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D-RESULTANT FOR RATIONAL FUNCTIONS

JAIME GUTIERREZ, ROSARIO RUBIO, AND JIE-TAI YU

(Communicated by Wolmer V. Vasconcelos)

Abstract. In this paper we introduce the D-resultant of two rational func-
tions f(t), g(t) ∈ K(t) and show how it can be used to decide if K(f(t), g(t)) =
K(t) or if K[t] ⊂ K[f(t), g(t)] and to find the singularities of the parametric
algebraic curve define by X = f(t), Y = g(t). In the course of our work we
extend a result about implicitization of polynomial parametric curves to the
rational case, which has its own interest.

Introduction

Let R be an integral domain, K its quotient field and R[s, t] the polynomial ring
in two variables over R. The D-resultant of two non-constant polynomials f(t)
and g(t) in R[t] is defined as the resultant, with respect to the variable t, of the
polynomials (cf. [EY])

f(t)− f(s)
t− s =,

g(t)− g(s)
t− s .

This concept coincides with the Taylor resultant of two non-constant polyno-
mials, over a field of characteristic zero, defined in lecture 19 of [Abh]. In [EY],
the authors introduce this concept to solve the following questions: how can we
decide if K(t) = K(f(t), g(t)) or if K[t] = K[f(t), g(t)] and how can we compute the
singularities of the curve defined by X = f(t), Y = g(t)?

In this paper we introduce the so-called D-resultant (see Section 2) of rational
functions f(t), g(t) ∈ K(t) over an arbitrary field K. Furthermore we show that
the following three questions can be very easily solved by the D-resultant: a test
to decide if K(f(t), g(t)) = K(t) or if K[t] ⊂ K[f(t), g(t)] and a method to compute
the singularities of the parametric algebraic curve defined by X = f(t), Y = g(t)
(Theorem 3.1).

To prove our main result, we need a generalization of a result in [MW], which
has its own interest.

Concerning applications, the D-resultant provides a faster algorithm to test
whether two rational function fields K(f1(t), . . . , fr(t)) and K(t) are the same or
not; see [Swe]. Corollary 3.2 states a necessary and sufficient condition to decide
when a parametric curve has no singularities in the affine plane. Besides, the D-
resultant gives an algorithm to compute the singularities of a plane parametric
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curve given by a parametrization (see Corollary 3.2). Finally, we remark that the
formulas obtained in Proposition 2.4 also turn out to be useful for applications.

The paper is divided into three sections. In Section 1 we introduce our notations
and definitions. We also prove in this section the result on the implicitization of two
rational functions and some basic results on parametric curves. These results will
be used throughout the subsequent sections. Section 2 is dedicated to introducing
the notion of D-resultant for rational functions over arbitrary domains, including
useful results for later use. Then (Section 3) we state and prove our main result.

1. Preliminaries

1.1. Rational functions. Let K be an arbitrary field. As usual, we denote by
K(t) the field of rational functions in the variable t. The only K-automorphisms of
the field K(t) are the linear transformations (at+ b)/(ct+d), such that ad− bc 6= 0.

If f is a non-constant rational function, then there exist polynomials fn, fd such
that gcd(fn, fd) = 1 and f = fn/fd; we say that fn/fd is a reduced representation of
the rational function f . In this paper f is always given by a reduced representation.
So, we can define the degree of f as the maximum of the degrees of fn and fd,
deg f = max(deg fn, deg fd). In this case K(f) ⊂ K(t) is an algebraic extension of
degree deg f , i.e., deg f = [K(t) : K(f)].

We say that a non-constant rational function f is decomposable if there exist
g, h ∈ K(t), such that f = g ◦ h = g(h) and deg g, deg h > 1. If f, h ∈ K(t) are
such that K(f) ⊂ K(h) ⊂ K(t), then there exists g ∈ K(t) with f = g(h) and
deg f = deg g × deg h. By Lüroth’s Theorem we have that f is decomposable if
and only if K(f) ⊂ K(t) is an algebraic extension with proper subfields. We are
interested in the following characterization of decomposable rational functions (cf.
[AGR]):

Proposition 1.1. Let K be an arbitrary field and let f = fn/fd, h = hn/hd
be two non-constant rational functions in K(t). Then the bivariate polynomial
hn(y)hd(x) − hn(x)hd(y) divides fn(y)fd(x) − fn(x)fd(y) if and only if f = g(h),
for some rational function g ∈ K(t).

