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This paper studies the design of efficient model predictive controllers for fast-sampling linear time-invariant systems subject to
input constraints to track a set of periodic references. The problem is decomposed into a steady-state subproblem that determines
the optimal asymptotic operating point and a transient subproblem that drives the given plant to this operating point. While the
transient subproblem is a small-sized quadratic program, the steady-state subproblem can easily involve hundreds of variables
and constraints. The decomposition allows these two subproblems of very different computational complexities to be solved in
parallel with different sampling rates. Moreover, a receding horizon approach is adopted for the steady-state subproblem to spread
the optimization over time in an efficient manner, making its solution possible for fast-sampling systems. Besides the conventional
formulation based on the control inputs as variables, a parameterization using a dynamic policy on the inputs is introduced, which
further reduces the online computational requirements. Both proposed algorithms possess nice convergence properties, which are
also verified with computer simulations.

1. Introduction

One of the most attractive features of model predictive
control (MPC) is its ability to handle constraints [1].
Many other control techniques are conservative in handling
constraints, or even try to avoid activating them, thus,
sacrificing the best performance that is achievable. MPC, on
the contrary, tends to make the closed-loop system operate
near its limits and hence produces far better performance.
This property of MPC gives it the strength in practice, leading
to a wide acceptance by the industry.

A very good example of system operating near its
limits is a plant being driven by periodic signals to track
periodic references. Under this situation, some of the system
constraints will be activated repeatedly, and the optimal
operating control signal is far from trivial. Just clipping the
control signal to fit into the system constraints produces
inferior performance typically. And the loss being considered
here is not just a transient loss due to sudden disturbances,
but indeed a steady-state loss due to a suboptimal operating
point. Therefore, the loss is on long term and severe.

On the other hand, the successful real-life applications of
MPC are mostly on systems with slower dynamics such as
industrial and chemical processes [2]. The reason is simply
that MPC requires a constrained optimization to be carried
out online in a receding horizon fashion [3, 4]. Therefore,
to apply MPC to fast-sampling systems, the computational
power needed will be substantial. In any case, because of its
great success in slow-sampling systems, the trend to extend
MPC to fast-sampling systems is inevitable, and many recent
researches have been carried out to develop efficient methods
to implement MPC in such cases. While some of these
works focus on unloading the computational burdens [5–
9], others emphasize on code optimization [10–12] and new
algorithmic paradigms [13–17].

If MPC is applied to the tracking of periodic signals in a
receding horizon fashion, the horizon length will be related
to the period length, and a long period will imply an online
optimization problem of many variables and constraints. For
a fast-sampling system, it is essentially an attempt to solve
a very big computational problem within a very small time
frame. In this paper, we shall analyze the structure of this
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problem and then propose two efficient algorithms for the
task. They aim to make the application of MPC to a fast-
sampling system possible by a slight sacrifice on the transient
performance, but the optimal or near-optimal steady-state
performance of periodic tracking will be maintained.

In Section 2, the mathematical formation of the problem
will be presented. The two algorithms, one based on the
concept of receding horizon quadratic programming and the
other based on the idea of dynamic MPC policy, will be
presented in Sections 3 and 4, respectively. A comment on the
actual implementation will be given in Section 5, followed
by some computer simulations in Section 6 to illustrate
several aspects of the proposed algorithms. Finally, Section 7
concludes the paper.

To avoid cumbersome notations like u(k | k),u(k + 1 |
k), . . . ,u(k + Nu − 1 | k), the MPC algorithms in this paper
will only be presented as if the current time is k = 0, and
we shall write u(0),u(1), . . . ,u(Nu − 1) instead. The reader
is asked to bear in mind that the algorithm is actually to be
implemented in a receding horizon fashion.

2. Problem Formulation

Consider a linear time-invariant plant subject to a periodic
disturbance:

x+ = Ax + B1w + B2u, (1)

y = Cx + D1w + D2u, (2)

x(0) = x0, (3)

where the superscript + denotes the time-shift operator, that
is,

x+(k) = x(k + 1), (4)

and the disturbance w is measurable and periodic with
period Np. The control objective is to construct a control
signal u such that the plant output y will track a specific
periodic reference r of the same period Np asymptotically
with satisfactory transient performance. The control input u
is also required to satisfy some linear inequality constraints
(e.g., to be within certain bounds). The reference r is
not necessarily fixed but may be different for different
disturbance w. (For that reason, it may be more appropriate
to call w an exogenous signal rather than a disturbance).

The algorithms developed in this paper are motivated by
the following situations:

(1) the period Np is very long compared with the typical
transient behaviours of the closed-loop system;

(2) the linear inequality constraints on u are persistently

active, that is, for any given ˜k, there exists a k > ˜k such
that u(k) will meet at least one of the associated linear
equality constraints;

(3) there is not sufficient computational power to solve
the associated quadratic program completely within
one sampling interval unless both the control horizon
and the prediction horizon are much shorter thanNp.

As a matter of fact, without the above considerations and
restrictions, the problem is not very challenging and can be
tackled with standard MPC approaches for linear systems.

