , k

)

=
⎛
⎜⎝
∫ T

0

∫∞
0

∑
q

Rsq

∫∞
0
iq(t − τ − s)g(τ)dτ f (s)dsdt

Ds(T)

⎞
⎟⎠

× πs,T
Ds(T)(1− πs,T

)∫ T
0

∫∞
0

∑
q Rsq

∫∞
0 iq(t−τ−s)g(τ)dτ f (s)dsdt−Ds(T)

.
(17)

Therefore, the total likelihood is calculated as the following
product:

L = L1

∏
s

L2,s. (18)

Although the estimation framework can thus be very similar
to that for the homogeneous population, it should be noted
that the validity and reliability of estimation procedure for
the heterogeneous population are likely to be influenced
by way of parameterizing the next-generation matrix. For
example, if the quantification of the matrix requires us
to estimate only a small number of parameters (e.g., one
parameter for each age group), we expect that the validity
and reliability are not too much different from those we
examined for the homogeneous population. However, when
more parameters should be estimated to describe more
detailed underlying heterogeneous transmission dynamics,
the proposed method has to face greater uncertainty.

4. Discussion

We proposed an estimation method to jointly infer the CFR
and the exponential growth rate using only the confirmed
case and death data. By means of Monte Carlo simulations,
we assessed the minimum length of days required to compare
the estimated CFR with the pre-specified CFR value such
as those in the US Pandemic Severity Index. To do so, it
appeared that the validity and reliability were very sensitive
to the exponential growth rate and, thus, to the transmission
potential of a novel pandemic strain. To be confident that
the method included the CFR estimate within the 95%
confidence interval, it appears that we have to wait at least
for a month, and perhaps in general for about a few months
given that the growth rate is equal to or smaller than 0.15
per day. The successful differentiation of CFR from cut-off
values also takes about a few months. As it takes longer
time for the estimation or differentiation, it would become
more difficult for the incidence curve to be approximated
by exponential growth. More importantly, the differentiation
may not be feasible, if the growth rate is 0.05 per day or
smaller. The growth rate was thus shown to play the most
critical role in determining the feasibility of the proposed
method than the CFR value to be estimated. This finding is
attributable to the fact that the number of deaths is the result

of binominal sampling of cases. In general, as the sample size
(or the number of binomial trials) increased, the standard
error of binomial probability decreased, and the number of
binomial trials in the proposed model substantially increased
as the exponential growth rate increased. The validity and
reliability were more sensitive to the growth rate than the
binomial probability: the influence of variation in binomial
probability on its confidence interval was small for the as-
sumed range of CFR values, which can be understood from
the approximate standard error of the binomial probability
derived from the normal approximation to binomial [31].

Already, there have been multiple epidemiological meth-
ods to estimate the CFR using different datasets. Presanis
et al. [8] proposed a Bayesian evidence synthesis approach
using various different types of data that describe a pyramid
structure, explaining that confirmed cases represent the tip
of an iceberg of infected individuals and emphasizing a
need to observe milder fraction of cases such as those who
attended medical service. The useful datasets for that method
included medically attended symptomatic cases and those
required hospitalization and those admitted to intensive care
unit. Comparing our proposed method with the evidence
synthesis approach, the proposed method has two important
advantages: (i) the proposed method can comply with a need
to offer the CFR estimate in real time and (ii) we use the
time series data of the confirmed cases and deaths which are
readily available and accessible. The two different methods
may thus be combined and used in practical setting: while
the proposed method is used for the real-time assessment
using widely available data, the sCFR estimate employing
the evidence synthesis approach may be subsequently offered
based on datasets of well-defined cohort populations. On
the other hand, Wu et al. [15] used real-time seroprevalence
data during the course of an epidemic. This approach enables
us to estimate the background denominator of incidence of
infections directly. In fact, a seroepidemiological study may
be the only method to explicitly and directly quantify the
underlying transmission dynamics. However, seroepidemi-
ological surveys are costly and explicit interpretations of
seroconversion and changes in antibody titers have yet to be
offered. As a method to supplement the explicit estimation
approaches, we believe that the proposed method based on
readily available data would be a useful real-time assessment
tool.

There are a few important future tasks for improvement.
First, we used no prior information of parameters in the
present study, but some information may be retrieved from
other datasets or from the literature including historical
epidemic records (e.g., the exponential growth rate of
the epidemic caused by the same infectious agent before
conducting the estimation). In fact, it is frequently the
case that the transmission potential or the growth rate of
cases is estimated earlier than the CFR in practical setting,
and one may know a plausible value of r in advance of
CFR estimation. If the prior knowledge could compensate
unknown information of the proposed method, it will help
to reduce the associated uncertainty of the CFR, there-
by improving the validity of estimation. Second, we did not
take into account demographic stochasticity in the present
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study, but the stochasticity may not be negligible during the
early epidemic phase [32–34]. The uncertainty that we quan-
tified in the present study is likely to have been under-
estimated, although the qualitative findings are expected
not to be different from those when we explicitly account
for stochasticity using appropriate models (e.g., [32, 35]),
especially for highly transmissible virus. Third, the proposed
method as well as two earlier estimation studies based
on evidence synthesis and serological study relied on the
observed number of deaths as the numerator of the CFR. If
there are many undiagnosed deaths, the direct estimation of
the CFR is not feasible, and so, the virulence may also have
to be assessed by indirect measurement such as that using
excess mortality [36, 37]. Of course, constant k over time is
also an unsupported assumption for epidemics with time-
varying ascertainment efforts.

