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ABSTRACT In this paper, the discrete probability density
function (pdf) of the average aperiodic cross-correlation
function (ACF) is modeled by a triangular function to simplify
the evaluation of the bit-error-rate (BER) performance. Both
the pdf of ACF for random binary sequence and the pdf of ACF
for Gold sequence were employed to examine the simplified
lincar model. The pdf of multiple-access inteference (MAI)
component obtained from probablistic approach was employed
to investigate the discrepancy among the approximations. It
has been shown that the sum of squarc error between the
average pdf of the MAI component for Gold sequence and that
of the simplified linear model was 0.0683% which was
negligable, and thus the simplified linear model can be used to
simplify the evaluation of the BER performance of an
asynchronous direct-sequence spread-spectrum multiple-access
(A-DS/SSMA) communication system.

I. INTRODUCTION

In asynchronous direct-sequence spread-spectrum multiple-
access (A-DS/SSMA) communication systems, the prime factor
that governs the bit-error-rate (BER) performance of the
systems is the multiple-access interference (MAI) which
depends on the magnitudes of aperiodic cross-correlation
function (ACF) between any two pseudo-noise (PN) user

sequences in a set. The computation of the MAI invoives C,

cross-correlation functions, where | C, = /1!/[/*!(1171')!], and K

is the number of users in the system. Such a computation
becomes significant when the spreading period N is large.
Thus, a simplified linear model for the discrete probability
density function (pdf) of the average ACF is proposed to
alleviate the computational complexity. The pdf of the MAI
component of a binary phase-shift-keying (BPSK) A-DS/SSMA
communications system is employed to verify the model.

The pdf of the average ACF deploying six dilferent sets of
well-known PN sequences were examined in Section II,
respectively. In Section III, the simplified linear model for the
ACF was introduced, including the pdf of the ACF for random
binary sequence. The BPSK A-DS/SSMA communication
system was employed to examine the pdf of the MAI
component in Section IV. In Section V, the simplified linear
model was analyzed and compared with the pdfs using Gold
sequences and random binary sequence, respectively.

IL. Tiie ACF OF PN SEQUENCES
For a set.Y of K binary PN sequences. the ACF between any

two sequences X, and y in the sct. where x = (x, .x .x, .---.x“)
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and v = (_vu.yl,,vz,--gym) are two sequence vectors of period
N, 1s given by [6]

N-t-

>xy,. 0<IsN-1

i=0

N-1+1
D5

i=0

0. = N

c, )= 1-N </<0, ()

The pdf's of the six different sets of PN sequences are obtained
by taking the frequency of the magnitude of ACF for all
possible combinations of sequence-pairs in a set, as shown in
Figure 1 where N = 63. Observe that all the pdf 's resemble a
triangular function.
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Figure 1. The pdf of ACT for different sets of PN sequence of N = 63.

Table 1 depicts the statistical properties of the pdf's. Note that
the highest frequencies of the pdf's are located at the vicinity of
the zero-value of ACF. The magnitudes of the minimum and
maximum values of ACF are marginally the same except for
the GMW scquence. Based on the observation above, the pdf of
average ACF can be approximated by a symmetrical triangular
function about the origin.

N =63 Gold |small se | large set| dual- | GMW | No
s Kasami | Kasami | BCH

total number of B .

sequences 65 8 520 64 12 8
maxC, (1) 20 tis| 23| 18| 26| 15
?H‘Cw(/) 22| a7 2a| as| 33| 7
max. value

of pdf =4 0.114 | 0.0811 1 0.0948 10.0880 |0.0924 | 0.0749
at C_ (1) B 3 - 0 o 4

Table 1. The statistical properties of the pdfl of ACF for different sets of PN
sequences.



II1. DiscreTE PDF oF ACF
A, Simplified linear mode!

Suppose that the pdf of ACF can be approximated by a
discrete symmetrical triangular function given by

1

Po{C, (D=2} =4 (C+1)

fC+1-ff] Vi< C‘ o

0., otherwise

where € = maxC, (/) is a positive integer less than N -2 and
N

its frequency is greater than 0. The value of C can be found

from Table 1. For instance, the pdf of ACF is symmetrical

about z = -1 for the Gold sequence of N = 63, and C = 20.

