
Proceedings of the 7th Asian Control Conference,
Hong Kong, China, August 27-29,2009

FrC6.6

Structure-based Determination of Equilibrium Points of Genetic
Regulatory Networks Described by Differential Equation Models

Graziano Chesi

Abstract-A fundamental problem in systems biology con­
sists of determining the equilibrium points of genetic regulatory
networks, since the knowledge of these points is often required
in order to investigate important properties such as stability.
Unfortunately, this problem amounts to computing the solutions
of a system of nonlinear equations, and it is well known that
this is a difficult problem as no existing method guarantees to
find all solutions. This paper addresses this problem for genetic
regulatory networks described by differential equation models.
By exploiting the structure of these networks, it is shown that
one can derive an iterative strategy for progressively singling
out the equilibrium points, which does not rely on the solution of
any nonconvex optimization problem, and which guarantees to
find all equilibrium points. Some numerical examples with small
and large sizes (up to 24 state variables) illustrate the benefits
of the proposed strategy with respect to existing methods, which
often are unable to provide the sought equilibrium points.

I. INTRODUCTION

Genetic regulatory networks explain the interactions be­
tween genes and proteins to form complex systems that
perform complicated biological functions. Basically, there
are two types of genetic regulatory network models, i.e.,
the Boolean model (or discrete model) and the differential
equation model (or continuous model). In Boolean models,
the activity of each gene is expressed in one of two states, ON
or OFF. In the differential equation models, the variables are
continuous values that describe the concentrations of gene
products, such as mRNAs and proteins. See for example [1]­
[7] and references therein.

This paper focuses on genetic regulatory networks de­
scribed by differential equation models. In these models
the dynamics of each concentration is expressed through a
function of all concentrations of the system. This function
typically consists of two parts: a linear part which defines the
natural decay rate of the concentration itself, and a nonlinear
part which defines the influence on this concentration by
all the other ones. The nonlinear part contains saturation
functions, such as the Hill functions, which are combined
for example via sums or products.

A fundamental problem in the study of genetic regulatory
networks consists of determining the equilibrium points,
i.e. the amounts of concentrations for which the regulation
process results complete. This is a necessary step for several
important investigations, concerning for instance stability,
robustness, and disturbance rejection, see for instance [8]­
[14]. Unfortunately, computing the equilibrium points of
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genetic regulatory networks is a difficult problem because
these systems contain saturation functions, and hence the
calculation of the equilibrium points amounts to solving a
system of nonlinear equations. Indeed, no existing method
guarantees to find all the solutions of such a system, except
in the case of polynomial equations, which however can
be addressed only for small degrees and small number of
variables. The reader is referred to the works [15], [16] for
general techniques, and to [17]-[20] which describe LMI­
based methods for solving systems of polynomial equations.
See also Section IV for some numerical examples.

In this paper we address the problem of computing
equilibrium points of genetic regulatory networks described
through differential equation models. We consider a general
model which includes various special cases. The contribution
consists of a recursive algorithm which holds the following
properties. First, at each recursion the algorithm provides a
region containing all equilibrium points, i.e. no equilibrium
is lost. Second, this region progressively shrinks, i.e. the con­
servatism does not increase. Third, this region asymptotically
converges to the set of equilibrium points, i.e. all equilibrium
points are found. The proposed algorithm is illustrated and
validated through some numerical examples, with synthetic
and real genetic regulatory networks, where it is shown that
existing methods for solving systems of nonlinear equations
may be unable to compute the sought equilibrium points.

The paper is organized as follows. Section II introduces
some preliminaries on genetic regulatory networks. Section
III describes the proposed strategy. Section IV presents
some illustrative examples. Finally, Section V reports some
concluding remarks.

II. PRELIMINARIES

First of all, let us introduce the notation used throughout
the paper:

- JR.: space of real numbers;
- JR.+: {x E JR.: x ~ O};
- On: null vector of size n xl;
- In: identity matrix of size n x n;
- ei: i-th column of the identity matrix (with size spec-

ified by the context);
- X': transpose of vector/matrix X;
- II X II: 2-norm of vector/matrix X;
- TF: transcription factor.
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(1)

The genetic regulatory networks considered in this paper
are described by the differential equation model

{

~i(t) = -aimi (t) + bi(Pl(t), ... ,Pn(t))
Pi(t ) == - c.p, (t) + dim, (t )

i == 1, ... ,n

where m, (t) ,Pi(t) E JR.+ are the concentrations of mRNA
and protein of the i-th gene, ai, c; E JR.+ are the degradation
rates, and d; E JR.+ expresses the effect of m, (t) on Pi(t).
The function b,(PI (t), ... ,Pn (t)) is the regulatory function
of the i-th gene, which is generally a nonlinear function of
the variables PI(t), ... ,Pn (t) such that:

1) b,(PI (t), ... ,Pn (t)) E JR.+ for all PI(t), ... ,Pn (t) E

JR.+;
2) bi(pl(t), ... ,Pn(t)) is bounded for all Pl(t), ... ,Pn(t)

such that Ilpl (t) II, ... , IIPn(t) II are bounded;
3) b,(PI (t), ... ,Pn (t)) is either monotonically increasing

or monotonically decreasing with Pj (t) for all j ==
1, ... .n.