The underlying idea of the approach proposed in this
paper is that since the transient behaviour of the closed-
loop system is expected to be much shorter than the period
Np, we should decompose the original control problem
into two: one we call the steady-state subproblem and the
other we call the transient subproblem. Hence, the transient
subproblem can be solved with a control horizon and a
prediction horizon much shorter than Np. While the steady-
state subproblem is still very computationally intensive and
cannot be solved within one sampling interval, it is not really
urgent compared with the transient subproblem, and its
computation can be spread over several sampling intervals.
Indeed, the two subproblems need not be synchronized even
though the transient subproblem depends on the solution
to the steady-state subproblem due to the coupled input
constraints. The former will utilize the latter whenever the
latter is updated and made available to the former. It is only
that the transient control will try to make the plant output
y track a suboptimal reference if the optimal steady-state
control is not available in time.

Now let us present the detailed mathematical formula-
tion of our proposed method. Naturally, since both w and
r are periodic with period Np, the solution u should also
be periodic of the same period asymptotically, that is, there
should exist a periodic signal us(k) such that

lim
k→∞

(u(k)− us(k)) = 0. (5)

Let xs and ys be the corresponding asymptotic solutions of
x and y, and they obviously satisfy the dynamics inherited
from (1) and (2):

x+
s = Axs + B1w + B2us,

ys = Cxs + D1w + D2us,

xs(0) = xs
(

Np

)

.

(6)

Ideally, we want ys = r but this might not be achievable
when us is required to satisfy the specific linear inequality
constraints. Therefore, following the spirit of MPC, we shall
find us, such that

Js =
∑

k

es(k)TQes(k) (7)

is minimized for some positive definite matrix Q, where es(k)
is the asymptotic tracking error defined by

es = ys − r, (8)

and the summation in (7) is over one period of the signals.
This is what we call the steady-state subproblem. In Sections
3 and 4 below, we shall present two different approaches
to this steady-state subproblem, with an emphasis on their
computational efficiencies.

Once the steady-state signals are known, the transient
signals defined by

ut = u− us, xt = x − xs, yt = y − ys, (9)
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satisfy the dynamics

x+
t = Axt + B2ut,

yt = Cxt + D2ut,

xt(0) = x0 − xs(0),

(10)

derived from (1)–(3), subject to the original linear inequality
constraints being applied to ut(k) + us(k). Since the control
horizon and the prediction horizon for this transient sub-
problem are allowed to be much shorter than Np, it can be
tackled with existing MPC algorithms.

It is important to note that in this steady-state/transient
decomposition, the steady-state control us is actually a
feedforward control signal determined from w and r, whereas
the transient control ut is a feedback control signal depending
on x. As an unstable plant can only be stabilized by
feedback, but the main interest of the current paper is the
computational complexity of the steady-state subproblem,
we shall not discuss in depth the stabilization issue, which
has been studied quite extensively in the MPC literature.
Typically, stabilizability of a constrained system using MPC
would be cast as the feasibility of an associated optimization
problem. For the numerical example in Section 6, we shall
conveniently pick a plant where A is already stable, and hence
the following quadratic cost may be adopted for the transient
subproblem:

Jt =
Nu−1
∑

k=0

(

yt(k)TQyt(k) + ut(k)TRut(k)
)

+ xt(Nu)TPTxt(Nu),

(11)

where Nu is the control horizon with Nu � Np, Q and R are
chosen positive definite matrices, and PT is the (weighted)
observability gramian obtained from the Lyapunov equation

ATPTA− PT + CTQC = 0. (12)

The minimization of Jt is simply a standard quadratic
program over ut(0),ut(1), . . . ,ut(Nu − 1) for a given xt(0).
The situation will be more complicated when A is not stable,
but one well-known approach is to force the unstable modes
to zero at the end of the finite horizon [18].

Remark 1. Essentially, the choice of the cost function (11)
with PT from (12) for a stable A means that the projected
control action after the finite horizon is set to zero, that is,
ut(k) = 0 for k ≥ Nu since the “tail” of the quadratic cost is
then given by

∞
∑

k=Nu

yt(k)TQyt(k) =
∞
∑

k=Nu

xt(k)TCTQCxt(k)

= xt(Nu)TPTxt(Nu).

(13)

This terminal policy is valid because the steady-state sub-
problem has already required that us satisfies the linear
inequality constraints imposed on u. Hence, Jt is obviously
a Lyapunov function which will be further decreased by the
receding horizon implementation when the future control
ut(Nu) turns into an optimization variable from zero.

Remark 2. We have deliberately omitted the R-matrix in
the steady-state cost Js in (7). The reason is simply that
we want to recover the standard linear solution (for perfect
asymptotic tracking) as long as us does not hit any constraint.

3. Steady-State Subproblem: A Receding
Horizon Quadratic Programming Approach

When the periodic disturbance w is perfectly known, the
steady-state subproblem is also a conceptually simple (but
computationally high-dimensional) quadratic program. One
way to know w is simply to monitor and record it over one
full period. This, however, does not work well if w is subject
to sudden changes. For example, the plant to be considered in
our simulations in Section 6 is a power quality device called
Unified Power Quality Conditioner [19], where w consists of
the supply voltage and the load current of the power system,
and both may change abruptly if there are supply voltage
sags/swells and variations in the load demands. Indeed,
the main motivation of the receding horizon approach in
MPC is that things never turn out as expected and the
control signal should adapt in an autonomous manner. If the
suddenly changed disturbance w can be known precisely only
after one full period of observation, the transient response
of the steady-state subproblem (not to be confused with
the transient subproblem described in Section 2) will be
unsatisfactory.