When C= 20, the value

largest of discrete pdf,

h=l/(é+l):0,0476, as the total cumulative probability is
equal to 1. This value of # is much smaller than # = 0.114
found in Table 1. Thus, another approach to find a more

appropriate value of C is shown as follows. Assume that the
simplified linear model is symmetrical about the origin (i.e..
z=0), the first moment of the random variable (rv) z from
equation (2) can be easily derived as,

E{c,,(h}=0. €))

Xy

where E{-} denotes the expectation. The second moment of z is
given by

E{C] (1)} = C‘(@+2)/6, @)
and the covariance is
é(é+ 2)(6‘° +2C+ 2)

E{z-z'}:— L forzzz'. 3)

15(C+1)

Higher order of moments of z about the origin can be easily
derived into close-form expressions as the moments consists of

¢

only the terms in the form of Zz' . According to the theory of
2=

algebra, a close-form solution can be obtained when both z and

r are integers.

B. Random Binary Sequences
For a random binary sequence x of period V, the probability
ofalora-lofeachbit x  vi=01--- \-1in the sequence

is equally probable. The N - / terms of x,v_, e{-1+1} are
included in the Cw(/), wherc ¥ is another random binary
sequence. By assuming N I'sand N  -1'sin the N -/ terms,

the value of N, can be evaluated in terms of C, (/) as

N, :[N—I+CJ_}_(/)]/2. The pdf of ACF for random binary

sequences becomes

P{C.()=2}=— f[L(N_' ] L e

AN-1 SFAF(N=1+2) ) 2™

n n!
where =
r ri(n—-r)

The summation term in (6) only takes on values of / when

(N=-/+z) is even. The computation of the moments of the

ACF about the origin for random binary sequence is not as
straight forward as those using the linear model. Figure 2
shows the pdf of ACF of random binary sequences for &' = 63.
The sum of square error between the pdf of ACF for Gold
sequence and that of random binary sequence is 0.260%: while
the sum of square error between that of Gold sequence and the
simplified linear model is 0.754% which is larger than the
former value.
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Figure 2.  The pdf of ACF for Gold sequence, random binary sequence and the
simplified linear model for N = 63.

From [5], the first and second moments of ACF are given by
E{C ,()}=0,
E{C?, (N} =~ -]l M

E{C,()C (I)}=0.v 1=l

However, higher order of moments of ACF using random
binary sequences cannot be derived into close-form expressions.
The advantage of using the simplified linear model is that the
statistics of the ACF can be obtained in a relative simple

manner. In order to find the suitable value of C for equation

(2), equate E{rw} of random binary sequence to that of the

simplified ACF model as follows. The cross-correlation

parameter defined in [4], r, . for a BPSK A-DS/SSMA system

is given by
N-1

r, = 22 ()+C, (N, (1+D). (8)

I=1-N

It can be easily shown that
E {r‘r‘a:\dmn} =2 N: ( 9 )
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for random binary sequences, and
E{r'r}= (C+2)2N -1/ (10)

for the simplified linear model. An appropriate value of ¢
used to approximate random sequence can be obtained by
equating equation (9) to (10), viz;

C:[J3N+1-1Jztﬁ—1j, (11)

where LOLJ denotes the integer part of real number o. The

maximum value of pdf becomes hzl/ I.VBN J Also by

applying (11) with N =63, C = 12 and h = 0.077 as shown in
Table 2. Observe that as the integer C is the truncated real

number obtained from (11), E{r:_:"} is smaller than the cross-

correlation parameter for Gold sequence, E{rf:"'}, and also

Figure 2 shows the pdfs of ACF

employing Gold sequences, random binary sequences and the
simplified model for N =63, respectively. The maximum
value of pdf, 4, using the simplified linear model of (2) is the
smallest. Since the simplified model is a linear function, the
square error between the pdf of Gold sequence and the pdf of
simplified linear model is larger than that of between Gold
sequence and random binary sequence. The random binary
sequence is thus superior to the simplified linear model in
approximating the pdf of the ACF for Gold sequences.

smaller than E{rx':m“}.

R L s B - e W=

63 12 0.190 7006 0.077 7938 7818
2551 26 0.102 123517 0.037 130050 130088

Table2. The E{’x,} of Gold sequences using different approaches.