For instance, the function b,(PI (t), ... ,Pn (t)) can be
expressed as the sum of functions of a single variable [10],
[11], [14], i.e.

n

bi(p1 (t ), ... ,Pn (t )) == L ai ,j bi,j (pj ( t )) (2)
j=1

where ai,j E JR.+ is the contribution of TF j to the transcrip­
tional rate for gene i, and bi,j : JR.+ -----+ JR.+ is a monotonic
function. Alternatively, the function b,(PI (t), ... ,Pn (t)) can
be expressed as the product of the functions bi,j(Pj (t) ), i.e.

n

instance, in the case of regulatory functions with Hill form,
the function f (Pj (t)) is given by

Pj (t)H
f(pj(t)) = f3H + pj(t)H (6)

where j3 E JR.+ and H is an integer known as Hill coefficient.
In order to describe the results of this paper in a more

compact form, we introduce a matrix version of the model
(1) according to

{
m(t) = Am(t) + b(p(t)) (7)

jJ(t) == Cp(t) + Dm(t)

where m(t) == (ml(t), ... ,mn(t))' E JR.n and p(t) ==
(PI (t), ... ,Pn (t))' E JR.n are the vectors containing the
concentrations of mRNA and protein, A == diag( -aI,
... , -an) E JR.nxn and C == diag( -Cl, ... , -cn) E JR.nxn
are diagonal matrices containing the decay rates, and D ==
diag(d1 , ... , dn) E JR.nxn is a diagonal matrix express­
ing the effect of m(t) on p(t). The function b(p(t)) ==
(b1(p(t) ), ... , bn (p(t) ))' is a nonlinear function representing
the regulation of the process assumed to satisfy the following
conditions:

1) b(p(t)) E JR.+- for all p(t) E JR.+-;
2) Ilb(p(t))11 is bounded for any p(t) such that IIp(t)11 is

bounded;
3) b,(p(t)) is either monotonically increasing or mono­

tonically decreasing with Pj (t) for all j == 1, ... , n.

The problem addressed in this paper consists of determin­
ing the equilibrium points of (7), i.e. the solutions of the
system of nonlinear equations

f (Pj (t) ) if TF j is an activator
of gene i

bi,j(pj(t)) == 1 - f(pj(t)) if TF j is a repressor
of gene i

I otherwise
(4)

where I E JR. is a constant depending on the model, in
particular I == 0 for the case considered in (2), and I == 1
for the case considered in (3). The function f (Pj (t)) is a
saturation function, i.e. a function satisfying the following
properties:

bi(p1 (t ), ... ,Pn (t )) == ai II bi,j (pj ( t )) (3)
j=1

where ai E JR.+ represents the transcriptional rate for gene
i.

Each function bi,j(Pj (t)) in (2) and (3) is typically ex­
pressed as

(9)

(8)

Let us start by observing that the m-component of any
solution of (8) is related to its p-component by the relation­
ship Cp + Dm == On where C, Dare nonsingular diagonal
matrices with C negative definite. This means that (8) can
be equivalently rewritten as

{

-AD-ICp + b(p) == On

m == -D-1Cp

P E JR.+-

{

Am + b(p) == On

Cp+ Dm == On

m,p E JR.+-

III. EQUILIBRIA COMPUTATION

In this section we describe the proposed algorithm.
Specifically, in Theorems 1 and 2 we introduce two
preliminary functions and we describe their properties.
Then, in Theorem 3 we describe the main algorithm to be
used to compute the sought equilibrium points.