One way to overcome this is to introduce an exogenous
model for the signals w and r, as adopted in [19]. Specifically,
we construct a state-space model:

v+ = Avv, (14)

w = Cwv, (15)

r = Crv, (16)

and assume that both w and r are generated from this model.
Since w and r are periodic with period Np, we have

A
Np
v = I. (17)

One simple (but not the only) way to construct Av, as
demonstrated similarly in [19] in the continuous-time case,
is to make Av a block-diagonal matrix with each block taking
the form:

⎡

⎣

cos(nωTs) − sin(nωTs)

sin(nωTs) cos(nωTs)

⎤

⎦, (18)

where n is an integer, Ts is the sampling time and ωTs ×
Np = 2π. Then the matrices Cw and Cr are just to sum
up their respective odd components of v. This essentially
performs a Fourier decomposition of the signals w and
r, and hence their approximations by Cwv and Crv will
be arbitrarily good when more and more harmonics are
included in the model.
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Based on the exogenous model (14)–(17), an observer
can be easily constructed to generate (an estimate of) v from
the measurements of w and r. From v(0), the model (14)–
(17) can then generate predictions of w(0),w(1), . . . ,w(Np−
1) and r(0), r(1), . . . , r(Np−1), and these can be used to find
us(0),us(1), . . . ,us(Np − 1) by the quadratic program. The
use of the exogenous model (14)–(17) typically allows the
changed w and r to be identified much sooner than the end
of one full period.

The quadratic program for the steady-state subproblem
can be written as follows:

min
us(0)

Js,

Js :=
⎡

⎣

us(0)

v(0)

⎤

⎦

T⎡

⎣

H F

FT G

⎤

⎦

⎡

⎣

us(0)

v(0)

⎤

⎦,

us(0) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

us(0)

us(1)

...

us
(

Np − 1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(19)

subject to aT
j us(0) ≤ b j , j = 1, 2, . . . ,Nm, (20)

where Nm is the total number of linear inequality constraints.
Note that since we assume only input but not state con-
straints for our original problem, (20) does not depend on
v(0) and, hence, the feasibility of any us(0) remains the same
even if there is an abrupt change in v(0) (i.e., if v(0) is
different from the predicted value from (14) and v(−1)).
Furthermore, the active set of constraints remains the same.

Definition 3. The active set A(us(0)) of any feasible us(0)
satisfying (20) is the subset of {1, 2, . . . ,Nm} such that j ∈
A(us(0)) if and only if aT

j us(0) = b j .

Next, we present a one-step active set algorithm to solve
the quadratic program (19)-(20) partially.

Algorithm 4. Given an initial feasible us(0) and a working set
W0 ⊂A(us(0)). Let the set of working constraints

aT
j us(0) ≤ b j , j ∈W0, (21)

be represented by

A0us(0) ≤ b0, (22)

where the inequality sign applies componentwise, that is,
each row of A0, b0 represents a working constraint in (21).

(1) Compute the gradient

g0 = Hus(0) + Fv(0), (23)

and the null space of A0, denoted Z0 by

A0Z0 = 0. (24)

If ZT
0 g0 ≈ 0, go to step (5).

(2) Compute a search direction w0 = Z0ŵ0, where
(

ZT
0 HZ0

)

ŵ0 + ZT
0 g0 = 0. (25)

(3) Let

α0 = min
j∈A(us(0))\W0

s.t. aT
j w0>0.

b j − aT
j us(0)

aT
j w0

. (26)

(4) If α0 ≥ 1, go to step (5). Otherwise, update us(0) to
u∗s (0) by

u∗s (0) = us(0) + α0w0, (27)

and add a (blocking) constraint to W0 to form a new
working set W∗

0 according to the method described
in Remark 7 below. Quit.

(5) Update us(0) to u∗s (0) by

u∗s (0) = us(0) + w0. (28)

Compute the Lagrange multiplier λ0 from

AT
0λ0 + g0 = 0 (29)

to see whether any component of λ0 is negative. If
yes, remove one of the constraints corresponding to
a negative component of λ0 from W0 to form a new
working set W∗

0 according to the method described
in Remark 7 below. Quit.

Algorithm 4 can be interpreted as follows. It solves the
equality-constrained quadratic program:

min
u′s(0)

J ′s ,

J ′s :=
⎡

⎣

u′s(0)

v(0)

⎤

⎦

T⎡

⎣

H F

FT G

⎤

⎦

⎡

⎣

u′s(0)

v(0)

⎤

⎦

subject to aT
j u′s(0) = b j , j ∈W0,

, (30)

and then searches along the direction

w0 = u′s(0)− us(0), (31)

until it is either blocked by a constraint not in W0 (step (4))
or the optimal u′s(0) is reached (step (5)). This is indeed a
single step of the standard active set method (the null-space
approach) for quadratic programming [20, 21] except for
the modifications that will be detailed in Remark 7 below.
In other words, if we apply Algorithm 4 repeatedly to the
new u∗s (0), W∗(0), it will converge to the solution of the
original inequality-constrained quadratic program (19)-(20)
within a finite number of steps, and the cost function Js is
strictly decreasing. However, here we only apply a single step
of the active set method due to the limited computational
power available within one sampling interval. Furthermore,
we do not even assume that the single step of computation
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can be completed within Ts. Let NaTs be the time required or
allowed to carry out Algorithm 4. To complete the original
quadratic program (19)-(20) in a receding horizon fashion,
we need to forward u∗s (0), W∗(0) to us(Na), W(Na) by
rotating the components of u∗s (0) by an amount of Na since
it is supposed to be periodic:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

us(Na)

us(Na + 1)

...

us
(

Np − 1
)

us
(

Np

)

us
(

Np + 1
)

...

us
(

Na + Np − 1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u∗s (Na)

u∗s (Na + 1)

...

u∗s
(

Np − 1
)

u∗s (0)

u∗s (1)

...

u∗s (Na − 1)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (32)

Obviously, Algorithm 4 will then continue to solve an equiv-
alent quadratic program as long as v strictly follows the
exogenous dynamics (14). Hence we have the following
convergence result.

