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Abstract

This is an analytical study on the time development of hydrodynamic dispersion of

an inert species in electroosmotic flow through a rectangular channel. The objective is

to determine how the channel side walls may affect the dispersion coefficient at different

instants of time. To this end, the generalized dispersion model, which is valid for short

and long times, is employed in the present study. Analytical expressions are derived

for the convection and dispersion coefficients as functions of time, the aspect ratio of

the channel, and the Debye–Hückel parameter representing the thickness of the elec-

tric double layer. For transport in a channel of large aspect ratio, the dispersion may

undergo several stages of transience. The initial, fast time development is controlled

by molecular diffusion across the narrow channel height, while the later, slower time

development is governed by diffusion across the wider channel breadth. For a suffi-

ciently large aspect ratio, there can be an interlude between these two periods during

which the coefficient is nearly steady, signifying the resemblance of the transport to

that in a parallel-plate channel. Given a long enough time, the dispersion coefficient

will reach a fully-developed steady value that may be several times higher than that

without under the side wall effects. The time scales for these periods of transience are

identified in this paper.

Keywords Taylor dispersion · Electroosmotic flow · Generalized dispersion model



1 Introduction

Channels in modern microfluidic devices and MEMS (microelectromechanical systems), made

by micromachining, are commonly rectangular in cross section. The aspect ratio of the

channel, viz. the ratio of the breadth to the height of the channel, is typically larger than

unity. For a sufficiently large aspect ratio, the side walls may be ignored as far as the flow

is concerned. The velocity profile of flow through a rectangular channel of very large aspect

ratio is practically not different from that through a parallel-plate channel of the same height.

This argument cannot be extended, however, to hydrodynamic dispersion. It is well known

in the literature that dispersion in a rectangular channel does not necessarily reduce to that

in a parallel-plate channel as the aspect ratio tends to infinity.

The focus of this paper is on solute dispersion in flow driven by electroosmosis in a channel

of rectangular cross section. Electroosmotic flow is essentially caused by the viscous motion of

free charges in the fluid when subjected to an applied electric field along the channel. The free

charges owe their presence to the formation of an electric double layer (EDL) near a charged

surface bounding the channel. Electroosmotic flow is known to be more advantageous than

pressure-driven flow as its flow rate is less restricted by the minute transverse dimensions

of a microchannel. While there already exist some studies on hydrodynamic dispersion in

electroosmotic flow, a central question remains unanswered thus far: how does the dispersion

in electroosmotic flow evolve with time under the effect of the channel side walls? Let us

briefly review the literature, and explain the motivation of our study as follows.

The issue regarding the effects of side walls on mass transport was addressed long time

ago. Three-dimensional laminar dispersion in gravity- or pressure-driven flow in open and

closed rectangular conduits was analyzed by Doshi et al. [1]. They showed that the dispersion

coefficient does not reduce to that in a channel without side walls. They arrived at an

important conclusion: as the aspect ratio of the rectangular channel tends to infinity, the

effect of vertical and horizontal gradients of velocity and concentration is additive. The

large-time asymptotic steady dispersion coefficient for a channel of infinite aspect ratio is

found in their analysis to be about eight times the one obtained by neglecting the side walls.

Takahashi and Gill [2] further studied three-dimensional laminar dispersion in rectangular
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conduits with transverse flow with possible applications in hydrodynamic chromatography.

They also found that side walls may not be neglected even when the aspect ratio is very

high.

Dispersion in flow driven by pressure or electrokinetics in microchannels has been receiv-

ing attention only in recent years. Using a thin double-layer approximation, Zholkovskij et

al. [3] investigated electroosmotic dispersion for arbitrary geometry of the microchannel cross

section. Dutta and Leighton [4] studied dispersion in large-aspect-ratio microchannels for

open channel liquid chromatography. Hydrodynamic dispersion in different cross sectional

geometries was then studied by Zholkovskij and Masliyah [5] under combined pressure and

electrically driven flows. Ajdari et al. [6] explored the effect of cross-sectional shape on hy-

drodynamic dispersion in shallow microchannels. They investigated the role of channel side

walls on axial dispersion in electrokinetically and pressure-driven chromatographic systems.

The influence of the geometry of microchannel on solute dispersion in pressure-driven flow

was investigated by Dutta et al. [7]. Considering small zeta potentials, Dutta [8, 9] studied

electrokinetic transport through rectangular channels and examined the role of side walls.

He also presented an analytical theory, which was valid for large aspect ratio, for estimating

the solute dispersion by decoupling the effects of vertical and horizontal velocity gradients

in the channel. Vikhansky [10] presented an analytical analysis, based on the lubrication

approximation, for dispersion in a microchannel of a slender shallow cross-section. The effect

of channel side walls on the transport of neutral samples through rectangular conduits was

investigated by Dutta [11] under pressure-driven flow and small zeta potential conditions.

Due to the complexity arising from the presence of side walls, there are some indirect

approaches to quantify the effect of side walls on the dispersion. One such approach is to

ignore the gradients in the streamline velocity across the narrower dimension of the channel.

Motivated by the work of Doshi et al. [1], a few attempts [8, 9] have been made to estimate

the effect of the channel side walls by treating the rectangular channel of high aspect ratio as

a parallel-plate geometry with a one-dimensional velocity profile obtained by depth averaging

of the velocity. The overall dispersion in the rectangular channel may then be evaluated by

simply adding the dispersivity in a parallel-plate device to this contribution due to the side

regions. This treatment is, however, strictly valid for infinitely wide rectangular conduits
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and can only predict the dispersivity of sample slugs in the large aspect ratio limit. Desmet

and Baron [12] showed that the additional band broadening due to the side regions in a

rectangular conduit could be quantified by assuming the presence of a pseudo-stationary

layer on the channel side walls. In spite of a large number of investigations, there still

remain uncertainties concerning the effects of side walls. Most of the attempts thus far

regarding these effects have been limited to the steady state valid at large times. A theory

is yet to be developed to capture the dependence on time of the dispersivity in a rectangular

channel under the effects of side walls.