Therefore, in the sequel we will focus on the computation
of the set of vectors P fulfilling (9), which we indicate as
follows:

(5)

f : JR.+ -----+ [0, 1]
f (Pj (t)) increases as Pj(t) increases

f(O) == 0

limx~oof(x) == 1

Hence, a saturation function is an increasing function be­
tween 0 and 1 defined for positive value of the variable. For (10)
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Theorem 1: Let H be the rectangle defined by

H == {p E IR~: Pi E [Pi,-,Pi,+] Vi == 1, .. . ,n} (11)

for some Pl,-,Pl,+, ... ,Pn,-,Pn,+ E IR+, and let us define
the map A(H) as

A(H) == {p E IR~: Pi E [qi,-, qi,+] Vi == 1, ... , n} (12)

where ql,-, ql,+, ... , qn,-, qn,+ E IR+ are computed accord­
ing to

qi,- max {Pi,- , mine~C-lDA-1z } (13)
zEZ

qi,+ min {Pi,+ , maxe~C-lDA-1z } (14)
zEZ

where Z is the set given by

Z == {b(p): Pi E {Pi,-,Pi,+} Vi == 1, ... ,n}. (15)

Then, the following properties hold:

1) Property P1: A(H) ~ H;
2) Property P2: P E H n E ~ P E A(H);
3) Property P3: H n A(H) == 0 ~ H n E == 0.

Proof. First, the property PI holds because from (13)-(14)
one has

- Step 3: if A(H(k)) is a point, set B(H) == A(H(k))
and exit.

- Step 4: if H(k) == A(H(k)), set B(H) == H(k) and exit.
- Step 5: set H(k+l) == A(H(k)), k == k + 1, and go to

2.

Then, the map B(H) returns either a rectangle, a point, or
the empty set. Moreover, the following properties hold:

- Property P4: B(H) ~ H;
- Property P5: P E H n E ~ P E B(H).

Proof. First of all, let us observe that B(H) can be either the
empty set (see Step 2), a point (see Step 3), or a rectangle
(see Step 4).

Then, the property P4 follows from the fact that B(H) is
a sequence of applications of the map A(·) for which the
property PI ensures that the output is included the input.

Lastly, the property P5 holds since B(H) is either a
sequence of applications of the map A(·) for which the
property P2 ensures that no point lying inside the set H n E
can be lost, or the empty set in the case that

(21)

which however guarantees the absence of points of E in
H(k) (and hence in H) due to the property P3. D

and H contains a vector P of E, then it would follow from
the property P2 that P belongs to A(H), hence contradicting
the assumption. Therefore, the theorem holds. D

qi,- 2:: Pi,- and qi,+ :::; Pi,+ Vi == 1, ... , n. (16)

Second, the property P2 holds because, from the monotonic­
ity property of b,(p) with respect to each component of P, it
follows that

P E H ~ bi(p) E [minzi,maxzi]' (17)
zEZ zEZ

Moreover, from the definition of E it follows that

P E e ~ e~C-lDA-1b(p) == Pi. (18)

Let us observe that the map A( .) requires trivial
computations, specifically the evaluation of a linear function
at some given points. From the map A(·) we define the map
B(·) in the following theorem, which provides also some
key properties of this map.

The map B (.) transforms a given rectangle via a sequence
of applications of the map A(·), and returns a set which
can be either a rectangle, a point, or the empty set. By
exploiting the map B (.) we derive the algorithm for the
computation of the sought equilibrium points as explained
in the following result.

Hence, the proposed algorithm for computing the equi­
librium points of (7) is launched as C(IR+), which means
that the positive octant IR+ is used as initial rectangle H.
In fact, IR+ is clearly guaranteed to contain all solutions of

Theorem 3: (Algorithm for equilibrium points computa­
tion) Let H be a rectangle in (11) and let us define the map
C(H) as follows:

- Step 1: If B (H) is either the empty set or a point, then
set C(H) == B(H) and exit.

- Step 2: Divide the rectangle B(H) in 2k rectangles
HI, ... , H2 k by taking the middle point on each side
of B(H) with nonzero length.

- Step 3: Set C(H) == Ui=l 2 k C(Hi ) and exit.,...,
Then, the algorithm to be launched in C(IR+), for which the
following properties hold:

- Property P6: the positive octant IR+ is progressively
shrunk without losing any point of E;

- Property P7: the set provided by the algorithm asymp-
totically converges to the set E.

Proof. The property P6 holds because B(·) preserves any
vector in £ according to the property P5, moreover from the
property P4 one has that the set provided by the algorithm
cannot increase. Then, property P7 holds because no portion
of IR+ is lost in the division of each rectangle B(H). D

(20)H n A(H) == 0

Consequently, since e~C-lDA-1 Z is linear in z, one has
that

P E H n e ~ qi,- < Pi and qi,+ 2:: Pi. (19)

Lastly, the property P3 holds because, if one supposes for
contradiction that

Theorem 2: Let H be a rectangle defined in (11), and let
us define the map B(H) as follows:

- Step 1: set H(O) == Hand k == 0, where k denotes the
iteration number of this map.