1.2. Resultants. We denote by K the algebraic closure of K and by K× = K\{0}.
Given two non-zero polynomials p, q ∈ R[t], the resultant of p and q with respect to
t is denoted by Rest(p, q). The next proposition summarises some of its properties:

Proposition 1.2. Let p, q, r ∈ R[t] be non-constant polynomials, with u = deg p,
v = deg q, w = deg r. Then:

1. Rest(p, q) = (−1)uvRest(q, p).
2. Rest(pq, r) = Rest(p, r) · Rest(q, r).
3. If a is a non-zero element of R, then Rest(a, p) = au.

4. If p(t) = a
u∏
i=1

(t−αi) and q(t) = b
v∏
i=1

(t− βi) where αi, βi ∈ K and a, b ∈ K×,

then

Rest(p, q) = avbu
u∏
i=1

v∏
j=1

(αi − βj) = (−1)uvbu
v∏
i=1

p(βi) = av
v∏
i=1

q(αi).

5. There exist p̂, q̂ ∈ R[t] such that Rest(p, q) = pp̂ + qq̂. In particular p and q
have a common zero in K if and only if Rest(p, q) = 0.

6. Rest(p ◦ r, q ◦ r) = cRest(p, q)w, for some c ∈ K×.
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1.3. Minimal polynomials and normal parametrizations. Let f = fn/fd,
g = gn/gd be two elements of K(t), not both constants. Then f(t) and g(t) are
algebraically dependent overK, so there exists an irreducible polynomialm(X,Y ) ∈
K[X,Y ], such that m(f(t), g(t)) = 0. It is well known that m is unique up to a
non-zero constant factor. We call such polynomial m a minimal polynomial of f
and g.

Let h(X,Y ) be a polynomial in K[X,Y ] and V (h(X,Y )) the zero set of the
polynomial h(X,Y ), i.e., V (h(X,Y )) = {(x0, y0) ∈ K2

, h(x0, y0) = 0}. We say that
V (m(X,Y )) is the parametric curve defined by the parametrization (f, g).

Now, the implicitization problem is: given f(t), g(t) we want to find a minimal
polynomial m(X,Y ) ∈ K[X,Y ] of f and g (cf. [CLO]). We will see that it can be
computed using resultants.

The polynomial case of the following interesting result is in [MW].

Theorem 1.3. Let m be a minimal polynomial of the rational functions f, g. Then
there exists c ∈ K× such that

Rest(fn(t)−Xfd(t), gn(t)− Y gd(t)) = cm(X,Y )w,

where w = [K(t) : K(f, g)].

Proof. The theorem is clearly true if one of the rational functions is constant.
By Gauss’ lemma the polynomial F (X, t) = fn(t)−Xfd(t) (respectivelyG(Y, t) =

gn(t)− Y gd(t)) is irreducible in K(X)[t] (respectively in K(Y )[t]).
We distinguish two possibilities:
(a) F (X, t) or G(Y, t) is a separable polynomial. We can suppose, without loss

of generality, that F (X, t) is separable. Then the splitting field E of F (X, t) over
K(X) is separable and we get the following factorization:

F (X, t) = a(t− θ1) · · · (t− θu),

where u = deg f , a ∈ K(X) and θi ∈ E for 1 ≤ i ≤ u. We note that g(θi) is a
non-zero element of E. Moreover, from Galois Theory, we know that E is a Galois
extension of K(X), and its Galois group H acts transitively on {θ1, . . . , θu}. By
the properties of Proposition 1.2,

R(X,Y ) = Rest(F (X, t), G(Y, t)) = Rest(fn(t)−Xfd(t), gn(t)− Y gd(t))

= av
u∏
i=1

(gn(θi)− Y gd(θi)) = b

u∏
i=1

(Y − g(θi)),

for some b ∈ K[X ]. This gives a complete factorization of R(X,Y ) ∈ E[Y ]. It
follows that any monic irreducible factor of R(X,Y ) in K(X)[Y ] must have g(θi)
as a root for some i, 1 ≤ i ≤ u, hence it must be the minimal polynomial of g(θi)
over K(X) for some i.