In this work, we tackle the problem of transport in a rectangular channel where the flow is

driven purely by electroosmosis, which is a realistic model of hydrodynamic chromatography.

The objective is to determine how the hydrodynamic dispersion is affected by the side walls

as a function of time. In this regard, the work of Doshi et al. [1], who considered gravity- or

pressure-driven flow, is extended to the present problem of transport in electroosmotic flow.

The asymptotic steady-state transport coefficients have been derived by Zholkovskij et al.

[3] and Dutta [8]. Here we are going to derive the transport coefficients as functions of time,

covering these asymptotic steady values at large times. To this end, we shall employ the

generalized dispersion model [13], which is valid for all times, to derive expressions for the

convection and dispersion coefficients as explicit functions of time, the EDL thickness, and

the channel aspect ratio. For comparison, transport coefficients for flow through a parallel-

plate channel are also derived. We shall examine the side wall effects by looking into how

the ratio of the dispersion coefficients for the two geometries will change with time and other

parameters.

The article is organized as follows. In Sec. 2, flow through a rectangular channel is consid-

ered. After problem formulation in Sec. 2.1, the generalized dispersion model is introduced

in Sec. 2.2. Transport coefficients for a rectangular channel are determined in Sec. 2.3, and

then some approximation of the dispersion coefficient is considered in Sec. 2.4. This is fol-

lowed by analysis on the transport in a parallel-plate channel in Sec. 3. The consistency of

the present model with the theory of Desmet and Baron [12] is checked in Sec. 4. Finally,

discussions and results are presented in Sec. 5, while Sec. 6 contains our concluding remarks.
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2 Flow and transport in a rectangular channel

2.1 Problem formulation

As shown in Fig. 1(a), we consider a two-dimensional rectangular microchannel of height 2h

and width 2b, which is filled with an aqueous liquid with free ions. The aspect ratio of the

channel is denoted by λ = b/h. The length of the rectangular channel is much greater than its

transverse dimensions, b, h, so that the end effects can be neglected. Cartesian coordinates

are used here with the z-axis along the flow, and the x- and y-axes being respectively in

the horizontal (spanwise) and vertical (height) directions. The boundaries are situated at

x = ±b and y = ±h. An axial electrical field E is imposed on the system resulting in

electroosmotic flow through the channel. See, for examples, Refs. [14, 15] for details about

the basic mechanisms of electroosmotic flow.

The fluid is assumed to be isothermal, Newtonian and incompressible. In the absence

of pressure gradient, the momentum equation for the electroosmotic velocity u(x, y) can be

written as

µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ ρe(x, y)E = 0, (1)

where u is the fluid velocity, ρ and µ are the fluid density and the dynamic viscosity, re-

spectively, and ρe is the electric charge density. Equation (1) is subject to no-slip boundary

conditions at the walls (i.e., u = 0 at x = ±b and y = ±h).

For simplicity, a uni:univalent electrolyte in the fluid is considered. Assuming that the

flow and electric fields are not strong enough to disturb the EDL significantly from equilib-

rium, we may invoke the static Boltzmann distribution for the charge density:

ρe = −2ezc0 sinh

(
zeψ

RT

)
, (2)

where ψ is the electrokinetic potential, c0 is the ion concentration far from the charged-walls,

z is the valence of the ions in the carrier liquid, e is the electron charge, R is the Boltzmann

constant, and T is the absolute temperature.

The EDL potential ψ can be described by the following Poisson equation:

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ρe

ε
, (3)
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where ε is the permittivity of the liquid medium.

Combination of Eq. (2) and (3) gives rise to the following Poisson–Boltzmann equation:

∂2ψ

∂x2
+
∂2ψ

∂y2
=

2ezc0
ε

sinh

(
zeψ

RT

)
. (4)

If the electric potential is sufficiently small, typically ψ ≤ ψ0 ≈ 25mV, the Debye–Hückel

approximation can be applied to Eq. (4), resulting in the following linear equation:

∂2ψ

∂x2
+
∂2ψ

∂y2
=

2e2z2c0
εRT

ψ = k2ψ, (5)

where k =
√

2e2z2c0/εRT is the reciprocal of the Debye length (a length scale for the

thickness of the EDL), also known as the Debye–Hückel parameter.

The boundary conditions for (5) are prescribed by the wall potentials. For the present

study, we consider a uniform wall potential ζ on the channel walls i.e., ψ = ζ at x = ±b and

y = ±h.

Now Eq. (5) with the prescribed boundary conditions yields the following solution

ψ = ζ
cosh(ky)

cosh(kh)
+ ζ

4

π

∞∑

n=0

(−1)n

2n + 1

k2

β2
n

cosh(βnx)

cosh(βnb)
cos(αny), (6)

where

αn = (2n + 1)π/2h, βn = (α2
n + k2)1/2. (7)

From Eqs. (1), (3) and (5) we have

∂2u

∂x2
+
∂2u

∂y2
=
εE

µ
k2ψ. (8)

By inspection of Eqs. (5) and (8), one can readily find that the solution of Eq. (8) satisfying

the no-slip boundary conditions on the channel walls is simply given by u = (εE/µ)(ψ − ζ),

or

u(x, y) = U

[
1 − cosh(ky)

cosh(kh)

]
− U

4

π

∞∑

n=0

(−1)n

2n + 1

k2

β2
n

cosh(βnx)

cosh(βnb)
cos(αny), (9)

where U = −εEζ/µ is the Helmholtz–Smoluchowski velocity, which is the plug flow elec-

troosmotic velocity in the limit of an infinitely thin EDL.
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The velocity averaged over the cross section of the channel is given by

um =
1

4bh

∫ h

−h

∫ b

−b

u(x, y)dxdy

= U

[
1 − tanh(kh)

kh

]
− U

2k2

h2b

∞∑

n=0

tanh(βnb)

α2
nβ

3
n

, (10)

where m in suffix denotes averaging over the cross-section. Note that um → U as kh→ ∞.

