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ABSTRACT 

This paper is a continuation of the previous work in which six-node triangular finite element models 

for the axial symmetric Helmholtz problem are devised by using a hybrid functional and the 

spherical-wave modes [1]. The six-node models can readily be incorporated into the standard finite 

element program framework and are typically ~50% less erroneous than their conventional or, 

equivalently, continuous Galerkin counterpart. In this paper, four-node and eight-node quadrilateral 

models are devised. Two ways of selecting the spherical-wave modes are attempted. In the first way, 

a spherical-wave pole is selected such that it is equal-distant from an opposing pair of element nodes. 

In the second way, the directions of the spherical-waves passing through the element origin are 

equal-spaced with one of the directions bisecting the two parametric axes of the element. Examples 

show that both ways lead to elements that yield very similar predictions. Furthermore, four-node and 

eight-node hybrid elements are typically ~50% and ~70% less erroneous than their conventional 

counterparts, respectively.  
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1.  INTROUDCTION 

A major challenge in finite element analyses of Helmholtz problems is that the solutions are spatially 

oscillating throughout the entire problem domains. This contrasts sharply with stress analyses in 

which high displacement gradients only occur in the stress concentration regions. While considerable 

computational saving can be realized by using graded meshes in stress analyses, the practice is not 

applicable to Helmholtz problems. Hence, the mesh requirement induces tremendous computing load 

when the wavenumber or the problem domain size increases. To better tackle the issue, a number of 

wave-based approaches that make use of the solution sets for the wave or Helmholtz equations have 

been proposed in the last decades. These include the Trefftz methods [1-9], the partition of unity 

method [10-13], the discontinuous Galerkin method [14,15], among others.  

      Among the Trefftz finite element models, the least-square models [2,3], the traction-frame 

models [4] and the displacement-frame models [1,6-9] can be noted. All Trefftz models possess their 

own discontinuous Helmholtz solution modes or, simply, discontinuous modes which satisfy the 

Helmholtz equation strictly. The least-square models are formulated by minimizing a weighted sum 

of the error norms of the boundary and continuity conditions on the discontinuous modes. The 

traction-frame and displacement-frame models are hybrid models which are also equipped with 

boundary variables equivalent to “traction” and “displacement” in elasticity [16], respectively, whilst 

the discontinuous modes can be condensed at the element level.  

      In the partition of unity finite element method, the plane-wave solutions are employed as the 

nodal enrichment functions [10-13]. The value of the Helmholtz variable at a node is the sum of 

plane-wave solutions which represent plane-waves propagating along different directions. Within the 

element, the Helmholtz variable is obtained by the conventional nodal interpolation. Thus, the system 

equation unknowns are the amplitudes of the plane-waves at the nodes but not the nodal value of the 

Helmholtz variable.  

      In the discontinuous Galerkin or enrichment method, the nodal interpolation is enhanced by 

enrichment functions as in the incompatible element formulation [14,15]. The enrichment functions 

induce discontinuity across the element boundary and enforcement of the continuity is implemented 

through Lagrange multipliers. While the enrichment functions can be condensed at element level, the 

multipliers which link the enrichments of adjacent elements enter the global equation. 

      This paper is a continuation of the previous work in which six-node hybrid “displacement-frame” 

models for the axial symmetric Helmholtz problem are devised by using the spherical-wave solution 

to construct the basis of the discontinuous modes [1]. Here, four-node and eight-node quadrilateral 

models are devised by using two different sets of spherical-wave modes. In the first way, a spherical-
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wave pole is selected such that it is equal-distant from an opposing pair of element nodes. In the 

second way, the directions of the spherical-waves passing through the element origin are equal-

spaced with one of the directions bisecting the two parametric axes of the element. Examples show 

that elements employing “equal-distant” and “equal-spaced” wave modes produce very similar 

predictions. The errors of the four-node and eight-node hybrid elements are respectively ~50% and 

~70% less erroneous than their conventional counterparts. In particular, the hybrid models can 

readily be plugged into any standard finite element program .  

 

2.  CONVENTIONAL AND HYBRID FORMULATIONS 

In the computational community of Helmholtz and related problems, the conventional finite element 

formulation is often known as the continuous Galerkin formulation which simply means that the C0 

node-based trial functions are used as the weight functions. The variational arguments for the 

conventional and the hybrid formulations to be employed have been presented in reference [1,6-9]. 