Proposition 5. Algorithm 4 together with the rotation of the
components of u∗s (0) in (32) will solve the quadratic program
(19)-(20) in finite time as long as v(k) satisfies the exogenous
dynamics (14).

Proof. From the argument above it is easy to see that as long
as v(k) follows the dynamics (14), the algorithm is consis-
tently solving essentially the same quadratic program. So it
remains to check that the convergence proof of the standard
active set algorithm remains valid despite the modifications
we shall detail in Remark 7, which is indeed the case.

Of course, the most interesting feature of the reced-
ing horizon approach is that the solution will adapt
autonomously to the new quadratic program if there is an
abrupt change in v. Since constraint (20) is independent of
v, an abrupt change in v will not destroy the feasibility of the
previously determined us and the working set W determined
previously also remains a valid subset of the active set. Hence,
the receding horizon active set method will continue to
work even though the objective function (19) has changed.
However, if it is necessary to include not only control but also
state constraints into the original problem formulation, we
shall then require a quadratic programming algorithm (other
than the active set method in its simplest form) that does not
assume the initial guess to be feasible.

Remark 6. There could be two possible ways to arrange the
steps in Algorithm 4. One is to update the working set W
followed by us, and the other is to update us followed by
the working set W . In the receding horizon framework,
it might seem at first glance that the first choice is the
right one, since we shall then avoid basing the optimization
of us on an “outdated” working set if v happens to have

changed. However, it turns out that the first choice is actually
undesirable. One well-known “weakness” of the active set
method is that it is not so easy to remove a constraint once it
enters the working set W . This becomes even more a concern
in the receding horizon framework. If v has changed, and
so has the objective function (19), the original stationary
u∗s obtained in step (5) may no longer be stationary, and
it will require at least an additional iteration to identify
the new stationary point before we can decide whether any
constraint can be dropped from the working set or not.
This will seriously slow down the transient response of the
steady-state subproblem. Indeed, once v has changed, many
of the constraints in the previous working set are no longer
sensible, and it will be wiser to drop them hastily rather
than being too cautious only to find much later that the
constraints should still be dropped eventually.

Remark 7. One key element in the active set method of the
quadratic program is to add or drop a constraint to or from
the working set W . The constraint being added belongs to the
blocking set B, defined as those constraints corresponding to
the minimum α0 in (26). Physically, they are the constraints
that will be first encountered when we try to move us(0)
to u′s(0) in (31). The constraint being dropped belongs to
the set L, defined as those constraints corresponding to a
negative component of the Lagrange multiplier in (29). The
active set method will converge in finite time no matter
which constraint in B will be added or which constraint
in L will be dropped. One standard and popular choice
in the conventional active set method is that the one in L
corresponding to the most negative component of λ will be
dropped, whereas the choice from B will be arbitrary. This is
a very natural choice when there is no other consideration.

However, in the receding horizon framework, one other
(and in fact important) consideration emerges, which is the
execution time of the control input(s) associated with a
constraint. Specifically, if Algorithm 4 takes time NaTs to
carry out, then W∗

0 updated in the current iteration will be
used to optimize us(Na) in the next iteration,

us(Na) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

us(Na)

us(Na + 1)

...

us
(

Na + Np − 1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (33)

but the outcome of that optimization is ready only at k =
2Na, based on which the transient control ut is computed.
Suppose that the transient subproblem takes one sampling
interval to solve, then the transient subproblem at k = 2Na

will update u(2Na + 1) = us(2Na + 1) + ut(2Na + 1) (see
Section 5 below for a more detailed discussion). Hence,
the “time priority” of us is 2Na + 1, 2Na + 2, . . . ,Np −
1, 0, 1, . . . , 2Na and from this argument, we choose to drop
the constraint in L that is associated with the first us in this
sequence or to add the constraint in B that is associated
with the last us in this sequence (of course the most negative
Lagrange multiplier can still be used as the second criterion
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if two constraints in L happen to have the same urgency).
The proposal here aims to assign most freedom to the most
urgent control input in the optimization, which makes sense
in the receding horizon framework since the less urgent
inputs may be reoptimized later.

Remark 8. Basically, the approach proposed in this section
is to spread the original quadratic program over many
intervals, so that each interval only carries out one iteration
of the algorithm, and also to ensure that the quadratic
program being solved is consistent when the prediction
of the exogenous model is valid, but will migrate to a
new quadratic program when there is a change in v(k).
It is worth mentioning that the original standard MPC is
a static controller by nature, since the true solution of a
complete quadratic program is independent of the MPC’s
decisions in the past (past decisions can help to speed up
the computations but will not affect the solution), but by
spreading the algorithm over several intervals, it is turned
into a dynamic controller with internal state us(k), W(k).