Now, let h(Y ) be the minimal polynomial of g(θ1) over K(X). Then for all
σ ∈ H , h(g(σθ1)) = σh(g(θ1)) = 0. By the transitivity of H , h(g(θi)) = 0 for all
i. This shows that g(θi) (i = 1, . . . , u) all have the same minimal polynomial over
K(X).

Since R(f(t), g(t)) = 0, we can write R(X,Y ) = bm(X,Y )w for some divisor
w of u. In order to show that w is the degree of the field extension of K(t) over
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K(f(t), g(t)), note

degY R(X,Y ) = u = [K(t) : K(f)],

degY m(X,Y ) = deg h(Y ) = [K(f, g) : K(f)].

Hence,

w =
[K(t) : K(f)]

[K(f, g) : K(f)]
= [K(t) : K(f, g)].

Comparing the degrees with respect to the variable X ,

R(X,Y ) = cm(X,Y )w,

for some non-zero constant c.
(b) Suppose that F (X, t) and G(Y, t) are not separable polynomials and let p be

the characteristic of the field K. So, their partial derivatives with respect to t are
zero, and

f ′n(t) = f ′d(t) = 0 and g′n(t) = g′d(t) = 0.

Then we can write f = f̂(trp) and g = ĝ(trp), where f̂ = f̂n/f̂d, ĝ = ĝn/ĝd ∈ K(t)
and r is a positive natural number, such that F̂ (X, t) = f̂n(t)−Xf̂d(t) or Ĝ(Y, t) =
ĝn(t) − Y ĝd(t) is separable. Note that m(X,Y ) is also a minimal polynomial of f̂
and ĝ. By Proposition 1.2 and separability properties, we have

R(X,Y ) = Rest(F (X, t), G(X, t)) = Rest(f̂n(trp)−Xf̂d(trp), ĝn(trp)− Y ĝd(trp))
= Rest(F̂ (X, t), Ĝ(Y, t))rp = ĉrpm(X,Y )ŵrp,

where ŵ = [K(t) : K(f̂(t), ĝ(t))] and ĉ ∈ K×. Therefore,

[K(t) : K(f(t), g(t))] = [K(t) : K(f̂(trp), ĝ(trp))]

= [K(t) : K(trp)] · [K(trp) : K(f̂(trp), ĝ(trp))] = rpŵ.

Now, we state a basic result on parametric curves, for later use.

Definition 1.4. Given a parametrization (f, g) of the plane curve C = V (m):
−We say that (f, g) is a normal parametrization if C = {(f(t0), g(t0)) | t0 ∈ K};

that is, every point (x0, y0) ∈ C can be written as (x0, y0) = (f(t0), g(t0)) for some
t0 ∈ K.
−We say that (f, g) is a faithful parametrization if there exists a one-to-one map

from points (x0, y0) ∈ C to values of the parameters t0 ∈ K, such that (x0, y0) =
(f(t0), g(t0)), except a finite number of them.

Proposition 1.5. Let (f, g) be a parametrization of the parametric curve C. Then:
1. (f, g) is a faithful parametrization if and only if K(f, g) = K(t).
2. If deg f > deg fd or deg g > deg gd, then (f, g) is a normal parametrization of
C. If deg f = deg fd and deg g = deg gd, then there exists at most one point
of the curve C that cannot be written as (f(t0), g(t0)) for any t0 ∈ K.

Proof. The first part is a well-known fact (cf. [Sha]).
For the second part, by the Extension Theorem (cf. [CLO]), given (x0, y0) ∈ C,

there exists t0 ∈ K such that (x0, y0) = (f(t0), g(t0)) if degt(fn(t) − Xfd(t)) =
deg(fn(t) − x0fd(t)) or degt(gn(t)− Y gd(t)) = deg(gn(t) − y0gd(t)). So, we imme-
diately get both claims.
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Remark 1.6. Given a parametrization (f, g) of C, there are methods to check if it
is faithful or not, and in the negative case to compute a faithful one (cf. [AGR]).

On the other hand, it is easy to check if (f, g) is a normal parametrization:
depending on the degree of the numerator and denominator, at most, you have to
compute a gcd(fn(t)− x0fd(t), gn(t)− y0gd(t)) for one point (x0, y0).

To conclude this section we give a simple fact which will be used below: let
f(t) = fn/fd ∈ K(t) and a ∈ K, such that f(a) is defined, that is, fd(a) 6= 0.
Instead of f(a) we sometimes write f(t)|t=a.