A neutral species of dilute concentration C is to be carried with the fluid. The species

is neutral so that the transport phenomenon will not be affected by any of the electrical

potentials. The convection–diffusion equation governing the concentration C(t, x, y, z) can

be written as
∂C

∂t
+ u(x, y)

∂C

∂z
= D

(
∂2C

∂x2
+
∂2C

∂y2
+
∂2C

∂z2

)
, (11)

where D is the molecular diffusion coefficient.

Equation (11) is subject to the following initial and boundary conditions:

C(0, x, y, z) = δ(z)φ(x, y), (12)

∂C

∂x
= 0 at x = ±b, (13)

∂C

∂y
= 0 at y = ±h. (14)

Here δ(z) is the Dirac delta function and φ(x, y) specifies the source strength and location. It

represents an initial distribution highly concentrated (i.e., a narrow slug) at the origin z = 0.

We remark that the initial concentration distribution will have effects only on the early time

development of the transport coefficients, but not on their steady-state limits. Equations

(13)–(14) mean that there is no material transport across the walls of the channel. Due to

symmetry, the gradients at x = 0 and at y = 0 must be zero, i.e.,

∂C

∂x
= 0 at x = 0, (15)

∂C

∂y
= 0 at y = 0. (16)

The fact that the species never reaches points very far from the source at a finite time can

be represented mathematically by

C(t, x, y,∞) =
∂C

∂z
(t, x, y,∞) = 0. (17)
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If the side walls are to be neglected, the equations deduced above will be simplified

considerably since then the dependence on x will disappear: there will be no diffusion in

the x-direction, and the velocity profile becomes a function of y only. This case of flow and

transport through a parallel-plate channel will be considered later in Sec. 3.

2.2 Generalized dispersion theory

The general procedure of Gill and Sankarasubramanian [13] is followed here to evaluate the

dispersion coefficient for all times. Following the approach of Doshi et al. [1], the concentra-

tion C can be expanded as a function of four independent variables as

C(t, x, y, z) =
∞∑

n=0

fn(t, x, y)
∂nCm

∂zn
, (18)

where the mean concentration Cm is defined as

Cm(t, z) =
1

4bh

∫ h

−h

∫ b

−b

Cdxdy. (19)

From Eqs. (18) and (19) we have

1

4bh

∫ h

−h

∫ b

−b

fndxdy = δn0. (20)

Integration of Eq. (11) over the cross section gives

∂Cm

∂t
= D

∂2Cm

∂z2
− 1

4bh

∂

∂z

(∫ h

−h

∫ b

−b

uCdxdy

)
. (21)

Now substituting the local concentration from Eq. (18) into Eq. (21) and rearranging,

we have the generalized dispersion equation for Cm(t, z) as

∂Cm

∂t
=

∞∑

n=1

Kn(t)
∂nCm

∂zn
, (22)

where the coefficients Kn(t) are given by

Kn(t) = − 1

4bh

∫ h

−h

∫ b

−b

ufn−1dxdy + δn2D, (23)

in which δn2 is the Kronecker delta (i.e., δn2 = 1 for n = 2 and δn2 = 0 for n 6= 2).

8



The coefficients of the first two terms of the expansion (22), −K1 and K2, are termed

respectively the convection and dispersion coefficients. The third and the fourth coefficients,

K3 and K4, provide information about the skewness and kurtosis (roundness) of the con-

centration distribution. They serve as simple and physically meaningful descriptors of the

overall transport behaviors of the solute in the stream. In this study, we shall focus only on

the first two coefficients. The convection coefficient determines the rate of movement of the

center of the solute cloud distribution, while the dispersion coefficient controls the rate of

broadening of the distribution about its center. More precisely, the dispersion coefficient is

equal to half the rate of increase of the variance of the distribution.

Equation (22) may be solved for Cm(t, z) if the coefficients Kn(t) are known. This

requires a knowledge of the functions fn(t, x, y). To find these, Eq. (18) representing the

solution will be substituted into Eq. (11). After evaluating the mixed derivatives of the form

∂k+1Cm/∂t∂z
k in terms of ∂iCm/∂z

i by suitable differentiation of Eq. (22), and setting the

coefficients of ∂kCm/∂z
k to zero for each k, the following set of defining differential equations

for the functions fn may be obtained:

∂fn

∂t
+ (u+K1)fn−1 = D

(
∂2fn

∂x2
+
∂2fn

∂y2

)
+ (D −K2)fn−2 −

n∑

i=3

fn−iKi, (24)

with f−1 = f−2 = 0.

The corresponding boundary conditions can be obtained from Eqs. (13)–(16) as

∂fn

∂x

∣∣∣∣∣
x=0,±b

= 0, (25)

∂fn

∂y

∣∣∣∣∣
y=0,±h

= 0. (26)

To find the initial condition for fn, we have from Eqs. (12) and (18),

C(0, x, y, z) =
∞∑

n=0

fn(0, x, y)
∂nCm

∂zn
(0, z) = δ(z)φ(x, y),

which gives

fn(0, x, y) =





φ(x, y)/φm if n = 0

0 if n 6= 0
, (27)
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where

φm =
1

4bh

∫ h

−h

∫ b

−b

φ(x, y)dxdy (28)

is the cross-sectional average of φ(x, y).

If the solute is initially distributed occupying only part of the cross section, in a rectan-

gular region of height 2hs and width 2bs that is symmetrical about the x- and y-axes (see

Fig. 1), then φ(x, y) can be expressed as

φ(x, y) =





C0 if − hs ≤ y ≤ hs and − bs ≤ x ≤ bs

0 otherwise
, (29)

where C0 is a constant.