To save space, only a very brief summary will be provided here. This paper will restrict itself to 

bounded domains. Under the axial symmetry described by coordinates (r,z), Helmholtz equation is 

[1]:  
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and the element functional for the conventional formulation can be expressed as : 
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where ( ),r = ( )/r, ( ),z = ( )/z, Ae is the element area in the r-z-plane and u obtained by nodal 

interpolation is C0 across the element boundary. e
t  is the element boundary in the r-z-plane 

prescribed with the natural boundary condition , ,r r z zn u n u t   in which {nr,nz}T = {cosn, sinn}T is 

the unit outward normal vector to the element boundary, see Figure 1. The following elemental 

hybrid functional can be formed by introducing another Helmholtz variable g which is discontinuous 

across the element boundary to (2) as [1]:  
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where eA  denotes the complete boundary of Ae. It is trivial to see that second integral enforces the 

equality of the u and g over eA . When g satisfies (1), the above functional can be re-written as: 
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Figure 1. Cross section A of an axial symmetric body in the r-z-plane and the spherical-wave u = 

exp(iks)/(ks), where s
2 = r2 + (z - zs)2, from the pole S(0,zs). Over the boundary of A, n denotes 

the inclination of the outward normal vector to the r-axis. 

 

which involves only boundary integral. For a n-node element, the continuous variable u can be 

expressed as: 
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in which Ni = Ni(,) is the nodal interpolation function, (,) are the parametric coordinates and ui 

is the nodal value of u. Other terms are self-defined. The discontinuous variable g can be expressed 

as: 

 g = P  (6) 

where P is the shape function matrix and β is the vector of coefficients. With the last two equations, 

the functionals in (2) and (4) become 
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The conventional element matrix is k. As g and thus P satisfy (1), H and G can be computed by 
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domain integration as: 
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to avoid the asymmetry of H due to numerical integration error. As there is no continuity 

requirement posed on g, β for each element is independent of those for the others and variation of β 

in the hybrid functional leads to 

   Gd   or   1 Gd   (9) 

By condensing β, 
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The bracketed matrix product at the right-hand side of the expression gives the element matrix of the 

hybrid element.   

3.  DISCONTINUOUS SPHERICAL-WAVE MODES 

While the above section outlines the principle to formulate the hybrid elements, the shape functions 

or modes for the discontinuous g devised from the spherical-wave solution for axial symmetric 4-

node and 8-node quadrilateral elements will be presented in this section. The spherical-wave solution 

is: 

 exp( )S

S

ik
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S S
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where s
2 = r2 + (z – zs)2 is the square of distance between the source point S(0,zs) and (r,z), see 

Figure 1.   

      To formulate rank sufficient four- and eight-node element using spherical-waves, a minimal of 

four and eight wave modes from two and four poles are required, respectively. When a four-node 

square element with its edges parallel to the r- or z-axes is considered, the four spherical-wave 

modes passing through the element centre along the directions of the r- and z-axes would lead to a 

rank deficient element. On the other hand, a rank sufficient element can successfully be obtained by 

the four modes passing through the element centre along the element diagonals. Moreover, 

additional discontinuous modes often lead to poor element accuracy. These observations are similar 

to those of the four-node and eight-node plane elements formulated with discontinuous plane-wave 

and Bessel solution modes [6,7]. To generalize the successful plane-wave modes to axial symmetric 

quadrilateral elements, the poles of the spherical-waves are selected such that the wave modes are 

“equal-distant” or “equal-spaced” to be described below.  
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3.1  The “Equal-Distant” Modes 

      For the “equal-distant” modes, the spherical-wave poles are picked by using opposing node pairs 

in the sense that the parametric coordinates of a node can be obtained by multiplying those of the 

other node in the same pair with -1. A pole along the z-axis is fixed by the equal-distant requirement 

from a node pair. Hence, the node pair would be on the same wavefront of the spherical-wave from 

the pole as seen in Figure 2(a).  

 

 
(a)          (b) 

Figure 2. (a) Spherical-waves from poles equal-distant from opposing node pairs, e.g., |A*1| = |A*3|. 
(b) The spherical-wave passes through the element origin at angle  that bisects the - and -axes. 