4. Steady-State Subproblem: A Dynamic
Policy Approach

The approach proposed in Section 3 optimizes us. Conse-
quently, the number of (scalar) variables being optimized is
proportional to Np. To further cut down the computations
required, this section proposes another approach based on
the idea of a dynamic policy, inspired by the works of
[13, 22, 23]. This approach optimizes a smaller number of
variables typically, and the number is independent from Np,
although the number of linear inequality constraints remains
the same. In return, the optimization result is expected to
be slightly inferior to that of Section 3 due to the reduction
of variables (degree of freedom). However, it should be
noted that the number of optimized variables in this second
approach is adjustable based upon the designer’s wish.

The central idea of the dynamic policy approach [13, 22,
23] is that instead of optimizing the control input directly,
we generate the control input by a dynamic system of which
the initial system state is optimized. This is similar to what
we have done to w and r in Section 3. Specifically, we assume
us is also generated from a state-space model:

v̂+ = Av̂v̂, (34)

us = Cv̂v̂, (35)

where

A
Np

v̂ = I. (36)

This state-space model is designed a priori but the initial
state v̂(0) will be optimized online. Obviously, the quadratic
program (19)-(20) becomes

min
v̂(0)

̂Js,

̂Js :=
⎡

⎣

v̂(0)

v(0)

⎤

⎦

T⎡

⎣

̂H ̂F

̂FT G

⎤

⎦

⎡

⎣

v̂(0)

v(0)

⎤

⎦,
(37)

subject to âT
j v̂(0) ≤ b j , j = 1, 2, . . . ,Nm, (38)

where

̂H = ̂OTH ̂O,

̂F = F ̂O,

â j = a j ̂O, j = 1, 2, . . . ,Nm,

(39)

and ̂O is the observability matrix

̂O :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Cv̂

Cv̂Av̂

...

Cv̂A
Np−1
v̂

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (40)

The number of variables in this new quadratic program is the
dimension of v̂(0), denoted by nv̂. If Av̂ is constructed from
the method of Fourier decomposition described in Section 3,
Shannon’s sampling theorem implies that a sufficiently large
but finite nv̂ will guarantee a full reconstruction of the
original optimization variable us(0). On the other hand,
a smaller nv̂ restricts the search to a lower dimensional
subspace of us(0) and hence the optimization is easier but
suboptimal.

One natural choice of the dynamics Av̂ is to make Av̂ =
Av in the exogenous model (14)–(17). Of course, it should
be noted that constrained control is generally a nonlinear
problem, and therefore the number of harmonics to be
included in us may exceed that of w and r in order to achieve
the true optimal performance. However, we could have over-
designed the exogenous model (14)–(17) to include more
harmonics in Av than necessary for w and r, thus making
the choice Av̂ = Av here not so conservative. The simulation
results in Section 6 will demonstrate both cases.

It remains to choose the matrix Cv̂ in (35). The one we
suggest here is based on the linear servomechanism theory
[24–26], which solves the linear version of our problem when
there is no input constraint. Essentially, when there is no
constraint, perfect asymptotic tracking (i.e., ys = r or es = 0)
can be achieved by solving the regulator equation:

XAv = AX + B1Cw + B2U ,

Cr = CX + D1Cw + D2U ,
(41)

for the matrices X , U , and then let

us = Uv, (42)

which also implies

xs = Xv. (43)

Therefore, to recover the optimal (or perfect) solution in the
linear case when us does not hit any constraint, the state-
space model of us may be chosen as

ṽ+ = Avṽ,

us = Uṽ.
(44)
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us(1) ut(1)
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us(1) or v(1) v(1)

us(0) or v(0) v(0) x(0) u(0)

v(k) for some
−2Na + 1 ≤ ≤k −Na

Figure 1: Derivations of unknown variables from known variables.

However, this state-space model is not guaranteed to be
observable. When it is not, the resulting ̂H in (37) will
become semidefinite instead of strictly positive definite. To
overcome this, we suggest to perform an orthogonal state
transformation

⎡

⎣

∗
v̂

⎤

⎦ = Tṽ, (45)

to bring (44) to the Kalman decomposition form

⎡

⎣

∗
v̂

⎤

⎦

+

=
⎡

⎣

∗ ∗
0 Av̂

⎤

⎦

⎡

⎣

∗
v̂

⎤

⎦,

us =
[

0 Cv̂

]

⎡

⎣

∗
v̂

⎤

⎦,

(46)

and hence obtain a reduced-order model to become (34)-

(35). It is easy to verify that A
Np

v̂ = I since

⎡

⎣

∗ ∗
0 Av̂

⎤

⎦ (47)

is upper block-triangular and

⎡

⎣

∗ ∗
0 Av̂

⎤

⎦

Np

= (TAvT
−1)Np

= TA
Np
v T−1

= I.

(48)

Certainly, the discussion above only provides a sugges-
tion of how to choose the state-space model for us, which
we shall also adopt for our simulations in Section 6, but,
in general, the designer should feel free to employ any valid
state-space model to suit his problem.