- Step 2: if u» nA(H(k)) == 0, set B(H) == 0 and exit.
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(9). The initial rectangle JR.+- is passed to the map B (.). If the
output of this map is either the empty set or a point, then the
algorithm stops as it is guaranteed there are no equilibrium
points inside the considered rectangle. Otherwise, the output
is a rectangle, which is then divided in smaller ones, and then
passed to the map B (.) itself. As explained by the properties
P6 and P7, the set obtained by the algorithm is guaranteed
to contain all points lying inside E and to asymptotically
converge to E itself.

IV. ILLUSTRATIVE EXAMPLES

In this section we present some numerical examples in
order to illustrate the main steps and the usefulness of the
proposed approach. For conciseness, in these examples we
report only the p-component of each equilibrium point, being
the m-component directly given by

(22)

according to (9). The computational time for all these exam­
ples ranges from few seconds to less than 30 seconds (this
computational time is relative to an implementation of the
proposed algorithm with Matlab 7 on a personal computer
with Pentium IV 2.2 GHz, 2 GB RAM, Windows XP). The
dependence on the time t of the model (7) is omitted for
ease of notation.

A. Example 1

Let us start by considering the genetic regulatory network
described by

ml -0.9m l + f(PI) + 0.8(1 - f(P2))

m2 -0.5m2 + 2(1 - f(PI))

PI -PI + ml

P2 -2P2 + m2

where f (.) is the saturation function given by

2
f(Pi) == - arctan(p;).

7r

This genetic regulatory network is characterized by the fact
that TF 1 is an activator of gene 1 and a regressor of gene
2, and TF 2 is a regressor of gene 1. The problem consists
of determining the equilibrium points of this system, i.e. the
solutions of the system of nonlinear equations (8).

First of all, let us rewrite this system as in (7). This can
be done by defining the vectors

FrC6.6

Then, let us use algorithm proposed in Theorem 3. At
the first recursion we obtain that the positive octant JR.t is
shrunk to the rectangle shown in Figure 1a. At the second
recursion, the rectangle previously found is divided in four
equal rectangles, one of which is shown in Figure 1b, another
one shrinks to the equilibrium point shown in the same
figure, and the other two are discarded via the map B (.) at
its Step 2. At the fifth recursion, another equilibrium point
is found as shown in Figure 2a, and only one rectangle is
left. Lastly, at the ninth recursion the last equilibrium point
is found as shown in Figure 2b. We hence conclude that the
set E in (10) is given by

e == {( 1.626) (1.000) (0.162)}
0.460 ' 1.000 ' 1.967 .

For comparison purpose, we attempt to solve the same
problem by using existing methods. We use standard func­
tions of Matlab for solving systems of nonlinear equations
(such as the function "solve"), and we obtain one equilibrium
point only, which is found by using iterative techniques such
as Newton's method. Indeed, it is worth to remark that no
existing method guarantees to find all solutions of a system
of nonlinear equations as explained in Section I.

B. Example 2

Here we consider a genetic regulatory network with 6 state
variables described by

ml -0.17m l + 0.73f(p2)(1 - f(P3))

m2 -0.8m2 + 0.95(1 - f(P3))

m3 -0.52m3 + 0.58(1 - f(PI))

Pi -Pi + m; Vi == 1,2,3

where f (.) is the saturation function given by

This genetic regulatory network is characterized by the fact
that TF 1 is a regressor of gene 3, TF 2 is an activator of
gene 1, and TF 3 is a regressor of genes 1 and 2.

We proceed as in the previous example, and find that the
set E in (10) is given by

and the regulation function

the matrices

A

C

D

diag( -0.9, -0.5)

diag(-l, -2)

diag(l, 1)

{ (
3.246) (0.461) (0.166)}E == 1.188, 0.527 ,0.366 .
0.000 0.902 1.085

For comparison purpose, we attempt to solve this problem
by using existing methods as done in the previous example,
and we find again that only one of the three solutions is
obtained.

1366



7th ASCC, Hong Kong, China, Aug. 27-29 , 2009 FrC6.6

•

1.4

1.6

1.8

1.8

1.8

1.6

1.6

1.4

1.4

1.2

1.2

D

0.6 0.8 1

Pi
(b)

•

0.6 0.8 1

Pi
(a)

0.2 0.4

0.2 0.4

•

oL-_ -'-----_ --'----_ --'---_ ---L-_ ---'---_ ----'--_ -----'-_ -----L_ -----'_ -----!
o

1.6

0.6

0.4

1.8

1.4

1.2

0.2

0.8

0.6

0.2

0.4

0.8

1.2

~ 1

~ 1

1.8

1.6

1.4

1.2

N 1
~

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Pi
(a)

•
1.8

1.6

1.4

1.2

N 1
~

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Pi
(b)

Fig. I. Example 1: (a) first recurs ion, IRt is shrunk to a rectangle; (b)
second recursion , an equilibrium point is found (denoted by the "*" mark).