2.3 Determination of transport coefficients

The equation determining the function f0 can be written from Eq. (24) as

∂f0

∂t
= D

(
∂2f0

∂x2
+
∂2f0

∂y2

)
. (30)

From Eqs. (28), (27) and (29), the initial condition for f0 can be written as

f0(0, x, y) =





bh/bshs if − hs ≤ y ≤ hs and − bs ≤ x ≤ bs

0 otherwise
. (31)

Using the method of separation of variables, the solution of Eq. (30) subject to the

boundary conditions (25) and (26) can be written as

f0(t, x, y) =
∞∑

m=0

∞∑

n=0

Amn cos(γmx) cos(ηny) exp
[
−tD

(
γ2

m + η2
n

)]
, (32)

where

γm = mπ/b, ηn = nπ/h. (33)

The integrability condition (20) gives

A00 = 1, (34)
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while the initial condition (31) gives

Am0 =
2

γmbs
sin(γmbs), (35)

A0n =
2

ηnhs
sin(ηnhs), (36)

Amn =
4

γmηnbshs
sin(γmbs) sin(ηnhs). (37)

With f0 from (32) and u from (9), the convection coefficient −K1 can now be derived

from Eq. (23) as

−K1(t) = U

[
1 − tanh(kh)

kh

]
− U

∞∑

n=1

A0n
(−1)nkh tanh(kh)

k2h2 + n2π2
exp

(
−tDη2

n

)

− U
2k2

h2

∞∑

j=0

tanh(βjb)

βjb

∞∑

m=0

∞∑

n=0

(−1)m+nAmn exp [−tD (γ2
m + η2

n)]

(α2
j − η2

n)(β2
j + γ2

m)
. (38)

Some analytical properties of the convection coefficient can be deduced as follows. First,

the large-time limit of this coefficient, i.e., its steady-state value, is equal to the section-

average fluid velocity um, which has been given in Eq. (10):

lim
t→∞

−K1(t) = um = U

[
1 − tanh(kh)

kh

]
− U

2k2

h2b

∞∑

n=0

tanh(βnb)

α2
nβ

3
n

. (39)

Second, the limiting value of the coefficient in the case of very large aspect ratio (i.e., λ� 1)

is given by

lim
λ�1

−K1(t) = U

[
1 − tanh(kh)

kh

]
− U

∞∑

n=1

A0n
(−1)nkh tanh(kh)

k2h2 + n2π2
exp

(
−tDη2

n

)
, (40)

which, as will be seen later, is equal to that for flow in a parallel-plate channel. Third, when

the initial distribution occupies the entire cross section so that hs = h and bs = b, then there

follows a considerable simplification of the problem and it is easy to see from Eqs. (32)–(37)

that f0 = 1. With this simplified f0, the convection coefficient becomes independent of time,

and is equal to the section-average fluid velocity at all times: −K1 = um.

From Eq. (24), the equation governing f1 is

∂f1

∂t
= D

(
∂2f1

∂x2
+
∂2f1

∂y2

)
− (u+K1)f0. (41)

Solving this non-homogeneous equation is tedious because of the intricate form of f0 and

K1 in Eqs. (32) and (38) respectively. To avoid the mathematical complexity, we shall from
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here on assume an initial distribution of solute uniformly occupying the entire cross section.

Under this condition, as already given above, f0 = 1 and −K1 = um are much simpler

in form and independent of time, which will greatly simplify our efforts in computing the

dispersion coefficient.

With this assumption, the solution of Eq. (41) subject to the initial condition (27) and

boundary conditions (25) and (26) is

f1 =
∞∑

m=0

∞∑

n=0

Bmn cos(ηny) cos(γmx)
{
1 − exp

[
−tD

(
γ2

m + η2
n

)]}
. (42)

where

B00 = 0, (43)

Bm0 =
4

π2

Uk2b

Dh2

(−1)m

m2
Sm0, (44)

B0n = 2
Uh2

D

(−1)nkh tanh(kh)

n2π2(k2h2 + n2π2)
+

4

π2

Uk2

Db

(−1)n

n2
S0n, (45)

Bmn =
8

π2

Uk2b

D

(−1)m+n

m2h2 + n2b2
Smn, (46)

in which

Sm0 =

∞∑

j=0

tanh(βjb)

α2
jβj

(
β2

j + γ2
m

), (47)

S0n =

∞∑

j=0

tanh(βjb)

β3
j

(
α2

j − η2
n

), (48)

Smn =
∞∑

j=0

tanh(βjb)

βj

(
α2

j − η2
n

) (
β2

j + γ2
m

). (49)

With this f1, the dispersion coefficient K2 can be obtained from Eq. (23) as

K2(t) = D +D

(
Uh

D

)2
{

8

π2

k4

h6

∞∑

m=1

S2
m0

m2

[
1 − exp

(
−tDγ2

m

)]

+
2

π2

∞∑

n=1

(
kh tanh(kh)

n(k2h2 + n2π2)
+ 2

k2

h2b

S0n

n

)2 [
1 − exp

(
−tDη2

n

)]

+
16

π2

k4

h4

∞∑

m=1

∞∑

n=1

S2
mn

m2h2 + n2b2
(
1 − exp

[
−tD

(
γ2

m + η2
n

)])
}
. (50)

This is the general formula for the dispersion coefficient in the present study. Because of

the squared terms in the series, the dispersion coefficient is obviously positive definite, at all
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times and for any parameter values. In the limit of very large aspect ratio, the expression

above for the dispersion coefficient reduces to

lim
λ�1

K2(t) = D +D

(
Uh

D

)2





8

π2

k4

h6

(
∞∑

j=0

1

α2
jβ

3
j

)2 ∞∑

m=1

[1 − exp (−tDγ2
m)]

m2

+
2

π2
k2h2 tanh2(kh)

∞∑

n=1

[1 − exp (−tDη2
n)]

n2(k2h2 + n2π2)2

}
. (51)

Doshi et al. [1] showed that the dispersion coefficients obtained by adding the two disper-

sion coefficients, each neglecting the gradients of velocity and concentration in one direction,

can be a very good approximation to the estimation of the actual dispersion coefficient,

particularly in the limit of very large aspect ratio. To examine its validity with regard to

the present analysis, let us consider two special cases by ignoring the velocity/concentration

gradients in the vertical (y) and the horizontal (x) directions.