 

Four-Node Element SAQ4* - Considering node 1 (r1, z1) and node 3 (r3, z3) of the quadrilateral 

element in Figure 2(a). Parametric coordinates of the two nodes are (-1,-1) and (1,1). Hence, they 

are an opposing node pair. The z-coordinate zA* of the pole A* equal-distant from the two nodes is: 
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Similarly, the coordinate zB* of the pole B* equal-distant from the nodes 2 and 4 is: 
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The four-node element employing source points A* and B* and thus the following shape function 

matrix for g: 

 * * * * * * * *
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will be termed as SAQ4*. For any pole S(0,zS), 2 2 2( )S Sr z z     and 
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 
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normalization factor for the related shape functions.  

 

Eight-Node Element SAQ8* - For an eight-node element, four poles or eight wave modes are 

required for full rankness. Besides A* and B* used in SAQ4*, nodes 5 and 7 define the pole C*(0, zC) 

whereas nodes 6 and 8 define the pole D*(0, zD*).  For C* and D*,  
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The eight-node element employing poles A* to D* and thus the following shape function matrix for 

g: 
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will be termed as SAQ8*.  

 

3.2  The “Equal-Spaced” Modes 

 Equal-spaced modes have been employed in the six-node triangular elements by using the Fermat 

or Torricelli points inside the triangles [1,8]. For quadrilateral elements, Figure 2(b) depicts a 

spherical-wave passing through the element origin (r0,z0) = (r,z)|==0 at an angle  which bisects the 

- and -axes. Its pole B(0,zB) can be determined from 

 0 0 tanBz z r   . (17) 

For the “equal-spaced” modes, the other source points would be selected such that the directions of 

the waves passing through the element origin are equal-spaced.  

 

Four-Node Element SAQ4 – The four-node element needs two source points for rank sufficiency. 

With the first direction fixed at , the second direction should be taken as  - π/2 which defines the 

pole A(0,zA)  with 

 0 0 tan( / 2)Az z r     .  (18)  

The hybrid element employing poles A and B will be termed as SAQ4. Its shape function matrix can 

be obtained from (14) by removing all the asterisks.  
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Four-Node Element SAQ8 – The eight-node element needs four poles for rank sufficiency. With 

the first direction fixed at , the other three equal-spaced directions should be taken as  - π/2,  - 

π/4 and  + π/4 which define the source points A(0,zA), C(0,zC) and D(0,zD), respectively. It is trivial 

that  

 0 0 tan( / 4)Cz z r       and  0 0 tan( / 4)Dz z r      (19)  

The hybrid element employing poles A and D will be termed as SAQ8. Its shape function matrix can 

be obtained from (16) by removing all the asterisks.  

 

3.3  Treatment for Distant Source Point and Singularity at the Source Point 

 It may happen that a pole S(0,zS) is far away from the element within which the related wave is 

essentially parallel to the z-axis. To avoid numerical difficulty associated with the large radial distant 

“s”, the two related spherical-wave modes would be replaced with the following plane-wave modes: 

     0 0
cos ( ) ,sin ( )k z z k z z

      
       if     0

0

tan χ
S

r

z z
 

 

 

 




  (20) 

where  is the small angle and is here taken to be /120, rather arbitrarily.  

 The wave mode cos(k)/ is singular at its pole where  = 0. When the pole is too close to the 

element, the singularity may pose numerical difficulty. A simple remedy to avoid the problem is to 

replace the hybrid element with the conventional one when r = 0 in one or more than one element 

node.  

 

4.  NUMERICAL EXAMPLES 

In this section, the predictions of the afore-discussed axial symmetric quadrilateral elements are 

reported. The elements include: 

 CAQ4 –  the conventional four-node element, see Section 2. 

 SAQ4* –  the four-node hybrid element based on “equal-distant” modes, see Section 3.1.  

 SAQ4 –  the four-node hybrid based on “equal-spaced” modes, see Section 3.2.  

 CAQ8 –  the conventional eight-node element, see Section 2. 

 SAQ8* –  the eight-node hybrid element based on “equal-distant” modes, see Section 3.1.  