Lemma 1.7. f(t)−f(a)
t−a

∣∣
t=a

= f ′(a), provided f(a) is defined.

Proof. We have

f(t)− f(a)
t− a =

fn(t)
fd(t) −

fn(a)
fd(a)

t− a =
fn(t)fd(a)−fn(a)fd(t)

t−a
fd(t)fd(a)

.

Then,

f(t)− f(a)
t− a

∣∣∣
t=a

=
f ′n(a)fd(a)− fn(a)f ′d(a)

fd(a)fd(a)
= f ′(a).

2. The D-resultant of two rational functions

In [EY], the authors define the D-resultant of two polynomials p(t), q(t) ∈ K[t] as
the resultant, with respect to the variable t, of the polynomials p(t)−p(s)

t−s , q(t)−q(s)t−s .
This definition can be extended to rational functions. First, we need this technical
result:

Lemma 2.1. Let hn, hd be non-constant polynomials in K[t] such that gcd(hn, hd)
= 1. Then the bivariate polynomial hn(t)hd(s)− hd(t)hn(s) ∈ K[s, t] does not have
univariate factors. Moreover, if h′d(t) 6= 0, then it has not the factor (t− s)2.

Proof. The proof of the first claim is straightforward (cf. [AGR]).
On the other hand, if (t − s)2 divides hn(t)hd(s) − hd(t)hn(s), then u2 divides

hn(t)hd(t + u) − hd(t)hn(t + u). So u = 0 would be a common double root of the
above polynomial and after derivation with respect to the variable u and setting
u = 0, we would obtain

hn(t)
hd(t)

=
h′n(t)
h′d(t)

.

But this is a contradiction since gcd(hn, hd) = 1.

Definition 2.2. Given a non-constant rational function h(t) = hn/hd such that
gcd(hn, hd) = 1, the associated bivariate polynomial h(s, t) ∈ K[s, t] of h is

h(s, t) =
hn(t)hd(s)− hd(t)hn(s)

t− s .

Now, given two non-constant rational functions f(t) = fn/fd, g(t) = gn/gd, we
define the D-resultant of f(t), g(t) by

DRest(f(t), g(t)) := Rest(f(s, t), g(s, t)).
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The D stands for Divided difference. Obviously this resultant is an element of
K[s]. If there is not confusion, we write D(s) instead of DRest(f(t), g(t)). We
observe that the D-resultant has a good behaviour under linear transformations:

Proposition 2.3. Let (f, g) be two non-constant rational functions and λ =
at+ b

ct+ d
a linear transformation. Then:

1. (f, g) and (f(λ), g(λ)) have the same minimal polynomial and their R(X,Y )’s
coincide up to multiplication by a non-zero constant.

2. (f, g) and (λ(f), λ(g)) have the same D-resultant up to multiplication by a
non-zero constant.

The next useful proposition relates D(s) to

R(X,Y ) := Rest(fn(t)−Xfd(t), gn(t)− Y gd(t)).

Proposition 2.4.

f ′(s)D(s) = (−1)deg fgd(s)deg f−2fd(s)deg g−2RY (f(s), g(s))

and

g′(s)D(s) = (−1)deg f+1gd(s)deg f−2fd(s)deg g−2RX(f(s), g(s)),

where RX , RY are, respectively, the partial derivatives of R with respect to X,Y .

Proof. Let r(s) := Rest (f(s, t), gn(t)gd(s)− gd(t)gn(s)). If we write gn(t)gd(s) −
gd(t)gn(s) = (t− s)g(s, t), then by Proposition 1.2 we obtain

r(s) = Rest (f(s, t), t− s)D(s) = (−1)deg f−1f(s, s)D(s)

= (−1)deg f−1
(
fd(s)fd(t)

f(t)− f(s)
t− s

)∣∣
t=s

D(s).

By Lemma 1.7, we have

r(s) = (−1)deg f−1fd(s)2f ′(s)D(s).(1)

Define R̃(s, Y ) := Rest(f(s, t), gn(t)− Y gd(t)). By Proposition 1.2

r(s) = R̃(s, Y )|Y=g(s)Rest(gd(s), f(s, t)) = R̃(s, Y )|Y=g(s)gd(s)deg f−1.

