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ABSTRACT. Recently Wu proved that for all primes g,
4
™

D L, sym’f) = —q+ O(¢°"/** log? q)
; 432

where f runs over all normalized newforms of weight 2 and level q. Here we
show that 27/28 can be replaced by 9/10.

1. INTRODUCTION

Let ¢ be a prime and

To(q) = {< : Z ) € SLy(Z) : q|c}.

We denote by S2(q) the space of all holomorphic cusp forms for T'o(q) of weight 2.
With respect to the inner product

(f.g) = / PR Crer

Sa(g) is a finite-dimensional Hilbert space, and there is an orthogonal basis Ba(q)
(which is the set of all normalized newforms in S3(g)) such that

(i) each f € Ba(q) is a common eigenvector of all Hecke operators T, with
(n,q) =1, i.e. when f € Bs(q) and (n,q) =1,

Tof = As(n)f;
(ii) the Fourier expansion of f € Ba(q) is

f(z) =) Ap(n)vne(nz)

where e(a) = e2™ \¢(n) is the eigenvalue in (i) if (n,q) = 1 and A f(n)? =
I7'\¢(m)? if n = Im where [ is a power of ¢ and (m,q) = 1 (see [ (2.19)
and (2.24)]).
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318 YUK-KAM LAU

For the properties of Af(n), it is known that they are all real and satisfy the
Deligne bound [Af(n)| < 7(n). (Here and in the sequel 7(n) = >_,, 1 is the divisor
function.) Moreover we have

mn

(1) A(m)Ap(n) = ) ea(d)Ar(—5)

d|(m,n)

where €, is the principal character mod ¢. In particular, we see that A¢(1) = 1.
Associated to each f € Ba(q), we define the symmetric square L-function by

(2) L(s,sym?f) = ¢,(2s) Z Ap(n?)n=* for Res > 1,
n=1

where (g(s) = ][, (1 — p~*)~L. This L-function extends to an entire function over
C and it satisfies a functional equation; more precisely, let us write

B AGsyif) = (=) TP L s sy

Then we have A(s,sym?f) = A(l — s,sym?f). Analogous to the Riemann zeta
function, the values attained by L(s,sym?f) in the critical strip are interesting.
Particularly for s = 1 and all large prime ¢, we have the asymptotic formula

ot

> Llsym®f) = Ja+0(¢" g’ o)
feB2(q)

for some constants 0 < a < 1 and 8 > 0. Here, we are concerned with the size of
the error term. In [I], Akbary proved that o = 45/46 is admissible and recently Wu
gave an improvement to o = 27/28 (see [5]). Our purpose is to show the refinement
below.

Theorem. Let g be a prime. There is an absolute constant ¢ > 0 such that

Y L symif) = S

2
feBz2(q) 27
(Note that ¢(2)3/(2m?) = 7*/432.)

Remark. In decimal form we have % ~ 0.978, % ~ 0.964 and % =0.9.

q+0(q” " log® q).

2. SOME PREPARATION

Lemma 1. Let A > 1 be any fized constant and ¢ < y < ¢* but y ¢ Z. We have

Lt sy ) = () 3 2 4 ofger + (4p07)

n<y

where € > 0 is an arbitrarily small constant and the implied constant in the O-term
depends on €.

Proof. This follows from the truncated Perron’s formula. Using the estimate

1 2
F(S—; )gr(s;r ) = |t|(30+1)/26—37r|t\/4

for s = o + it where 0 < 1 and |t| > 1, we can derive from the functional equation
the convexity bound: for 0 <o <1,

(4) L(U—l—it,smef) < (q|t|3/2)1*0+6.
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By [2, Lemma 12.1], we see that for any T > 1,

n2
42y #

e+i T O

()

211

) =

12 45+ oty w3 )" win(1, (T 1og £))71)).

€e—1 —

To evaluate the O—term7 we split the summation over n into three pieces: n < y/2,
n > 3y/2 and y/2 < n < 3y/2. As |log(y/n)| > 1 in the first two pieces, these two
sums are O(T~1y). The third one is

<y T D y—nlTHy T <y (T +y Y.

y/2<n<3y/2
In—y|>1

Thus the overall contribution is absorbed in the O-term in our lemma.
From (B)), we can replace Y oo | Ay(n?)n~U+%) in (B) by

Cq(2+ 23)*1L(1 + s, smef).