 SAQ8 –  the eight-node hybrid based on “equal-spaced” modes, see Section 3.2.  
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Unless specified otherwise, all the four- and eight-node elements are evaluated by the 2×2 and 3×3 

quadratures, respectively. To compare the accuracy of the elements, the normalized error and the 

relative error with respect to the error of the conventional element (CAQ4 or CAQ8) will be 

computed. They are  
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where u denotes the finite element prediction, uexact denotes the exact solution, uC denotes the 

prediction of the conventional element. For the hybrid elements, g is the prediction within the 

element domain and, thus, u is replaced by g in the error measures. In both error measures, the 

integrals are evaluated by the 2×2 and 3×3 quadratures for the four- and eight-node elements, 

respectively. It has been checked that higher order integration rules lead to practicably identical 

results. Furthermore, the number of nodal spacings per wavelength  

 Nn = wave length / nodal spacing = 2/(kh)  (22) 

will be specified. In the expression, h denotes the nodal spacing. For conventional element models, 

many literatures recommend Nn > 10 (see, e.g., [17] among others) which, however, can be lowered 

for higher order elements.  

      For square element geometry, SAQ4* and SAQ8* are identical to SAQ4 and SAQ8, respectively. 

In examples involving non-square elements, the predictions of SAQ4* and SAQ8* are essentially 

graphically indistinguishable from those of SAQ4 and SAQ8, respectively. For clarity and 

conciseness, only the results of SAQ4 and SAQ8 would be presented in the subsequent result plots.  

 

4.1  Condition Number versus Integration Order and Invariance 

      The quadrilateral in Figure 3 is modelled as a single element. The lengths of the element edges 

are 0.65, 1.37, 0.5 and 0.9 which gives an average nodal spacing of ~ 0.91 and ~ 0.45 for the 

four- and eight-node elements, respectively.  
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Figure 3. Condition numbers are computed for the portrayed element configuration. 

 

For the four-node elements, k = /5 and 2/5 are considered. The relevant Nns are ~10 and ~5, 

respectively. Let || denote the eigenvalue magnitude of the element matrix, ||max, ||min and the 

condition number Nc (= ||max/||min) are computed. Table 1 lists the results for CAQ4, SAQ4 and 

SAQ4* when 2×2, 3×3 and 4×4 quadradures are employed. Restricting to three significant figures, 

Ncs of the elements do not change with respect to the integration orders. Moreover, CAQ4 is rank 

deficient when the 1×1 quadrature is used.  

Table 1.  ||max, ||min and Nc of four-node elements under different quadratures. 
2×2 3×3 4×4 

 
||max ||min Nc ||max ||min Nc ||max ||min Nc 

k = /5 15.84 0.72 22.0 15.84 0.72 22.0 15.84 0.72 22.0 
CAQ4 

k = 2/5 15.10 2.89 5.23 15.10 2.89 5.23 15.10 2.89 5.23 

k = /5 15.66 0.73 21.4 15.66 0.73 21.4 15.66 0.73 21.4 
SAQ4 

k = 2/5 14.88 3.08 4.82 14.85 3.07 4.83 14.85 3.07 4.83 

k = /5 15.68 0.73 21.5 15.68 0.73 21.5 15.68 0.73 21.5 
SAQ4* 

k = 2/5 14.93 3.05 4.89 14.91 3.05 4.89 14.91 3.05 4.89 

 
For the eight-node elements, k = 2/5 and 4/5 are considered. The relevant Nns remain to be 

~10 and ~5, respectively. Table 2 lists the computed ||max, ||min and Ncs for the elements when 2×2, 

3×3 and 4×4 quadradures are employed. Nc of CAQ8 is least sensitive to the integration order. 

However, it is noted that the errors of CAQ8 evaluated by 2×2 and 3×3 quadratures are in the ratio 

of 2:1 which is similar to that of the plane conventional Q8 element [7]. Obviously, 2×2 quadradure 

is not adequate for the hybrid elements. Ncs of the hybrid elements do not change when 3×3 

quadrature is switched to 4×4 quadrature for k = 2/5 or Nn ~10. In the subsequent sub-sections, the 

results are computed by using 2×2 and 3×3 quadratures for all the four-node and eight-node 

(2.1,0.9) 

(2.0,1.6) 

(1.1,1.3) 

(1.0,0.5) 
r 

z 
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elements, respectively. The integration orders are adequate for Nn ~10. As Nc’s of all hybrid elements 

are finite, they are rank sufficient. 