Fig. 2. Example 1 (continued): (a) fifth recursion , another equilibrium
point is found ; (b) ninth recursion , the last equilibrium point is found.

C. Example 3

In this example we consider a genetic regulatory network
with 10 state variables, specifically

mi - 2m i + 0.5!(ps)
mz - m z + 0.1(1 - !(pz)) + 0.4(1 - !(P4))

m 3 - 0.6m 3 + 0.2!(pd + 1.1(1 - !(P4))

m 4 - m 4 + 0.5(1 - !(P3)) + 1.5!(P4)

ms - 2m s + 0.3!(pz) + 0.3(1 - !(Ps))

iJi - Pi + m; Vi = 1, . .. , 5

and the saturation function

2
!(Pi) = - arctan(p;) .

tt

This genetic regulatory network is characterized by the fact
that TF 1 is an activator of gene 3, TF 2 is an activator of
gene 5 and a regressor of gene 2, TF 3 is a regressor of gene

4, TF 4 is a regressor of genes 2 and 3 and an activator of
gene 4, and TF 5 is an activator of gene 1 and a regressor
of gene 5.

By using the algorithm proposed in Theorem 3 we con­
clude that there are three equilibrium points, in particular the
set £ in (10) is given by

£ {(0 .004, 0.196 , 0.452 ,1.566,0.152)',

(0.004,0.313,1.003,0.928,0.157)',

(0.005,0.483,1.821 ,0.104, 0.169)'} .

Again, by using existing methods as done in the previous
examples, we find that only one of the three solutions is
obtained.

D. Example 4

Lastly, let us consider an example with larger dimension,
in particular the genetic regulatory network with 24 state
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variables given by

m1 -1.45m1 + 0.5(1 - f(P2)) + 0.8f(p3)

m2 -1.70m2 + 0.5(1 - f(P3)) + 0.8f(p4)

m3 -1.95m3 + 0.5(1 - f(P4)) + 0.8f(ps)

m10 -3.70m10 + 0.5(1 - f(P11)) + 0.8f(p12)

mIl -3.95m11 + 0.5(1 - f(P12)) + 0.8f(p1)

m12 -4.20m12 + 0.5(1 - f(P1)) + 0.8f(p2)

iJi -Pi+mi Vi==1, ... ,12

where the saturation function is the Hill function

P~
f(Pi) = 1 +pr

This system is characterized by a cyclic structure where gene
i has TF i + 1 as regressor and TF i + 2 as activator.

By using the algorithm proposed in Theorem 3 we find
that the set E in (10) has only one point, specifically

e {(0.345, 0.294, 0.256, 0.227, 0.204, 0.185,

0.170,0.156,0.150,0.135,0.127, 0.119)'} .

It is interesting to observe that also in this case we cannot
reach the same conclusion by using existing methods, though
the equations in the system (8) are rational in this case
(and, hence, (8) can be equivalently rewritten via polynomial
equations). In fact, iterative techniques such as homotopy
methods do not guarantee to find all solutions, which means
that one cannot conclude that a found solution is unique
or not. Then, analytical techniques such as the resultants
method provide the sought solutions as roots of a one­
variable polynomial obtained via variables elimination, but
the degree of such a polynomial can be up to the degree
of the polynomial equations to the power of the number of
variables in the system (8), which is given in the present case
by 1612 ~ 2.8 . 1014 : in fact, the degree of the polynomial
equations is 16 since the equations in (8) are sums of two
rational functions of degree 8, and the number of variables
is given by n which is equal to 12. And, clearly, the roots
of such a polynomial cannot be found.

V. CONCLUSION

We have proposed a strategy for determining the equi­
librium points of genetic regulatory networks described by
differential equation models. This is obviously an important
problem in the area of genetic regulatory networks, as the
knowledge of the equilibrium points is often required in order
to investigate key properties such as stability, robustness, and
disturbance rejection. Unfortunately, as shown through some
numerical examples with small and large scales, existing
methods for solving systems of nonlinear equations often
fail in the attempt of determining the equilibrium points,
which is not surprising since it is well known that no
systematic solution exists for this problem. Instead, the
proposed strategy guarantees to find all equilibrium points,
moreover the computational time is indeed small even for a
genetic regulatory network with 24 state variables.

FrC6.6

It is hence expected that the proposed strategy may be a
very useful tool in the important area of systems biology.
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