Then we apply the residue theorem to the rectangular contour with vertices at
e+iT and —1/2+ e +iT. The integral in () equals a sum of two terms: the main
term L(1,sym?f) from the pole at s = 0, and the remainder term which is

L1+ a +iT,sym?f)

<
\/—1/2-'1-6 (:q(2—|—204—|—22T

/T L(1/2 + e +it,sym?f)| dt

7 Co(1 4 2e +42t) 1+t

Using the bound ((o+it) ™! < log(1+[t|) for o > 1 and |t| > 1, the two O-terms are
< (qT)(y~Y2¢"/2T3/* + T—1). The proof is complete after setting T = (y/q)*/".

Our next task is to extend the admissible range in [, Lemma 2]. To this end,
we modify the mean square estimate result in [4) Corollary 1]. Suppose M < ¢°
and {an}1<n<m is a sequence of complex numbers. Then by taking a, = 0 for
M < n < ¢° [, Proposition 1] with N = ¢” gives

2

(6) Z Z anpi(n)| < ¢°(logq)*® Z |an|?

fEBa(q) [In<M n<M

where pg(n) = >, 2_, €g(m)As(1%). (Note that Ba(q) = S2(g)* in [4] for prime g.)

y—d 4oyl

Lemma 2. Let M > 1 and suppose that {a(n)}v<n<onm satisfies

(r(n)logn)”

a(n) < -

for some constant A > 0. There exists a constant B = B(A) > 0 such that
2

Z Z a(n)As(n?)] < max(1,¢" M=) log? (¢M).

fe€Ba(q) | M<n<2M

The implied constant depends on A.
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Proof. When M > ¢, it follows immediately from [4, Corollary 1] (by taking
N = M). Consider the case M < ¢°. From [4, (16)], we have

2 2

Si= 3 | 2 awned] = Y |S an)

FEB(q) |[M<n<2M fEB(q) lI<2M

where

aw = S um)egmalim?)
V/MJl<m<\/2M]1
(7(1) log 21)4 Z (7(m) log 2m)?4

l m2
M /I<m<\/2M /1
< (M1)~Y*(log M1)®

<

(see the proof of [4] Corollary 1] as well). B denotes an unspecified positive constant
depending on A and its value may differ at each occurrence in the proof. By (),

S < ¢°(logq)*® Z (M1)~Y(log M1)? < ¢° M~ 1og® (qM).
1<2M

Define for 1 <z < y,

n2
wpley) = 3 M)

r<n<y

Lemma 3. Let x> 0 and x < y < ¢ for some constant A > 0. Suppose r > 1 is
a fived integer satisfying x” > q°. Then there exists a constant D = D(r) > 0 such
that

> wilw,y)” < (logg)”
feB2(q)
where the implied constant depends on A and r.

Proof. Following the argument in the proof of [4, Lemma 4], one can show that

wr(ewy) = Y Ap(m?)

z"<mn<y”

c(m,n)
mn

where ¢(m, n) is independent of f and ¢(m,n) = 0 if n is not of the form n = dn,
where d|m and n; is squarefull. Moreover, |c(m,n)| < 7(mn)? for some integer
~v = 7(r) > 0 depending on r. Then we write

o) =YY Ap(mt) )
H

=2k 2" <mn<y”
H<n<2H

where the first summation runs over all nonnegative integers k. Define

cr(m) = 3 M

n
H<n<2H

z"m 1<n<y"m™!
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Then, using 3 <. 7(n)? < 21/%(log2)?", we have

squarefull

cg(m) < T(m)VZ% Z r(n)”
d]

n
H<dn<2H
n squarefull

< (Y ate Y a0
d|m d|m

H/d<n<2H/d
d>VH d<vH n squarefull

(7) < H_l/Q(T(m)(log m)(log H))P.