For a heterogeneous population we have shown that the
proposed estimation framework for the homogeneous pop-
ulation can be easily extended to the heterogeneous setting.
However, we have also discussed that the limited degrees
of freedom might increase the relevant uncertainty; that is,
when we consider n different subgroups, we have to deal with
the next-generation matrix with n2 entries in addition to n
unknown parameters for the group-specific CFR, ps. Thus,
the minimum length of days T that is required to estimate
the CFR would be extended, and T would depend on the way
we parameterize the next-generation matrix. Thus, we failed
to offer simulation results with general conclusions with
respect to the validity and reliability for the heterogeneous
population. Given that the transmission of H1N1-2009 has
been highly dependent on age [18, 32, 35, 38], one will have
to balance the detailed descriptions of dynamics involving
many subpopulations with the uncertainty surrounding the
joint estimation of the CFR and the transmission potential.

If policymaking and public health response have to be
made based on the real-time estimate of the CFR, the
proposed method can be employed using only the readily
available epidemiological datasets. However, as long as the
estimation of the CFR relies on the proposed method, it
should be noted that it may take longer than a few months
to derive the CFR with sound uncertainty bounds, and thus,
the very early response may not be able to base the policy
decision on the CFR. Moreover, when the transmission
potential is small, the number of infected individuals (or
cases) may better be estimated directly from serological
data (or medical attendance), because the proposed method
is prone to uncertainties arising from low frequency of
infection. While such limitation exists, we believe that
the proposed method can be coupled with or supplement
existing estimation frameworks which have to use additional
epidemiological and serological data, especially for diseases
with high transmission potential.
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[6] J. Papenburg, M. Baz, M. È. Hamelin et al., “Household
transmission of the 2009 pandemic A/H1N1 influenza virus:
elevated laboratory-confirmed secondary attack rates and evi-
dence of asymptomatic infections,” Clinical Infectious Diseases,
vol. 51, no. 9, pp. 1033–1041, 2010.

[7] B. J. Cowling, S. Ng, E. S. K. Ma et al., “Protective efficacy of
seasonal influenza vaccination against seasonal and pandemic
influenza virus infection during 2009 in Hong Kong,” Clinical
Infectious Diseases, vol. 51, no. 12, pp. 1370–1379, 2010.

[8] A. M. Presanis, D. De Angelis, A. Hagy et al., “The severity of
pandemic H1N1 influenza in the united states, from April to
July 2009: a bayesian analysis,” Plos Medicine, vol. 6, no. 12,
Article ID 1000207, 2009.

[9] J. T. Wu, A. Ho, E. S.K. Ma et al., “Estimating infection attack
rates and severity in real time during an influenza pandemic:
analysis of serial cross-sectional serologic surveillance data,”
PLoS Medicine, vol. 8, no. 10, Article ID e1001103, 2011.

[10] A. C. Ghani, C. A. Donnelly, D. R. Cox et al., “Methods
for estimating the case fatality ratio for a novel, emerging
infectious disease,” American Journal of Epidemiology, vol. 162,
no. 5, pp. 479–486, 2005.

[11] N. P. Jewell, X. Lei, A. C. Ghani et al., “Non-parametric
estimation of the case fatality ratio with competing risks data:
an application to severe acute respiratory syndrome (SARS),”
Statistics in Medicine, vol. 26, no. 9, pp. 1982–1998, 2007.

[12] H. Nishiura, D. Klinkenberg, M. Roberts, and J. A. P. Heester-
beek, “Early epidemiological assessment of the virulence of
emerging infectious diseases: a case study of an influenza
pandemic,” Plos ONE, vol. 4, no. 8, Article ID e6852, 2009.

[13] T. Garske, J. Legrand, C. A. Donnelly et al., “Assessing the
severity of the novel influenza A/H1N1 pandemic,” British
Medical Journal, vol. 339, article b2840, 2009.



10 Computational and Mathematical Methods in Medicine

[14] H. Nishiura, “The virulence of pandemic influenza A (H1N1)
2009: an epidemiological perspective on the case-fatality
ratio,” Expert Review of Respiratory Medicine, vol. 4, no. 3, pp.
329–338, 2010.

[15] J. T. Wu, E. S. K. Ma, C. K. Lee et al., “The infection attack
rate and severity of 2009 pandemic H1N1 influenza in Hong
Kong,” Clinical Infectious Diseases, vol. 51, no. 10, pp. 1184–
1191, 2010.

[16] S. Echevarrı́a-Zuno, J. M. Mejı́a-Aranguré, A. J. Mar-Obeso
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