When vertical gradients ignored

To obtain the dispersion coefficient by neglecting the vertical gradients of the concentra-

tion and velocity in Eq. (11), we consider the depth-averaged velocity profile and accordingly

modify Eq. (11) to give:

∂C1

∂t
+

(
1

2h

∫ h

−h

udy

)
∂C1

∂z
= D

(
∂2C1

∂x2
+
∂2C1

∂z2

)
. (52)

By following the procedure already explained, the dispersion coefficient based on the

horizontal velocity gradient only can be readily found as

[K2(t)]based on horizontal
gradient only

= D +D

(
Uh

D

)2
8

π2

k4

h6

∞∑

m=1

S2
m0

m2

[
1 − exp

(
−tDγ2

m

)]
, (53)

where Sm0 is given in Eq. (47).

When horizontal gradients ignored

Analogously, on neglecting the horizontal gradients of velocity and concentration, one

obtains

[K2(t)]based on vertical
gradients only

= D +D

(
Uh

D

)2
2

π2

∞∑

n=1

(
kh tanh(kh)

n(k2h2 + n2π2)
+ 2

k2

h2b

S0n

n

)2

×
[
1 − exp

(
−tDη2

n

)]
, (54)
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where S0n is given in Eq. (48).

It is interesting to note that Eqs. (53) and (54) are terms in Eq. (50); these approximate

expressions are components in the full expression of the dispersion coefficient.

2.4 Approximate dispersion coefficient

From Eqs. (51), (53) and (54), one can readily see that the effect of vertical and horizontal

gradients is indeed additive as the aspect ratio becomes very large. This observation has

led Doshi et al. [1] to suggest a very simple way to approximate the dispersion coefficient

when side wall effects are present. The contributions made by horizontal gradients only, Eq.

(53), and by vertical gradients only, Eq. (54), can be simply combined by addition to give

an approximate dispersion coefficient:

[K2(t)]approx = D +D

(
Uh

D

)2
{

8

π2

k4

h6

∞∑

m=1

S2
m0

m2

[
1 − exp

(
−tDγ2

m

)]

+
2

π2

∞∑

n=1

(
kh tanh(kh)

n(k2h2 + n2π2)
+ 2

k2

h2b

S0n

n

)2 [
1 − exp

(
−tDη2

n

)]
}

(55)

The error in Eq. (55) is equal to the last term on the right-hand side of Eq. (50), which

diminishes with the increase of the aspect ratio, λ = b/h, or limλ�1K2(t) = [K2(t)]approx, a

better approximation given by Eq. (55) for a larger aspect ratio.

The analytical expressions for the time-dependent transport coefficients for an electroos-

motic flow through a rectangular microchannel are now deduced. As our main concern is

to look into the effect of side walls of the microchannel on the transport coefficients, let us

now proceed to find the same for flow through a parallel-plate channel so that the side wall

effects can be determined through comparison of the two cases.

3 Flow and transport in a parallel-plate channel

In this section, we consider electroosmotic flow through a two-dimensional microchannel of

height 2h formed by two parallel plates as shown in Fig. 1(b). The z-axis is along the flow,

and the y-axis is normal to the flow. The boundaries are at y = ±h.
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For the present planar steady flow caused solely by electroosmotic mechanism, the fluid

velocity is given by

u‖(y) = U

[
1 − cosh(ky)

cosh(kh)

]
, (56)

where U = −εEζ/µ is the Helmholtz–Smoluchowski velocity, E is the applied electric field

in the axial direction, ζ is the zeta potential at the walls y = ±h, and k is the reciprocal of

the Debye length. The velocity averaged over the cross section of the channel is

um‖ =
1

2h

∫ h

−h

u‖(y)dy = U

[
1 − tanh(kh)

kh

]
. (57)

Following analogous steps already explained in the previous section, the convection co-

efficient for the parallel-plate configuration in the case of an initial distribution of solute of

depth 2hs can be written as

−K1‖(t) = U

[
1 − tanh(kh)

kh

]
− U

∞∑

n=1

2(−1)n sin (ηnhs)

ηnhs

kh tanh(kh)

k2h2 + n2π2
exp

(
−tDη2

n

)
, (58)

which is equal to limλ�1 −K1(t) given in Eq. (40). Also, at large times, limt→∞ −K1‖ = um‖.

From Eqs. (40) and (58), it can be remarked that the convection coefficient for transport

in a rectangular microchannel will reduce to that in a parallel-plate channel (without the

side walls effects) in the limit of very large aspect ratio, as was found by Doshi et al. [1].

In the case of an initial distribution of solute occupying the entire section (i.e., hs = h),

the convection coefficient K1‖ is steady, equal to the section-average fluid velocity, at all

times: −K1‖ = um‖. With this steady K1‖, the dispersion coefficient K2‖(t) for the parallel-

plate geometry can be written as

K2‖(t) = D +D

(
Uh

D

)2
2

π2

∞∑

n=1

k2h2 tanh2(kh)

n2(k2h2 + n2π2)2

[
1 − exp

(
−tDη2

n

)]
. (59)

This expression contains all except one series of terms in the expression (51) obtained for

transport in a rectangular microchannel in the limit of very large aspect ratio. Hence, the

dispersion coefficient for a rectangular channel of very large aspect ratio does not exactly

reduce to that for a parallel-plate channel. The series of terms missing here are multiplied

by the factor [1 − exp (−tDγ2
m)], which is identically zero only when tDγ2

m = 0 or when the

channel width is absolutely infinite b = ∞ for finite time t. For a very large but finite aspect
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ratio 1 � λ < ∞, the long-time asymptotic dispersion coefficient for a rectangular channel

is in general different from the dispersion coefficient for a parallel-plate channel. We note in

passing that Eq. (59) has a closed-form expression for the steady state:

lim
t→∞

K2‖ = D +D

(
Uh

D

)2 [
2 tanh2(kh)

(kh)4
+

5 tanh2(kh)

6(kh)2
− 3 tanh(kh)

2(kh)3
− 1

2(kh)2

]
, (60)

which agrees with the one deduced by Griffiths and Nilson [16].