Table 2.  ||max, ||min and Nc of eight-node elements under different quadratures. 
2×2 3×3 4×4 

 
||max ||min Nc ||max ||min Nc ||max ||min Nc 

k = 2/5 62.36 1.58 39.4 61.44 1.59 38.7 61.44 1.59 38.7 
CAQ8 

k = 4/5 54.16 1.12 48.3 50.76 1.18 43.1 50.76 1.18 43.1 

k = 2/5 62.37 1.58 39.4 27.33 1.61 17.0 27.33 1.61 17.0 
SAQ8 

k = 4/5 42.76 1.79 23.9 25.21 0.90 28.1 25.41 0.93 27.3 

k = 2/5 61.80 1.58 39.0 27.59 1.61 17.2 27.58 1.61 17.2 
SAQ8* 

k = 4/5 45.70 1.74 26.3 25.57 0.92 27.9 25.83 0.95 27.1 

 

Different nodal connectivity orders which define the directions of the parametric axes are also 

attempted. The elements are also shifted along the z-direction. The computed ||max, ||min and Ncs do 

not vary with the connectivity and the rigid body movement. Thus, the elements are invariant [18,19].   

 

4.2  Plane-Wave thru Square Annular 

 Figure 4 depicts a square annular with centers (L,0) and size length L where L = 2. The domain 

boundary is prescribed with the natural boundary condition derived from the following plane-wave 

solution:  

 cos( )u kz  (23) 

 
Figure 4. The LL square annular with mean radius L where L = 2. Boundary conditions derived 

from the plane-wave solution u = cos (kz) or the cylindrical-wave solution u = J0(kr) are prescribed. 

For the four-node elements, the convergence plots for kL = 20 and 40 are shown in Figure 5 for 
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Nn  [2,32], respectively. For the same Nn, errors of the same element model at the two different 

kL values are close. With Nn = 32 and kL = 20, the normalized error of CAQ4 is 2.510-3 and the 

relative error of SAQ4 is 50%. With Nn = 32 and kL = 40, the normalized error of CAQ4 is 2.3 

10-3 and the relative error of SAQ4 is again 50%.  
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Figure 5. Errors of the four-node elements in the “plane-wave thru square annular” problem. Nn  

[2, 32]. The relative error of SAQ4 at Nn = 32  are 50% for both kL = 20 and 40. 
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Figure 6. Errors of the eight-node elements in the “plane-wave thru square annular” problem. Nn  

[2,16]. At Nn  = 16, the relative error of SAQ8 are 32% for both kL = 20 and 40. 

 

For the eight-node elements, the convergence plots for kL = 20 and 40 are shown in Figure 6 for 
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Nn  [2,16], respectively. For the same Nn, errors of the same element model at the two different 

kL values are close. With Nn = 16 and kL = 20, the normalized error of CAQ8 is 8.010-5 and the 

relative error of SAQ8 is 32%. With Nn = 16 and kL = 40, the normalized error of CAQ8 is 8.2 

10-5 and the relative error of SAQ8 is again 32%. The convergence rate of the conventional and 

hybrid models are essentially the same.  

 
Figure 7.  Predictions of CAQ4 () and SAQ4 () along r = L in the “plane-wave thru square 

annular” problem with kL = 20 and Nn = 2. ── denotes the exact solution. 

 

 
Figure 8. Predictions of CAQ8 () and SAQ8 () along r = L in the “plane-wave thru square 

annular” problem with kL = 20 and Nn = 2. ── denotes the exact solution. 

 

Figures 7 and 8 plot the predictions of the four- and eight-node elements along the longitudinal 

centerline of the mesh (r = L) for kL = 20 and Nn = 2. The errors echo those reported in Figures 5 

and 6. It can also be seen that the numerical wavenumbers, which are the wavenumbers constructed 

from the numerical predictions [19], of the eight-node elements are closer to the exact wavenumber 
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that those of the four-node elements.  

 

4.3  Cylindrical-Wave thru Square Annular 

In this subsection, the boundary of the square annular in Figure 4 is prescribed with the natural 

boundary conditions derived from the following cylindrical-wave solution: 

 0 ( )u J kr  (24) 

where J0 is the zeroth order Bessel function of the first kind.  