Also, writing fn(t)fd(s)− fd(t)fn(s) = (t− s)f(s, t) we have

R̃(s, Y ) =
Rest(fn(t)fd(s)− fd(t)fn(s), gn(t)− Y gd(t))

Rest(t− s, gn(t)− Y gd(t))

=
Rest(fn(t)fd(s)− fd(t)fn(s), gn(t)− Y gd(t))

gn(s)− Y gd(s)

=
R(f(s), Y )fd(s)deg g

gn(s)− Y gd(s)
.

Consequently, using R(f(s), g(s)) = 0 we obtain

r(s) = gd(s)deg f−1fd(s)deg gR(f(s), Y )−R(f(s), g(s))
gn(s)− Y gd(s)

∣∣∣
Y=g(s)

= −gd(s)deg f−2fd(s)deg gRY (f(s), g(s)) (by Lemma 1.7).

So together with (1) this gives

(−1)deg f−1fd(s)2f ′(s)D(s) = −gd(s)deg f−2fd(s)deg gRY (f(s), g(s)).
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Therefore,

f ′(s)D(s) = (−1)deg fgd(s)deg f−2fd(s)deg g−2RY (f(s), g(s)).

Analogously, we prove the second formula.

3. The main theorem

Now we are able to state and prove the main result of this paper.

Theorem 3.1. Let f(t) = fn(t)
fd(t) and g(t) = gn(t)

gd(t) in K(t) be non-constant rational
functions and let m ∈ K[X,Y ] be a minimal polynomial of (f, g) and C = V (m)
the associated parametric curve. We have:

1. K(f(t), g(t)) = K(t) if and only if D(s) 6= 0.

2. K[t] ⊂ K[f(t), g(t)] if and only if (f, g) is normal and D(s) = c

r∏
i=1

(s− si)ei

where each ei is a positive integer and si is a root of fd or gd.

3. If D(s) 6= 0, say D(s) = c

r∏
i=1

(s− si)ei , where each ei is a positive integer and

all si ∈ K are distinct, then:
(a) If (f(si), g(si)) is defined, then it is a singularity of the curve C.
(b) If (f(s0), g(s0)) is a singularity of C, then s0 = si for some i ∈ {1, . . . , r}.
(c) If (f(si), g(si)) is not defined, then si produces a singularity in one of

the parametric curves defined by the parametrizations (1/f, g), (f, 1/g)
or (1/f, 1/g).

Proof. 1. For zero characteristic fields, it has been proved in [AGR]. We are proving
the theorem for an arbitrary field K adapting the mentioned proof.

Suppose that K(f(t), g(t)) = K(h(t)), with deg h > 1; then K(f),K(g) ⊂ K(h).
Then by Proposition 1.1, hn(t)hd(s)−hd(t)hn(s) divides both fn(t)fd(s)−fd(t)fn(s)
and gn(t)gd(s) − gd(t)gn(s). Hence, f(s, t), g(s, t) have the common factor h(s, t)
and D(s) = 0.

Conversely, if D(s) = 0, we will prove that K(f(t), g(t)) = K(h(t)), with deg h >
1.

We are going to divide this part of the proof into two different cases. The first
case is when f ′d(t) or g′d(t) 6= 0 and the second one is when f ′d(t) = g′d(t) = 0.

Case 1. We suppose that D(s) = 0; then f(s, t), g(s, t) have a common factor,
namely H(s, t). Thus,

fn(t)fd(s)− fd(t)fn(s) = H(s, t)N(s, t)(t− s)
and

gn(t)gd(s)− gd(t)gn(s) = H(s, t)M(s, t)(t− s)
for some N,M ∈ K[s, t].

Next, we consider the algebraic set T defined by the polynomial H(s, t), that
is, T = V (H(s, t)) ⊂ K2

, which contains an infinite number of points. Moreover,
since H(s, t) has no univariate factors and it does not have (t− s) as a factor (see
Lemma 2.1), there exists an infinite number of points (a, b) ∈ T , with a 6= b such
that fd(a), gd(a), fd(b) and gd(b) are not zero. Then we find for these points that

fn(a)
fd(a)

=
fn(b)
fd(b)

and
gn(a)
gd(a)

=
gn(b)
gd(b)

.
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Moreover, note that K(f, g) = K(t) implies K(f, g) = K(t). This is a contradic-
tion, because by Proposition 1.5, over an algebraically closed field, there cannot be
an infinite number of images of (f(t), g(t)) in which the mapping is not injective.