4 To check with the theory of Desmet and Baron [12]

Flow and transport coefficients associated with rectangular and parallel-plate channels have

been derived in Secs. 2 and 3, respectively. It was shown by Desmet and Baron [12] that the

additional dispersion effect due to the side walls in a rectangular channel in the steady state

can be quantified by assuming the presence of a pseudo-stationary layer near the side walls.

The thickness of this layer d can be evaluated from the retardation of the fluid flow by the

channel side walls as

d

h
= lim

λ�1

b

h

(
1 − um

um‖

)
=

2k3

h2[kh− tanh(kh)]

∞∑

n=0

1

α2
nβ

3
n

, (61)

where Eqs. (10) and (57) have been used for um and um‖. According to Desmet and Baron

[12], the thickness of the pseudo-stationary layer given by Eq. (61) may then be used to

evaluate the additional dispersivity in a rectangular channel due to the side walls as

KW
2 =

D

3

(
um‖h

D

)2(
d

h

)2

= D

(
Uh

D

)2
4k4

3h6

(
∞∑

n=0

1

α2
nβ

3
n

)2

. (62)

As the contribution to dispersion from fluid shear across the vertical and horizontal

directions of a large-aspect-ratio channel are additive [1], the steady-state (i.e., when t→ ∞)

dispersion coefficient in the limit λ� 1 can be expressed as:

lim
λ�1
t→∞

K2 = lim
t→∞

K2‖ +KW
2 . (63)

From Eqs. (51) and (59), by which one easily gets the steady-state limits of limλ�1K2 and

K2‖, and using Eq. (62) for KW
2 , one can check that Eq. (63) is indeed satisfied. This shows

the exact agreement of the present model with the theory of Desmet and Baron [12].
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5 Discussion of results

Let us now proceed to look into the time development of the side wall effects of a rectangular

microchannel on the transport coefficients from their analytical expressions. As it is more

convenient to show results in dimensionless form, we have used the following dimensionless

quantities (distinguished by a caret) for the computations:

λ =
b

h
, k̂ = kh, t̂ =

tD

h2
, P e =

Uh

D
, K̂1 =

K1

U
, K̂2 =

K2

D
. (64)

Here λ is the aspect ratio of the channel, and Pe is the Péclet number that measures the

relative characteristic time of the diffusion process across half the channel height (T0 = h2/D)

to the convection process over an axial distance equal to half the channel height (Tc = h/U).

The time variable t has been non-dimensionalized with respect to T0, the time scale for

diffusion across half the channel height h. All length scales have been normalized in this

problem by the half height h of the rectangular or parallel-plate channel. Unlike Dutta [8, 9],

who used the section-average velocity um as the velocity scale for the normalization (and in

the definition of the Péclet number), we have chosen the Helmholtz–Smoluchowski velocity

U as the velocity scale instead. The reason for our choice is that U does not depend on the

Debye–Hückel parameter k̂, while um varies with k̂. Our choice will enable us to examine

the proper dependence of the results on the parameter k̂.

As stated in the introduction, the main objective of this paper is to investigate the

temporal variations of the side wall effects on the electroosmotic transport of a neutral

solute in a rectangular channel. Following the approach of Doshi et al. [1], the transport

coefficients have been obtained using the generalized dispersion model. In order to compute

these coefficients, we need to specify the aspect ratio λ of the channel, and the dimensionless

Debye–Hückel parameter k̂ representing the ratio of half the channel height to the EDL

thickness. In general, microchannels are fabricated to have a very large aspect ratio [17]

compared with ordinary rectangular channels. The range of the aspect ratio to be considered

for the present analysis is taken as 1 ≤ λ ≤ 103. For numerical discussions, the range of the

dimensionless Debye–Hückel parameter is taken as 1 < k̂ ≤ 100. These values are frequently

reported in the literature [18, 19, 20] for typical scenarios of electroosmotic flow.

Figure 2(a) shows the dimensionless convection coefficient −K̂1 = um/U , given in Eq.
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(10), as a function of the aspect ratio λ for different values of the Debye–Hückel parameter

k̂. The values corresponding to the parallel-plate geometry are also shown in the figure for

comparison. The convection coefficient increases monotonically with the aspect ratio λ for

constant k̂. When λ exceeds 100, the convection coefficient for the rectangular microchannel

is practically the same as the value for the parallel-plate configuration. Thus the convection

coefficient for flow through a rectangular microchannel can be approximated by that through

a parallel-plate geometry only when the aspect ratio of the channel is of order 100 or larger.

The convection coefficient is shown as a function of the Debye–Hückel parameter k̂ in Fig.

2(b) for different values of the aspect ratio λ. The monotonic increase of the convection

coefficient with k̂, for any aspect ratio, is evident from the figure. As k̂ → ∞, −K̂1 → 1

for any λ. Hence, irrespective of the aspect ratio, the convection coefficient will be equal to

the Helmholtz–Smoluchowski velocity, which is the plug-flow electroosmotic velocity, in the

limit of a very thin EDL.

The quantity (K̂2 − 1)/Pe2, which is the numerical factor of the dispersion coefficient,

given by the terms inside the parentheses in Eq. (50), is plotted in Fig. 3(a) as a function of

the dimensionless time t̂ = tD/h2 for different values of the aspect ratio λ and the Debye–

Hückel parameter k̂. At small times, for any large but finite aspect ratio, the dispersion

coefficient is practically the same as that of the corresponding parallel-plate channel, implying

that the side walls are yet to have significant effect at this early stage. As time increases,

the dispersion coefficient will gradually branch out from that of the parallel-plate channel,

where the branching out happens earlier for a smaller aspect ratio. After branching out,

the coefficient will continue to increase with time until it ultimately reaches an asymptotic

steady value at large times. This large-time asymptotic value, under the side wall effects,

can be several times larger than the counterpart without the side walls.