For the four-node elements, the convergence plots for kL = 20 and 40 are shown in Figure 9 for 

Nn  [2,32], respectively. With Nn = 32 and kL = 20, the normalized error of CAQ4 is 2.410-3 

and the relative error of SAQ4 is 50%. With Nn = 32 and kL = 40, the normalized error of CAQ4 

increases to 7.610-3 and the relative error of SAQ4 is again 50%.  
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Figure 9. Errors of the four-node elements in the “cylindrical-wave thru square annular” problem. Nn 

 [2,32]. At Nn = 32, the relative errors of SAQ4 are 50% for both kL = 20 and 40. 

 

For the eight-node elements, the convergence plots for kL = 20 and 40 are shown in Figure 10 

for Nn  [2,16], respectively. With Nn = 16 and kL = 20, the normalized error of CAQ8 is 

8.110-5 and the relative error of SAQ8 is 32%. With Nn = 16 and kL = 40, the normalized error of 

CAQ8 increases to 1.510-4 and the relative error of SAQ8 is 22%. At high nodal density, the 

convergence rate of the conventional and hybrid models are essentially the same. 
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Figure 10. Errors of the eight-node elements in the “cylindrical-wave thru square annular” problem. 
Nn  [2,16]. At Nn = 16, the relative errors of SAQ8 are 32% for kL = 20 and 22% for kL = 40. 

 

 
Figure 11. Predictions of CAQ4 () and SAQ4 () along z = 0 in the “cylindrical-wave thru square 

annular” problem with kL = 20 and Nn = 2. ── denotes the exact solution. 

 

Figures 11 and 12 plot the predictions of the four- and eight-node elements along the radial 

centerline of the mesh (z = 0) for kL = 20 and Nn = 2. The errors echo those reported in Figures 9 

and 10. Again, the numerical wavenumbers of the eight-node elements are closer to the exact 

wavenumber that those of the four-node elements. 
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Figure 12. Predictions of CAQ8 () and SAQ8 () along z = 0 in the “cylindrical-wave thru square 

annular” problem with kL = 20 and Nn = 2. ── denotes the exact solution. 

 

4.4  Spherical-Wave thru Hemisphere  

 Figure 13 depicts a hemispherical domain with radius R = 1 partitioned into 48 elements. 

Boundary conditions corresponding to the spherical-wave solution:  

 
2 2

2 2

sin( )k r zu
k r z





 (25) 

are implemented. The prescribed boundary conditions include u = 1 at (0,0), ,ru = 0 along r = 0, 

,zu = 0 along z = 0 and u = sin(kR)/(kR) along r2 + z2 - R2 = 0.  

 
Figure 13. A semi-spherical domain with radius R = 1 is partitioned into 48 elements. Boundary 
conditions derived from the spherical-wave solution u = sin[k(r2+z2)]/[ k(r2+z2)] are prescribed. 

 

For the four-node elements, the convergence plots for kR = 10 and 20 are shown in Figure 14 for 

Nn  [2π,32π] along the coordinate axes, respectively. With Nn = 32π and kR = 10, the normalized 

error of CAQ4 is 1.910-3 and the relative error of SAQ4 is 51%. With Nn = 32π and kR = 20, the 

normalized error of CAQ4 drops a bit to 1.710-3 and the relative error of SAQ4 is 50%.  
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Figure 14. Errors of the four-node elements in the “spherical-wave thru hemisphere” problem. 
Along the coordinate axes, Nn  [2π,32π]. At Nn = 32π, the relative errors of SAQ4 are (a) 51% for 

kR = 10 and 50% for kR = 20. 

 

For the eight-node elements, the convergence plots for kR = 10 and 20 are shown in Figure 15 

for Nn  [1.6,12.8] along the coordinate axes, respectively. With Nn = 12.8 and kR = 10, the 

normalized error of CAQ8 drops a bit to 1.710-4 and the relative error of SAQ8 is 34%. With Nn = 

12.8 and kR = 20, the normalized error of CAQ8 is 1.510-4 and the relative error of SAQ8 is 37%. 

The convergence rate of the conventional and hybrid models are essentially the same.  
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Figure 15. Errors of the eight-node elements in the “spherical-wave thru hemisphere” problem. 
Along the coordinate axes, Nn  [1.6,12.8]. The relative errors of SAQ8 at Nn =12.8 are 34% 

for kR = 10 and 37% for kR = 20.  
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4.5  Plane-Wave thru Rhombic Annular 

 Figure 16 depicts a rhombic annular with centers (L,0) and size length L where L = 2. The 

essential boundary condition derived from the plane-wave solution in (23) is prescribed.  