Remark 9. Having reparameterized the quadratic program
in terms of v̂(0) rather than us(0), we can apply a similar
version of Algorithm 4 to (37)-(38). In other words, it is not

necessary to solve the quadratic program completely within
one sampling interval. Instead of rotating the components of
u∗s (0) to obtain us(Na), we obtain v̂(Na) by ANa

v̂ v̂∗(0).

5. Implementation Issues and Impacts on
Transient Performance

Before we present the simulation results, let us comment on
the impact of computational delay on the transient subprob-
lem in Section 2. First of all, we assume that the transient
quadratic program can be solved completely within one
sampling interval. Therefore, despite the way we presented
the cost function Jt in (11), in actual implementation we shall
optimize ut(1),ut(2), . . . ,ut(Nu) based on xt(1) at time k =
0, instead of ut(0),ut(1),. . . ,ut(Nu − 1) based on xt(0). The
unknown xt(1) can be projected from the known variables
and system dynamics. After the optimization is carried out
to obtain ut(1),ut(2), . . . ,ut(Nu), the control input to be
executed at k = 1 will be u(1) = us(1) + ut(1). Bear in
mind that all these calculations can only be based on the best
knowledge of the signals at k = 0.

Figure 1 summarizes how the unknown variables can
be computed from the known variables. The variables in
each layer are derived from those variables directly below
them, but in actual implementation it is sometimes possible
to derive explicit formulas to compute the upper layer
from the lower layer bypassing the intermediate layer, thus
not requiring those intermediate calculations online. The
variable on top is the control action u(1), computed from
the variables of the steady-state subproblem on the left, and
those of the transient subproblem on the right, separated
by a solid line. The variables in the bottom layer, v(0) is
provided by the observer described in Section 3, x(0) is
a measurement of the current plant state, and u(0) is the
control input calculated by the algorithm at k = −1. Note
that to compute ut(1), the values of us(1),us(2), . . . ,us(Nu)
are needed to form the constraints for the transient quadratic
program since the original linear inequality constraints apply
to u(k) = us(k) + ut(k). On the other hand, xs(1) can
be written as a linear function of v(1) and us(1) (or v̂(1))
explicitly. Finally, the steady-state subproblem requires a
computational time of NaTs, implying that the solution us(0)
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provided by the steady-state subproblem at k = 0 is based on
a measurement of v(k) at some k between−2Na+1 and−Na.
So in the worst case, u(1) is based on some information as old
as v(−2Na + 1), which corresponds to a worst-case delay of
2NaTs. For instance, if Na = 1, the control u(k) is computed
from a measurement of x(k − 1), v(k − 1), and v(k − 2).

Remark 10. Although we said in Section 2 that the transient
subproblem was not the main interest of this paper, it is an
ideal vehicle to demonstrate the power of MPC since the
“useful freedom” of ut(k) may have been totally consumed
by us(t) when the latter hits a constraint. For example, the
simulations to be discussed in Section 6 have the constraint

|u(k)| = |us(k) + ut(k)| ≤ 1. (49)

If us(k) already saturates at ±1, one side of ut(k) is lost
but that could be the only side to make the reduction of Jt
possible, thus forcing ut(k) to zero. So the input constraint
does not only restrict the magnitude, but also the time
instant to apply the transient control ut . Such problem is
extremely difficult for conventional control techniques.

6. Simulation Results

In this section we use an example to demonstrate the
performance of our algorithms by computer simulations.
The plant is borrowed from [19] and represents a power
quality device called Unified Power Quality Conditioner
(UPQC), which has the following continuous-time state-
space model:

ẋ = Ax + B1w + B2u,

y = Cx + D1w + D2u,

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Rl

Ll
0 0

−1
Ll

−1
Ll

0
−Rse

Lse
0

−1
Lse

0

0 0
−Rsh

Lsh
0

−1
Lsh

1
Cse

1
Cse

0 0 0

1
Csh

0
1
Csh

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

B1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
Ll

0

0 0

0 0

0 0

0
−1
Csh

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, B2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0

Vdc

2Lse
0

0
Vdc

2Lsh

0 0

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

C =
⎡

⎣

0 0 0 0 1

1 0 0 0 0

⎤

⎦,

D1 =
⎡

⎣

0 0

0 0

⎤

⎦, D2 =
⎡

⎣

0 0

0 0

⎤

⎦.

(50)

The exogenous input w is composed of the supply voltage
and the load current, which are periodic at 50 Hz but may
consist of higher-order harmonics. The plant output y is
composed of the load voltage and the supply current, which
will be made to track designated pure sine waves of 50 Hz.
The control input u is composed of two switching signals
across the voltage source inverters (VSIs), both of which
are required to satisfy the bounds −1 ≤ u ≤ 1. The
general control objective is to maintain y to the desired
waveforms despite possible fluctuations in w like supply
voltage sags/swells or load demand changes. To apply the
MPC algorithms proposed, we obtain a discrete-time version
of the above state-space model by applying a sampling
interval of Ts = 0.2 ms (i.e., 100 samples per period). Small-
sized quadratic programs (such as our transient subproblem)
can possibly be solved within such a short time thanks to
the state-of-the-art code optimization [12], which reports
sampling rates in the range of kHz, but to solve a big
quadratic program like our steady-state subproblem we
shall resort to the technique of Algorithm 4. Note that in
our formulation, the transient subproblem and the steady-
state subproblem can be solved in parallel. Although the
optimization of ut depends on us, the transient control
ut(k + 1) is computed from us(k) which is made available
by the steady-state subproblem in the previous step. So it
is independent of the current steady-state subproblem being
solved.