There are several time scales that are of interest in the time development of the dispersion

processes shown in Fig. 3. First, recall that the basic time scale T0, by which the time variable

t is normalized, corresponds to the time scale for molecular diffusion, which is responsible

for smoothing out any concentration variations, across the channel height. For t ≤ O(T0),

the time is too short for the side walls to have significant effect on the transport. Therefore,

during this very early stage, the dispersion evolves with time as if it were in a parallel-plate
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channel. At small times, when the transport is convection-dominated, the section-mean

concentration distribution is highly skewed and non-Gaussian. As diffusion takes effect in

bringing solute near the walls into the faster moving parts of the fluid near the center of

the channel and vice versa, the distribution will be increasingly symmetrical, approaching

a Gaussian distribution in the long run when the interaction between lateral diffusion and

axial convection reaches an equilibrium state. By this stage, the transience dies out and the

dispersion is fully developed; all the transport coefficients become independent of time when

fully developed. Ng and Rudraiah [21] and Ng [22] can be consulted for further descriptions

about early-time development of the transport processes.

Therefore, the earliest (also the shortest) transience for the development of the dispersion

in a rectangular channel of large aspect ratio is the same as that in a parallel-plate channel.

The transience is of a time scale comparable to T0, and from Eq. (59), the slowest exponential

decay happens over the dimensionless time scale 1/π2. From our results, such as those shown

in Fig. 3(b), which is a magnified view of the profiles for k̂ = 100, we may infer that the

transient time is approximately four times this time scale. The dispersion coefficient is fully

developed for a parallel-plate channel over a short time given by T1 = 4/π2 ∼ 0.4.

After the first transience dies out, the second transience comes in, and is controlled by

diffusion across the channel breadth, which takes a much longer time depending on the aspect

ratio. For a sufficiently large aspect ratio, there is an interlude of steadiness between the

two transient periods. It is temporarily steady because the time is long enough for the first

transience (associated with diffusion across the channel height) to vanish, but still too early

for the second transience (arising from diffusion across the channel breadth) to gain effect.

Within this time interval the dispersion coefficient is as steady as that of the parallel-plate

channel. This is the period in which K2 is nearly equal to K2‖, which can be materialized

when 1 − exp(−tDγ2
m) ≈ 0. We can infer from our results shown in Fig. 3 that this time

interval is approximately given by t̂ < T2 = 10−3(λ/π)2. This time scale is of relevance only

when T2 > T1, or λ > 63. For smaller λ, this interlude does not exist. The larger the aspect

ratio is, the longer this temporary period of steadiness will last.

Upon deviating from the parallel-plate value, the dispersion coefficient for a rectangular

channel will further evolve with time at a rate controlled by γ2
m, which is inversely propor-
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tional to the square of the channel breadth b. The time required to attain the large-time limit

is a function of the aspect ratio. The larger the aspect ratio, the longer the time required for

this second transient development. From Eq. (50), one can check that the slowest varying

term, which is the one with the lowest γm, is scaled by the dimensionless time (λ/π)2. From

the magnified view shown in Fig. 3(b), we can again infer that the second transient time T3

is approximately four times this time scale: T3 ∼ 4(λ/π)2. As in the first transient period,

the mean concentration distribution will be skewed and non-Gaussian during the second

transient period.

In summary, the dispersion coefficient for a rectangular channel of sufficiently large aspect

ratio will undergo several stages of development with time. First, t̂ < T1, first transience as

if it were a parallel-plate channel. Second, T1 < t̂ < T2, nearly steady as if it were a parallel-

plate channel. Third, T2 < t̂ < T3, second transience under the side wall effects. Fourth,

t̂ > T3, steady and fully developed. For a very large aspect ratio, say λ = 500, the time

required for the dispersion coefficient to be fully developed is of the order 105, which may

far exceed the time scale for the operation of processes taking place in a microchannel. One

has to be mindful of these time scales on deciding which value of the dispersion coefficient

is appropriate to use for a particular application.

Figure 3(b) also shows that, for the parallel-plate configuration, the asymptotic steady

value of the dispersion coefficient is 3.185 × 10−5, whereas for a rectangular channel of large

aspect ration, it is 6.39 × 10−5. In fact, the steady dispersion coefficient of a rectangular

channel is exactly twice that of the corresponding parallel-plate channel in the limit k̂ → ∞.

This result has been obtained previously by Zholkovskij et al. [3] and Dutta [8, 9].

The relative dispersion effect characterized by the ratio of the numerical factors of the

dispersion coefficients for the two geometries, (K̂2 − 1)/(K̂2‖ − 1), is shown in Fig. 4(a, b,

c), as a function of the aspect ratio λ at different instants of time. The same is presented

in Fig. 4(d, e, f) as a function of the dimensionless Debye–Hückel parameter k̂. It can be

seen from Fig. 4(a) that at an early instant of time the ratio (K̂2 − 1)/(K̂2‖ − 1) approaches

unity as the aspect ratio λ is larger than 100. At small times, the dispersion coefficient

for a rectangular microchannel of an aspect ratio larger than 100 is not different from that

without the side walls. As time increases, there is a substantial change in this threshold
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value of λ. Fig. 4(b) shows that for time t̂ = 10, it requires λ to be nearly 103 for the

agreement of the dispersion coefficients K̂2 and K̂2‖, especially for small k̂. The scenario

changes more at the asymptotic steady stage, which can be seen from Fig. 4(c). At this

stage, the agreement in dispersion coefficient of the two configurations is never possible even

for a very large aspect ratio. It is clear from the figure that the quantity (K̂2 − 1)/(K̂2‖ − 1)

increases monotonically with an increase in λ, where the rate of increase is larger for smaller

k̂. In the limit of k̂ � 1, the ratio (K̂2 − 1)/(K̂2‖ − 1) tends to the value 7.95 when λ→ ∞.

This limiting value of 7.95 is the same as the one derived previously by Doshi et al. [1] for

dispersion in pressure-driven flow through a rectangular channel. This is due to the fact that

the velocity profile of electroosmotic flow becomes increasingly similar to that of pressure-

driven flow as the EDL thickens, k̂ → 0 [23]. For a thinner EDL, k̂ > 1, weaker response from

the ratio (K̂2 − 1)/(K̂2‖ − 1) is obtained when λ changes its value from small to large. This

demonstrates that as the EDL becomes very thin, the side wall effect on the dispersion also

weakens. For k̂ ≥ 100, the aspect ratio has virtually no effect on the dispersion coefficient,

which is in agreement with the observation by Zholkovskij et al. [3] and Dutta [8]. In the

limit k̂ → ∞, the dispersion in a rectangular channel is exactly twice that in a parallel-plate

channel, as has been noted earlier.