 
Figure 16. The LL rhombic annular with mean radius L where L = 2. Boundary conditions derived 
from the plane-wave solution u = cos (kz), the cylindrical-wave solution u = J0(kr) or the spherical-

wave solution u = sin [k(r2+(z-L)2)]/(r2+(z-L)2) are prescribed. 

 

For the four-node elements, the convergence plots for kL = 20 and 40 are shown in Figure 17 for 

Nn  [2,32], respectively. With Nn = 32 and kL = 20, the normalized error of CAQ4 is 1.510-3 

and the relative error of SAQ4 is 11%. With kL = 40, CAQ4 does not converge monotonically. At 

Nn = 32, the normalized error of CAQ4 increases substantially to 1.510-1 and the relative error of 

SAQ4 is only 0.1%.  
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Figure 17. Errors of the four-node elements in the “plane-wave thru rhombic annular” problem. Nn  
[2,32]. At Nn = 32, the relative errors of SAQ4 are 11% for kL = 20 and 0.1% kL = 40. 
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For the eight-node elements, the convergence plots for kL = 20 and 40 are shown in Figure 18 

for Nn  [2,16], respectively. In both figures, relative error of SAQ8 is less 10% at the coarsest 

mesh. With Nn = 16 and kL = 20, the normalized error of CAQ8 is 4.010-5 and the relative error of 

SAQ8 is 33%. With Nn = 16 and kL = 40, the normalized error of CAQ8 increases to 1.010-3 and 

the relative error of SAQ8 is 14%. At high nodal density, the convergence rate of the conventional 

and hybrid models are essentially the same. 
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Figure 18. Errors of the eight-node elements in the “plane-wave thru rhombic annular” problem. Nn 
 [2,16]. The relative errors of SAQ8 at Nn =16 are 33% for kL = 20 and 14% for kL = 40. 

 

4.6  Cylindrical-Wave thru Rhombic Annular 

 The rhombic annular in Figure 16 is now prescribed with the essential boundary condition derived 

from the cylindrical-wave solution in (24).  

For the four-node elements, the convergence plots for kL = 20 and 40 are shown in Figure 19 for 

Nn  [2,32], respectively. With Nn = 32 and kL = 20, the normalized error of CAQ4 is 4.410-3 

and the relative error of SAQ4 is 4.0%. With kL = 40, CAQ4 again does not converge monotonically. 

At Nn = 32, the normalized error of CAQ4 is 9.310-3 and the relative error of SAQ4 is only 2%.  

For the eight-node elements, the convergence plots for kL = 20 and 40 are shown in Figure 20 

for Nn  [2,16], respectively. With Nn = 16 and kL = 20, the normalized error of CAQ8 is 

5.310-5 and the relative error of SAQ8 is 27%. With Nn = 16 and kL = 40, the normalized error of 

CAQ8 is 7.410-5 and the relative error of SAQ8 is 21%. At high nodal density, the convergence 

rate of the conventional and hybrid models are essentially the same. 
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Figure 19. Errors of the four-node elements in the “cylindrical-wave thru rhombic annular” problem. 
Nn  [2,32]. At Nn = 32, the relative errors of SAQ4 are 4% for kL =20 and 2% for kL =40. 
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Figure 20. Errors of the eight-node elements in the “cylindrical-wave thru rhombic annular” problem. 
Nn  [2,16]. The relative errors of SAQ8 at Nn =16 are 27% for kL = 20 and 21% for kL = 40.  

 

4.7  Spherical-Wave thru Rhombic Annular 

     The errors of SAQ4 in last two problems involving the rhombic annular domain (normalized error 

 ~10-4) are nearly 10 times smaller than those involving the square annular (normalized error  ~10-3) 

at the highest nodal density. Coincidently, the wave directions of the exact solutions are parallel or 

essentially parallel to those of the discontinuous modes inside the hybrid elements modelling the 

rhombic annular. To investigate whether the coincidence in the directions contribute to the higher 

accuracy, the rhombic annular are prescribed with essential boundary conditions according to the 

spherical-wave solution: 
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2 2

2 2

sin( ( ) )

( )

k r z L
u

k r z L

 


 
 (26) 

whose pole is (0,L) and propagration directions are no more parallel to those of the discontinuous 

modes inside the elements. The convergence plots for kL = 20 and 40 are shown in Figure 21 for Nn 