Case 2. Let p > 0 be the characteristic of the field K, and f ′d(t) = g′d(t) = 0.
If f ′n(t) or g′n(t) 6= 0, then we are in Case 1 for 1/f, 1/g and both have the same
D-resultant; see Proposition 2.3 for λ = 1/t.

Otherwise, there exist f̂ , ĝ ∈ K(t) such that f(t) = f̂(tp) and g(t) = ĝ(tp); then
K(f, g) ⊂ K(tp).

3. Since D(s) 6= 0, we have K(f, g) = K(t).
3(a) Suppose that D(si) = 0 and fd(si)gd(si) 6= 0. From Proposition 2.4 we

have fd(si)αgd(si)βRZ(f(si), g(si)) = 0 for Z ∈ {X,Y } and α, β ≥ 0. By Theorem
1.3 we get mX(f(si), g(si)) = mY (f(si), g(si)) = 0. So (f(si), g(si)) is a singular
point of the curve C.

3(b) Let (f(s0), g(s0)) be a singularity of C. If either f ′(s0) 6= 0 or g′(s0) 6= 0,
by Proposition 2.4 D(s0) = 0.

Suppose that f ′(s0) = g′(s0) = 0. Then f(s0, s0) = g(s0, s0) = 0. Since D(s) is
the resultant of f(s, t), g(s, t) we can write (Proposition 1.2)

D(s) = f(s, t)h1(s, t) + g(s, t)h2(s, t)

for some polynomials h1(s, t), h2(s, t). Substituting s and t by s0 we get that
D(s0) = 0.

3(c) We have just seen that the zeroes of D can be either singularities of C or
roots of fd(s)gd(s). We claim that if fd(si) = 0 or gd(si) = 0, then si is a singular
point of one of the curves defined by X = 1/f(t), Y = g(t); X = f(t), Y = 1/g(t);
or X = 1/f(t), Y = 1/g(t). By Proposition 2.3, the D-resultant of f, g is the D-
resultant of the mentioned curves up to multiplication by a non-zero constant. So,
we immediately get this claim.

2. Suppose K[t] ⊂ K[f(t), g(t)]. Then there exists a non-zero polynomial p ∈
K[X,Y ] such that t = p(f(t), g(t)).

We claim that deg f > deg fd or deg g > deg gd. If deg f ≤ deg fd and deg g ≤
deg gd, then the degree of the denominator of p(f, g) is greater than or equal to the
degree of the numerator of p(f, g), since the property is invariant with respect to
the multiplication or sum of such rational functions. But this is a contradiction.
By Proposition 1.5, we have that (f, g) is a normal parametrization.

On one hand, we have p(f(t),g(t))−p(f(s),g(s)))
t−s = 1. There exits a natural number r

such that erp(f(t), g(t)), erp(f(s), g(t)) and erp(f(s), g(s)) are polynomials, where
e = fd(t)fd(s)gd(t)gd(s). Hence,

erp(f(t), g(t))− erp(f(s), g(t))
t− s +

erp(f(s), g(t))− erp(f(s), g(s))
t− s = er.(2)

Observe that er(p(X, g(t)) − p(a, g(t))) is divisible by X − a (for all a in K[s]).
So substituting X = f(t) and a = f(s) we obtain that for some h1, h2 ∈ K[s, t] and
for some r′ ∈ N

er
′
(p(f(t), g(t))− p(f(s), g(t))) = (f(t)− f(s))h1 = f(s, t) −h1

fd(t)fd(s)

and

er
′
(p(f(s), g(t)) − p(f(s), g(s))) = (g(t)− g(s))h2 = g(s, t) −h2

gd(t)gd(s) .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



D-RESULTANT FOR RATIONAL FUNCTIONS 2245

So by (2), we get that there exist polynomials ĥ1, ĥ2 ∈ K[s, t] such that

ĥ1(s, t)f(s, t) + ĥ2(s, t)g(s, t) = er
′
.