As typical in a power system, we assume only odd har-
monics in the supply voltage and the load current. Hence we
can reduce the computations in the steady-state subproblem
by the following easy modifications from the standard
algorithms presented in Sections 3 and 4; Np may be chosen
to represent half of the period instead of the whole period,
satisfying

xs(0) = −xs
(

Np

)

, (51)

instead of (6), and

A
Np
v = −I ,

A
Np

v̂ = −I ,
(52)

instead of (17) and (36), with ωTs × Np = π instead of 2π.
The rotation operation in (32) should also become

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣
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us
(
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)
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(
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)
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(
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)
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(
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)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥
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⎥

⎥

⎥

⎥

⎦

=
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⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

u∗s (Na)

u∗s (Na + 1)

...

u∗s
(
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)
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−u∗s (1)

...
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⎤
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. (53)
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Figure 2: Simulation scenario. Voltage sag at t = 0.5 s; load demand changed at t = 1.0 s; sag cleared at t = 1.5 s.

Table 1: Values of the components of the UPQC.

Component Vdc Lse Lsh Cse Csh

Value 320 V 5.0 mH 1.2 mH 10 μF 20 μF

Table 2: Line impedance and VSI impedances of the UPQC.

Component Rl Ll Rse Rsh

Value 0.01Ω 1.0 mH 0.01Ω 0.01Ω

This cuts down half of the scalar variables as well as con-
straints in the quadratic program.

The model parameters of the UPQC used in our simula-
tions are summarized in Table 1 for the circuit components
and Table 2 for the line and VSI impedances. They are the
same as those values in [19], except for Vdc which we have
changed from 400 V to 320 V so as to produce a saturated
control u more easily. Note that Vdc is the DC-link voltage,
which determines how big a fluctuation in the supply voltage
or load current the UPQC can handle. In other words,
saturation occurs when the UPQC is trying to deal with an

unexpected voltage sag/swell or load demand that is beyond
its designed capability.

The simulation scenario is summarized in Figure 2. Both
the supply voltage and the load current consist of odd
harmonics up to the 9th order. Despite the harmonics, it is
desirable to regulate the load voltage to a fixed pure sine wave,
whereas the supply current should also be purely sinusoidal,
but its magnitude and phase are selected to maintain a
power factor of unity and to match the supply active power
to the active power demanded by the load, which means
the reference of this supply current is w-dependent. The
waveforms of both w and r are shown in Figure 2. The
simulation scenario is designed such that the steady-state
control us is not saturated at the beginning. At t = 0.5 s,
a voltage sag occurs which reduces the supply voltage to
10% of its original value. The UPQC is expected to keep the
load voltage unchanged but (gradually) increase the supply
current so as to retain the original active power. This will
drive us into a slightly saturated situation. At t = 1.0 s,
the load demand increases, causing the reference of the
supply current to increase again, and us will become deeply
saturated. At t = 1.5 s, the voltage sag is cleared and the
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Figure 3: Quadratic cost Js of the steady-state subproblem, the receding horizon quadratic programming approach.

supply voltage returns to its starting value, but the (new) load
demand remains. Although the load demand is still higher
than its initial value, the us required will just be within the
bounds of ±1, thus leaving the saturation region to return
to the linear region. So, in short, us is expected to experience
“linear → slightly saturated → deeply saturated → linear but
nearly saturated” in this simulation scenario.

To evaluate the performance of our algorithms, we
compare them to two other cases. In the first case, instead
of Algorithm 4, the complete quadratic program is solved
in each iteration of the steady-state subproblem every Na-
sampling intervals. We call this case the complete QP,
and it serves to indicate how much transient performance
has been sacrificed (in theory) by spreading the quadratic
program over a number of iterations. In the second case, the
constraints are totally ignored, such that the optimal us(0) in
the steady-state subproblem is supposed to be

us(0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

U

UAv

...

UA
Np−1
v

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

v(0), (54)

where U is the solution to the regulator equation (41). The
transient subproblem can also be solved by

ut = Fxt, (55)

where F is the optimal state-feedback gain minimizing the
transient quadratic cost

∞
∑

k=0

(

yt(k)TQyt(k) + ut(k)TRut(k)
)

. (56)

However, the combined input u is still clipped at ±1. We
label this control law the multivariable regulator (MVR)
following the linear servomechanism theory. This case serves
to indicate how bad the quadratic cost Js can be if a linear
control law is used without taking the constraints into
consideration.

Note that in both cases, the computational delays dis-
cussed in Section 5 will be in force, where u(k + 1) instead
of u(k) will be optimized and the steady-state control us

is only updated every Na-sampling intervals. In reality, of
course the MVR should involve negligible computational
delay, whereas the complete QP should need a longer time
to solve than Algorithm 4, but we are merely using their
associated quadratic costs here to analyze the behaviours of
our algorithms.

Figure 3 plots the steady-state cost Js of our first ap-
proach in Section 3 based on receding horizon quadratic
programming together with the costs in the other two cases.
Na is assumed to be 3 in this simulation. The transient
subproblem has a control horizon of Nu = 5, corresponding
to 10 scalar variables and 20 scalar inequality constraints.
On the other hand, the steady-state subproblem has Np =
50 corresponding to 100 variables and 200 constraints. As
shown in Figure 3, all Js are zero prior to t = 0.5 s and
should also settle down to zero after t = 1.5 s. It is observed



Journal of Control Science and Engineering 11

Table 3: Summary of Js values for various cases studied.