 [2,32], respectively. With Nn = 32 and kL = 20, the normalized error of CAQ4 is 2.810-3 and 

the relative error of SAQ4 is 45%. With Nn = 32 and kL = 40, the normalized error of CAQ4 is 

6.110-3 and the relative error of SAQ4 is 41%. In both cases, the normalized errors of SAQ4 are 

~2×10-3 which is considerably larger than those of the plane-wave and cylindrical-wave problems 

involving the rhombic annular but is similar to those of the same problems involving the square 

annular.  
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Figure 21. Errors of the four-node elements in the “spherical-wave with source (0,L) thru rhombic 

annular” problem. Nn  [2,32]. The relative errors of SAQ4 at Nn = 32 are 45% for kL = 20 and 
41% for kL = 40. 

 

4.8  Wavenumber Sweep for the Four-Node Elements 

The coincidence of the wave directions in the exact solution and the discontinous modes of the 

four-node element model leads to the distinctive element accuracy in Sections 4.5 and 4.6. The 

observation is simlar to that of the four-node plane hybrid element in which its discontinous modes 

are the plane-wave modes along the element diagonals [7]. Another interesting observation is 

illustrated in Figures 22 and 23. Figures 22(a) and 22(b) show the wavenumber sweeps for the 

problems of plane-wave (see (23)) thru the square annular and spherical-wave (see (26)) thru the 

rhombic annuar with nodal spacing 1/80, respectively. The results are typical and contain multiple 

spikes due to fictitious resonanting predicitons. It can also be seen that the relative error of SAQ4, 

with respect to CAQ4, is roughly 50%. On the other hand, Figure 23(a) shows the wavenumber 
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sweeps for the problem of cylindrical-wave (see (24)) thru the rhombic annular whilst Figure 23(b) 

shows the wavenumber sweeps for the problem of plane-wave thru a plane square panel using the 

four-node plane conventional element CQ4 and the hybrid element PQ4 [7]. The same mesh with 

nodal spacing 1/80 is again employed and the exact wave directions are essentially and exactly 

parallel to those of the discontinuous modes of the axial symmetric and plane hybrid elements, 

respectively. Unlike the typical results portrayed in Figure 22 there is no fictitious resonanting 

prediciton or spike. Nevertheless, this interesting advantage is not generic and disappear when the 

directions of the exact solution and the discontinuous modes of the elements differ.  

 

10 15 20 25 30 35 40
0

5

10

15

20

25

kL (L=2)

N
or

m
al

iz
ed

 e
rr

or
 [%

]

CAQ4
SAQ4

Nodal spacing
=1/80

 
(a) 

10 15 20 25 30 35 40
0

5

10

15

20

25

kL (L=2)

N
or

m
al

iz
ed

 e
rr

or
 [%

]

CAQ4
SAQ4

Nodal spacing
=1/80

 
(b) 

Figure 22. Errors of the four-node elements versus wavenumber in (a) the “plane-wave thru square 
annular” problem and (b) the “spherical-wave with source (0,L) thru rhombic annular” problem. 
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(b) 

Figure 23. (a) Errors of the four-node axial symmetric elements versus wavenumber in the 
“cylindrical-wave thru rhombic annular” problem and (b) errors of the four-node plane elements 

versus wavenumber in the “plane-wave thru square panel” problem.  

 

 

5.  CONCLUSION 

Four- and eight-node hybrid quadrilateral axial symmetric elements are devised in this paper by a 

hybrid variational functional that enforces the equality of a continuous and a discontinuous 

Helmholtz variables. The former is constructed by nodal interpolation and the latter is composed of 

spherical-waves with poles at the axis of symmetry. They have the same system dofs as the 

conventional or continuous Galerkin elements based on the single field variational functional and can 
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readily be incorporated into the standard finite element program framework. Boundary conditions 

can also be prescribed as if they were conventional elements. Two ways of selecting the spherical-

wave poles have been attempted and the resultant elements yield close predictions. With respect to 

four- and eight-node conventional elements, the four-and eight-node hybrid elements are typically 

~50% and ~70% less erroneous, respectively. The CPU time for computing the element matrices of 

the hybrid elements are inevitably higher than that of the conventional elements. The gain in accuracy 

is a justifying factor and the other factor is that the total CPU time for a large problem is dominated 

by the solution time (for solving the system equation). 
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