IV. SYSTEM MODEL

The system model of a BPSK A-DS/SSMA K-user system
over an AWGN channel is deployed to examine the proposed
simplified linear model. The MAI of the A-DS/SSMA system
is given by [4] as

MAI:T‘[F/EiJ,,, (12)
b

where P is the common signal power and 7 is the data bit
duration. The MAI component. /, . is the interference between
k-th and i-th users which is given by

I1,,=N"4, coso,, (13)
where N is the number of chips per user data bit and the phase
angle rv ¢, is assumed uniformly distributed over [0, 27).

The parameter, 4, , is the cross-correlation parameter between
k-th and /-th users given by
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where s, =1, -y,7 and the chip duration 7. =7/N. The
relative time delay between the &-th user and intended i-th user
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is given by v, =|t,/7.|. The vector (bll” bé") represents a
pair of consecutive data bits of the k-th user. The functions

R,(s) and }i’w(s) are the partial auto-correlation functions of

the chip waveform as defined in [1]. The parameters [6].

0,,()andb, () denote the even and odd periodic cross-
correlation functions (PCF) which are defined by
0,,()=C_(I)+C (/-N), and (15)

Ly

6,,(=C,(H-C,(-N) (16)

The random variables, T, and s,, are independent uniformly

distributed over [0, 7') and [0, T ), respectively. The user data
is assumed equally probable. i.e.. P{bf“ = —l} = P{brf“ = 1} =
172. For PN sequence of rectangular waveform. ‘P(r)=1 for
0<t<T and ¥(r)=0 otherwise. Consequently, the partial

auto-correlation functions R (s)=s and ﬁw(s') =T -s. The

1
pdf of v =cos¢ is given by p,(v)= (n,/l—yz) when |y] <1
and p,(v) =0 otherwise. Thus the MAI component, l,,.isa

rv distributed over [~1.+1]. As all the pdf's of each individual
rv in Equation (13) and (14) are known and independent. the
resultant pdf of /,, was obtained by means of convolution and
multiplication of the pdf's of each rv accordingly.

V. ANALYSIS ON THE PDF OF MAI COMPONENT

A, The PDF of MAI component for b([)” = bf:)
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Figure 3. The pdf of MAI component. 1, . assuming even PCF for Gold

sequence of N = 63.



Figure 3 shows the pdf of /,, of N = 63 for Gold sequence

k . .
when bo[ = bff). Four sequences are arbitrarily selected from

the set of Gold sequences as shown in Table 3. Observe that
the pdf are concentrated and gradually dispersed about the
origin. Figure 5 shows that the pdf of MAI component is
symmetric about -0.075 which is approximately equal to zero.

Table 4 depicts the mean and variance of /, . It was found that
the mean and variance of /,; for sequence-pairs (1.2). (1.3).

and (1,4) are the same. This implies that the pdf of 7, for any
sequence-pair in the set of Gold sequences are exactly the same.
It is due to the even PCF, 6, (), of Gold code is a 3-value
function [7] given by

Seq. No. 4 Gold sequences of N = 63
1 T1111101010110011011101101001001110001011110010100011000010000
2 11010001000010110010101001G011110000011011100110001 11010111111
3 001011000101001010010001000001 101 100001 10060001 1001000101011 11
4 10010101110111000010111001101110610001101001011000000101001 111
Table3.  Four sequences in the set of Gold sequences of N = 63.
Gold sequences 1 & 2 sequences 1 & 3
N=63 R N L N T N T
E{s,,} 9.70e-5 | 6.20e-5 | -1.14e4 | -850e-5
Var{1,,} 5.390e-3 | 8.811e-3 | 5.219¢-3 | 1.206e-2
E{J,,} over data -7.948¢-5 -9.098e-5
bit
Var{7,,} over 7.101e-3 8.726¢-3
data bit
(a)
Gold sequences 1 & 4 average
N=63 I A P N T S T
E{s,.} -9.70e-5 | -8.29e5 | -1.14e4 | -4.90e-5
var{1,,} 5.390e-3 | 9.321e-3 | 5.219e-3 | 6.769e-3
E{1 y } over data -8.992¢-5 -8.156e-5
bit
Var{/,,} over 7.355¢-3 5.994¢-3
data bit
(b)
Table 4. The mean and variance of MAI component. /. for Gold sequences of
N=63.
-1 for 2" —2"° —1 values of /,
0,,()= “1+2"" for 27 42" valuesof /. (17)
—1-2" for 277 27" values of /.

where # is the degree of primitive polynomials generating Gold
sequences of period N =2"-1. and e = | when » is odd. and
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e =2 when n is even. Figure 3 also illustrates the pdf of /7, by

deploying the pdf of 8, (/) from (17). Observe that the
difference between these two pdf's is marginal as the sum of
square error between these two pdf's is equal to 0.0763%.
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Figure 5.  The pdf of odd PCF for Gold sequence of N = 63.