Here we use D to denote a positive constant (depending on ) which may assume
different values at other places. Making use of ([{) for H > ¢,

wrley) = Y > a0 0P )

H=2k<q a/(2H)<m<y"/H

Squaring both sides and averaging over all f € By(q) yields

> wrla,y)*

feB2(q)
\/_2
_ cg(m)vVH
®) < > H Y > Af(mQ)iH(WB +1 | log”q
H=2k<q o |zm/(2H)<m<y"/H

as (3 ;erai)® < |11 ;e af and |Ba(q)] < q. For each H, we split the range of the
summation over m into dyadic intervals M < m < 2M where M > «"/(2H). Tt
follows from Lemma 2 and (7)) that

2

Z Z )\f(mQ)M < max(1, ¢z~ "H)log” q.

7 e /@) <msyr "
Inserting it into (B)), we conclude that
> wilmy) <log?q Y max(H ', ¢%z77),
fE€B2(q) H=2k<q

and our result follows in view of the condition =" > ¢°. O

3. PROOF OF THE THEOREM

Define for f € Ba(q), wy = 4n(f, f), which is a positive real number. We have
from [3] Lemma 2.5] that wy = (272)~1qL(1,sym? f) and from [3, Corollary 2.2]
(with 73((m,n)) < 7((m,n))? < 7(m)7(n)) that

=94

9) D witAr(mPAr(n®)

feBz2(q)

(m,n) + O(g~" (mn)'/2(r(m)7(n))* log 2mn)

for min(m,n) < g, where 6(-,-) is the Kronecker delta. (Note that w;l = wy in
[4].) In particular, 3, wJIl < lasAf(l)=1.
We split the sum over n in Lemma [T into two subsums >, . + > w<n<y Where

9/10 173/110 )

1 <z <q<y. (Our choice will be z = ¢ and y = ¢ Squaring the
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formula in Lemma [ together with the bound L(1,sym?f) < log® ¢ (from [4] (18)]),
we deduce that

q _
> L(,sym’f) = 3.2 > wi'L(1,sym? f)?
fe€B2(q) fe€B2(q)

(10) = 5G(2)(51+28; +89) + Oy~ + ()*/7)

where

2
Sl _ Z w;l Af(n ) ’
f

_ Ar(n?) Ar(n?)
— 1 f f
S2 = D uj . > ]
7 n<o s<n<y
2

2
53 — Z w;l )\f (n )
f

rz<n<y

It follows from the bound w;l < g 'logq (see [ (20)]) and Lemma [3] that if
a’" > ¢’

lo 1/ —
Sy < %Zwm,y)? < (X wiz,9)>) V7 |Ba(a) g log g

f f
(11) < ¢ M"log™g.
Throughout ¢;, ¢ = 1,2, -, denote unspecified positive constants. Using (@), we

obtain that for x < ¢,
S = ZTFQ +0(q! Z (mn) =27 (m)?7(n)? log 2mn)

n<z m,n<x

(12) = ((2)+O0@@ " +q tzlog™q).

To treat So, we split it into two parts: let z = gz~ !,
(13)

_ Ar(n?) As(n?) _ Ar(n?) Ar(n?)
_ 1 S f 1 S f
Sp=D wpl} S Y, A vt Y, S Y
f n<z z<n<y f z<n<lx rz<n<y

= So1 + S92, say.

By (@), we have, provided that z < z (or equivalently 2 > ¢*/?),

—1 (. gC11 2 2 —1/2 Y en
Sa1 < g (log™'q) Z Zr(m) T(n)*(mn) <4/ ” log®'q.

m<zn<ly
Applying the argument in (2), we get that

2

Ar(n?
wJTI Z —f( ) < 2 l4 g lzlog™ g < ¢ talog™ q.
f z<n<x n
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By ab < |a|?>+ |b|? and (II), we have Sas < (71" +¢ 'z)log™* q. Hence, by (I3),

Sy < (¢ V" +q7 e + (q%)m) log" q.

Putting this estimate, (1)) and ([I2) into (I0), we infer that as (,(2) = ¢(2)+0(¢~2),
2 3
> L(sym?’f) = %q +q0((q7 " + ¢ ') log™ g

feBz2(q)
(o — Y \1/2 q\2/7
+q @+ ()P (2 :
@+ (2 (D)
Subject to the condition 2" > ¢°, we take z = ¢°/" and select r = 10, x = ¢
and y = ¢'™/110 by equating ¢~'/" = ¢~ 'z. This ends the proof.

9/r 9/10
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