Let s0 ∈ K such that fd(s0)gd(s0) 6= 0. Then f(s0, t) and g(s0, t) have no
common zero: If f(s0, t) and g(s0, t) have common zero t0, then gd(t0) = 0. Since
g(s0, t0) = 0, gd(s0)gn(t0) = gn(s0)gd(t0) = 0 and we get that gn(t0) = 0 or
gd(s0) = 0. Contradiction.

On the other hand, we have that either deg fn > deg fd or deg gn > deg gd. We
can suppose, without loss of generality, that deg fn > deg fd. If deg gn > deg gd,
we get D(s0) 6= 0 since gcd(f(s0, t), g(s0, t)) = 1.

For deg gn < deg gd, we have that D(s0) 6= 0, if g(s0) 6= 0. Suppose, g(s0) = 0
and D(s0) = 0. Then there exists θ in some algebraic extension of K(t) such
that f(s, θ) = 0 and g(s, θ) = 0. Observe that θ 6∈ K, otherwise we will get that
f(s) = f(θ) ∈ K. In particular, θ 6= s0 and gn(θ)gd(s0) = 0. This implies that
gn(θ) = 0, which is not possible. So if deg gn < deg gd, we also get that D(s0) 6= 0.

Finally, for deg gn = deg gd, we can take ĝ = g + a such that deg ĝn < deg ĝd.
Then we are in the same situation as before. Moreover, (f, g) and (f̂ , ĝ) have the
same D-resultant, up to multiplication by a non-zero constant.

To prove the converse, we can assume that K is algebraically closed, since K[t] ⊂

K[f(t), g(t)] implies K[t] ⊂ K[f(t), g(t)]. Now suppose that D(s) =
r∏
i=1

(s− si)ei

where fd(si)gd(si) = 0.
Since D(s) 6= 0, K(f(t), g(t)) = K(t). By hypothesis, (f, g) is normal; then

each singularity can be written as (f(s0), g(s0)). By 3. we get that the irreducible
plane curve m(X,Y ) = 0 has no singularities. So for each maximal ideal η of the
ring A = K[X,Y ]/(m)(' K[f, g]), Aη is a discrete valuation ring. Hence by [AMc,
Theorem 9.3], A is integrally closed. So K[f, g] is integrally closed in K(t). Since
t is obviously integral over K[f, g] it follows that t ∈ K[f, g], whence K[t] ⊂ K[f, g]
as desired.

Corollary 3.2. Let f(t) = fn(t)
fd(t) and g(t) = gn(t)

gd(t) in K(t) be non-constant rational
functions and let m ∈ K[X,Y ] be a minimal polynomial of (f, g) and C = V (m)
the associated parametric curve. We have:

1. If (f, g) is a faithful parametrization, then K[t] ⊂ K[f, g] if and only if C has
no singularities and (f, g) is normal.

2. We can find the singularities of the parametric curve C by computing the
D-resultant.

Proof. Via the D-resultant of f, g, we can decide if the parametrization is faithful
and in the negative case we can compute a faithful one (see Remark 1.6).

By Theorem 3.1 we can compute every singularity of the form (f(s0), g(s0)).
By Proposition 1.5 there exists at most one singularity that cannot be written as
above. Moreover, we know exactly which one it is.

Finally, we present some examples which show that in Theorem 3.1 we cannot
omit any hypothesis. The first example shows that in part 3(b) we cannot avoid
(f, g) to be normal:

Example 3.3. f = −5t−28
t2 and g = t2

−11t2+38 is a parametrization ofm = 444X2Y 2

+2128XY +23408XY 2 +784+16298Y +84414Y 2. It is not normal since (0,−1/11)
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is a point of the curve, but cannot be written as (f(t0), g(t0)). Moreover, D(s) =
190s2 and fd(0) = 0, but K[t] 6⊂ K[f, g].

In the next example, we will first see that there exist parametric curves with
a singularity which cannot be produced via D-resultant, and secondly that the
behaviour of the roots of D(s) is unpredictable.

Example 3.4. Let f = −50t3−12t2−18t+31
−62t5+77t4+66t3 , g = t3−47

−61t5+41t4−58t2−90t . Their minimal
polynomial m has a singularity in (0, 0), but gcd(fn, gn) = 1. The D-resultant of
f = t2/(1 + t) and g = t3 is d = s2(1 + s+ s2). s1 = 0 gives the singularity (0, 0);
the other roots s2, s3 give the same singularity (−1, 1).
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