As the random variables C, (/) and -C,, (/- N) are assumed
the pdf of the of

{C, (1)-C,, (/= N)}. is equal to the convolution of the pdf's of

independent. sum two n's

C,,(!) with that of —-C, (/- ~). The resultant pdf resembles

that of odd PCF employing Gold sequence as shown in
Figure 5.
0.0003
0.00025
convalutonon
; ACF
. 00002 |
g . convalution an
Y i simplifed model
@ 0.00015
g convoluton an
g 00001 andom bmary
sequency
000005
0.
I 2 2 =
Figure 6. The sum of square error between the pdf of odd PCF for Gold

sequence of N = 63 and three different schemes.

Figure 6 depicts the sum of square error between the pdf of the
odd PCF for Gold sequence and the resultant pdf by mecans of
convolution. which is equal to 1.698 %. Figure 5 also depicts
various pdf's obtained from the convolution of ACF's. Both
Figures 5 and 6 indicate that the difference between the pdf of
the simplified linear model and that of Gold sequence is small
as its corresponding sum of square error is equal to 0.835%.
The sum of square error between the pdf of Gold sequence and
that of random binary sequence obtained by convolution
method is equal to 0.266% which marks the lowest difference.

B.  The PDF of MAI component for bnm # b_{f'

(k)

Figure 7 shows the pdf of the average /,, for b, =6
Observe that the pdf's are of different shapes and symmetric

ikl

about the origin. There are peaks at each average /, interval



of 0.025 as it has been shown by Lehnert {1]. The pdf of /,
using the simplified linear model has small spread (i.e., small
variance of 1, ) about the origin which yields the highest peak

of pdf. The sum of square error between the average pdf and
the pdf of the simplified linear model is equal to 0.256%.
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Figure7. The pdf of MAI component, [/
sequence of N = 63.
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C. The PDF of MAI component averaged over data bit
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Figure 8.  The pdf of MAI component averaged over data bit for Gold sequence
of N=63.

Figure 8 gives the pdf of /, averaged over the data bit by

assuming P{b}“’ =—1} = P{bj” = 1} = 1/2. Observe that the

pdf's are of similar shape and symmetrically distributed about
slightly different values. It can be easily shown that these small
differences have negligible effect on the BER performance as
the sum of square error between the average pdf of the MAI
component for Gold sequence and that of the simplified linear
model is 0.0683%. Thus the simplified linear model can be
deployed to simplify the evaluation of the BER performance of
an A-DS/SSMA communication system.

V1. CONCLUSIONS

Based on the pdf patterns observed from six sets of well-
known PN sequences, a simplified linear model for the pdf of
ACF was introduced to simplify the evaluation of the BER
performance of an A-DS/SSMA communication system.
Although the comparison shows that the pdf of ACF using
random binary sequence is superior (o that of the simplified

linear model in modeling the pdf of the MAI component. 1,,.

but its higher moments and other statistics are relatively more
difficult to obtain when compared with the simplified model.

Furthermore. the difference between the pdf of /, using the
simplified model and that of Gold sequence is negligible. This
implies that the simplified model can be used to evaluate the
approximate BER performance. In addition, it was found that
the pdf of odd PCF can be obtained by the convoluting the rv's.
C, () with =C_(I-N).

vy

It means that C, (/) and

~C, (/- N} can be regarded as independent rv's. The benefits

of using the probabilistic approach to evaluate the BER
performance is to minimize the computation time. Arbitrarily
tight BER bounds [1,2] can be also obtained by employing this
method. With the supplement of the simplified linear model of
the pdf of ACF, the evaluation of BER performance of the A-
DS/SSMA communication systems employing different sets of
PN sequences can be further simplified.
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