The steady value of the ratio (K̂2 − 1)/(K̂2‖ − 1) is greater than unity except when k̂

and λ are both near unity. Side walls effects are reversed in this case meaning that the

dispersivity in a rectangular channel is smaller than that in a parallel-plate channel when

the EDL is relatively thick. For small aspect-ratio profiles (λ ≈ 1), the characteristic length

scales for diffusion along the vertical and horizontal directions of the rectangle are nearly the

same. In this case, the dispersivity is smaller in a rectangular conduit than that between two

parallel plates for small k̂ because the fluid shear introduced by the side walls is diluted by

the thickened EDLs. In other words, the decreasing effect due to a smaller section-average

velocity will outweigh the increasing effect due to the presence of the side walls when λ and

k̂ are both order unity or smaller.

For the same results but from a different perspective, the ratio (K̂2 − 1)/(K̂2‖ − 1) is

shown in Fig. 4(d, e, f) as a function of k̂. Again, one can see how the dispersion coefficient

varies dramatically with time depending on k̂ and λ. The trends featured in these plots can
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be reasoned with our arguments presented above. We caution again that for a very large

aspect ratio, the small-time value of the dispersion coefficient can be much different from

the large-time asymptotic steady value, but the time it takes to reach the asymptotic value

can be too long for it to be of relevance in practice.

Let us compare Fig. 4(f) here with Fig. 4 of Dutta [8], where both figures show the

asymptotic steady value of the ratio of the numerical factors of the dispersion coefficients

as a function of k̂ for some discrete values of the aspect ratio. One may find that, except

for the limiting case λ → ∞, our profiles here are different from those shown by Dutta [8].

This discrepancy arises from the fact that Dutta [8] used the section-mean velocity um in

defining the Péclet number. One recalls that to get the dispersion coefficient, the numerical

factor is to be multiplied by the square of the Péclet number. The mean velocity of flow in

a rectangular channel, um, is in general different from that in a parallel-plate channel, um‖,

both being functions of k̂. Hence, in Dutta’s formulation, the ratio of the numerical factors

is not a full reflection of the ratio of the dispersion coefficients because the Péclet numbers

do not cancel each other in the division. In our formulation, the Helmholtz–Smoluchowski

velocity U , which is independent of the geometry and the parameter k̂, is used in defining

the Péclet number. Hence, our results shown in Fig. 4(f) can fully reveal the dependence

of the ratio of the dispersion coefficients on k̂. More precisely, our ratio of the numerical

factors is equal to Dutta’s ratio times (um/um‖)
2.

6 Concluding remarks

Most of the existing studies on the effects of side walls on dispersion in a rectangular channel

are restricted to the large-time asymptotic steady state. The time development of the side

wall effects have not been addressed so far. In the present study, we have applied the gen-

eralized dispersion model to an investigation of the time evolution of the side wall effects on

dispersion of an inert solute in electroosmotic flow through a rectangular microchannel. We

have deduced analytical expressions for the convection and dispersion coefficients, as func-

tions of time, the aspect ratio λ = b/h and the Debye–Hückel parameter k̂. The large-time

limits are checked to be in agreement with those reported in the literature. We have shown
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that the dispersion coefficient can vary dramatically with time following different trends de-

pending on the aspect ratio and the Debye–Hückel parameter. A central question one would

ask: can the dispersion coefficient for transport in a rectangular channel of very large aspect

ratio be approximated by that in a parallel-plate channel? There is no single answer to this

question: it depends on the time of the transport. We have identified several stages of time

development. For t̂ < T1 = 4/π2, the dispersion coefficient changes with time as if it were

a parallel-plate channel. This is followed by an interval T1 < t̂ < T2 = 10−3(λ/π)2, where

the coefficient is nearly steady, again as if it were a parallel-plate channel. Up to this stage,

the time is still too short for the side walls to have appreciable effects on the dispersivity.

In the period T2 < t̂ < T3 = 4(λ/π)2, the coefficient undergoes time development again, as

the side walls gain their effects. Ultimately, when t̂ > T3, the coefficient reaches its steady

and fully-developed value. This asymptotic steady value is twice that for a parallel-plate

channel for k̂ � 1 and any λ. The ratio of the steady dispersion coefficients for the two

geometries can be as large as 7.95 for very small k̂ and very large λ. We emphasize that one

should take the time development of the dispersion process into account when deciding what

value of the coefficient should be adopted in the analysis. For a channel of finite length,

the residence time of solute in the channel may not be long enough for the fully-developed

dispersion coefficient to be of relevance.
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Figure 1: Cross section of a (a) rectangular microchannel of height 2h and breadth 2b; (b)

parallel-plate channel of height 2h. The flow is along the z-axis perpendicular to the cross

section.
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Figure 2: The convection coefficient, −K̂1, (a) as a function of the aspect ratio λ for different

values of the Debye–Hückel parameter k̂; (b) as a function of the Debye–Hückel parameter

k̂ for different values of the aspect ratio λ. The dotted lines are for the corresponding

parallel-plate channel.
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Figure 3: (a) The numerical factor of the dispersion coefficient, (K̂2 − 1)/Pe2, as a function

of the dimensionless time, t̂ = tD/h2, for different values of the aspect ratio λ and the

Debye–Hückel parameter k̂; (b) a magnified view of the curves corresponding to k̂ = 100.

The dotted lines are for the corresponding parallel-plate channel.
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Figure 4: The ratio of the numerical factors of the dispersion coefficients for the two geome-

tries, (K̂2 − 1)/(K̂2‖ − 1), at different times: (a, b, c) as a function of the aspect ratio λ for

different values of the Debye–Hückel parameter k̂; (d, e, f) as a function of the Debye–Hückel

parameter k̂ for different values of the aspect ratio λ.
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