Steady-state cost Js Na Number of

at t < 1.0 s at t < 1.5 s Variables Constraints

MVR 0.1156 53.276

MPC, receding horizon quadratic programming 0.0178 8.7527 3 100 (Np × 2) 200 (Np × 2 × 2)

MPC, dynamic policy (up to 9th harmonics) 0.0225 9.0273 1 nv̂ = 20 (5 × 2× 2) 200 (Np × 2× 2)

MPC, dynamic policy (up to 29th harmonics) 0.0182 8.7640 2 nv̂ = 60 (15 × 2× 2) 200 (Np × 2 × 2)

Transient subproblem 10 (Nu × 2) 20 (Nu × 2 × 2)
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Figure 4: The first component of controls u and ut before and after transitions at t = 1.0 s and t = 1.5 s.

that the transient response of our Js is pretty close to that
of the complete QP during the transitions from “linear” to
“slightly saturated” and from “slightly saturated” to “deeply
saturated,” but is poorer when it tries to return from “deeply
saturated” to “linear.” This can probably be attributed to the
weakness of the active set method in removing a constraint

from the working set as discussed in Remark 6. Figure 3 also
indicates that the MVR settles down to a much higher Js value
when a saturation occurs, due to its ignorance of the control
constraints. The exact values of Js just prior to t = 1.0 s and
t = 1.5 s are summarized in Table 3, which are about 6-7
times the Js values of our algorithm.
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Figure 5: Quadratic cost Js of the steady-state subproblem, the dynamic policy approach.

Figure 4 zooms into the first component of the control
input u. The top two plots draw attentions to the steady-state
control us (u is essentially us just prior to t = 1.0 s and t =
1.5 s). It is observed that the differences in us between MVR
and MPC are very subtle. Compared with the MVR, the MPC
us merely reaches and leaves its limit (+1 here) at very slightly
different time instants and also produces some “optimized
ripples” of less than 0.25% around that limit instead of a
“flat” value as adopted in the clipped linear control law, but
by doing these little things the MPC manages to bring Js
down by almost one order of magnitude. This demonstrates
how nontrivial the optimal us can be. We can also see from
the plots that only one constraint is active in the “slightly
saturated” situation whereas multiple constraints are active
in the “deeply saturated” saturation. On the other hand,
the bottom two plots in Figure 4 illustrates our discussion
in Remark 10. The plots clearly show that during certain
moments of the transient stages (t > 1.0 s and t > 1.5 s),
the transient control ut is “disabled” due to the saturation
of the steady-state control us. Note that we are labeling the
dashed blue curve as “us used to compute ut” since it is
slightly different from the actual us. For instance, ut(k + 1)
is computed from the knowledge of us at time k, which is
not exactly the same as us(k + 1). Obviously, ut is not just
disabled whenever us saturates. It happens only when the
desired direction of ut violates the active constraint.

Next, let us look at the performance of our second
MPC approach in Section 4 based on dynamic policy. Odd
harmonics up to the 9th order are included in Av̂ resulting
in a total of nv̂ = 20 variables. See Table 3. Since the number

of variables is much lower than that of the first approach,
we assume Na = 1 here, that is, one iteration of Algorithm 4
(equivalent version) is carried out in each sampling interval,
whereas the transient subproblem is solved completely within
each sampling interval. The transient performance of Js is
plotted in Figure 5. Note that the MVR curve exhibits a
slightly different transient from Figure 3 since their Na values
are different. The dynamic policy approach clearly shows a
faster transient response than the receding horizon quadratic
programming approach, not only because of a smaller Na but
also a smaller-sized quadratic program overall. However, the
drawback is a slightly suboptimal Js, as indicated in Table 3.

As mentioned in Section 4, it is possible to over-design
Av, and hence Av̂, so that the optimal Js in this second MPC
method will approach the first MPC method. For example,
although we only have odd harmonics up to the 9th order in
w, we may include odd harmonics up to the 29th order in Av

and Av̂. The results are also recorded in Table 3, and we see
that this Js value is very close to the optimal one in the first
method.

7. Conclusions

To apply MPC to fast-sampling systems with input con-
straints for the tracking of periodic references, efficient
algorithms to reduce online computational burdens are
necessary. We have decomposed the tracking problem into
a computationally complex steady-state subproblem and a
computationally simple transient subproblem, and then pro-
posed two approaches to solve the former. The first approach,
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based on the concept of receding horizon quadratic pro-
gramming, spreads the optimization over several sampling
intervals, thus reducing the computational burdens at the
price of a slower transient response. The second approach,
based on the idea of a dynamic policy on the control input,
further reduces the online computations at the price of
a slightly suboptimal asymptotic performance. Despite the
limitations, these approaches make the application of MPC
to fast-sampling systems possible. Their transient behaviours
and steady-state optimality have been analyzed via computer
simulations, which have also demonstrated that the steady-
state subproblem and the transient subproblem can be
solved in parallel with different sampling rates. When
the methods proposed in this paper are combined with
modern code optimizations, the applicability of MPC to the
servomechanism of fast-sampling constrained systems will
be greatly enhanced.
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