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Abstract 

The domain structures of PbTiO3 epitaxial nanodots under the influences of 

depolarization fields and mismatch strains have been studied using three dimensional 

phase field simulations. The single-vortex structure and mixed domain configuration, 

which consisted of zigzag stripe domain and closure dipole flux near the interfaces, were 

found to be effective in annihilating the depolarization fields in the isotropically tensile 

and compressive ferroelectric nanodots, respectively. These domain structures were 

produced by the combined effect of electrostatic and mismatch elastic energies. The 

width of stripe domain was found to be related to the volume percentage of polarization 

dipoles along the z-axis, which varied remarkably with the change of compressive 

mismatch strain. In the case of nanodots under anisotropic mismatch strains, double-

vortex domain patterns and stripe domains with nearly straight domain walls were formed. 

Moreover, the domain structures with electrostatic energy neglected were also studied. 
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1. Introduction 

 

Ever since the discovery of vortex domain structures in ferroelectric nanodots and 

nanowires (Naumov et al., 2004), tremendous efforts have been made by researchers to 

study their intrinsic formation mechanisms. Recently, some unique stripe domains were 

shown to exist in ferroelectric epitaxial nanostructures (Naumov and Bratkovsky, 2008). 

The emergences of these special domain patterns provide both challenges and aspirations 

for the present technology. On one hand, the persistent requirement to decrease the size 

of a ferroelectric functional unit while keeping the dipole states detectable is the driving 

force that leads to the reduction of the nanodot density of Pb(Zr0.20Ti0.80)O3 (PZT) 

nanocapacitor arrays to near Tb inch-2 (Lee et al., 2008). On the other hand, novel 

techniques used to readout the ferroelectric states, such as non-destructive approaches 

(Garcia et al., 2009) and high-resolution piezoresponse force microscopy (Ivry et al., 

2009), are readily available. Since the formation and manipulation of the special domain 

patterns in ferroelectric nanostructures have significant influences on the development of 

nanoferroelectric technology, it is vital to achieve a better understanding of such 

influences, especially in epitaxial nanodots. 

 

It is a known fact that in ferroelectric thin films the mismatch strains originating 

from lattice misfits between the nanostructure and substrate have significant influences 
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on the ferroelectric domain phases (Janolin, 2009; Li and Chen, 2006). Moreover, 

compared with a continuous thin film, a nanodot structure is highly confined in three 

dimensions, which leads to significant differences in elastic stress (Zhang et al., 2008) 

and depolarization distributions. Individual ferroelectric nanodots or nanoparticles have 

been found to possess special vortex domain structures under open-circuit condition 

(Naumov et al., 2004; Wang et al., 2008). Thus, it is interesting to study the domain 

structures of ferroelectric nanodots epitaxially grown on substrates under the combined 

effects of depolarization field and mismatch strains. 

 

In the present study, a three dimensional phase field model, which is similar to 

those developed by Slutsker et al. (2008) and Zhang et al. (2008), is devised to 

investigate the effects of mismatch strains and depolarization fields on the PbTiO3 (PTO) 

epitaxial nanodots under open-circuit condition. The size of this computational model is 

64×64×48 discrete grids, in which the ferroelectric nanodot of size 32×32×16 is 

positioned at the center epitaxially on the substrate of thickness 16 discrete grids, and 

embedded in the gas medium, as shown in Fig. 1. Compared with other phase field 

models developed for the study of nanoferroelectric domain structures, the present model 

can easily illustrate distinguishable domain patterns, i.e. single or double-vortex and 

straight or zigzag stripe domain structures, providing a delicate solution to probe these 

special domain patterns individually. Besides, this model can be easily modified to 

include the mismatch strains at the vertical interfaces if the gas medium is replaced with 

some dielectric material which is epitaxially connected to the ferroelectric nanodot. 
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2. Phase field model 

 

The time-dependent Ginzburg-Landau (TDGL) equation is employed to govern 

the evolution of the time and spatial dependent spontaneous polarizations, i.e. 
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polarization, and 1,2,3i =  denotes ,x y  and z , respectively. In addition, t  and L  are the 

time and kinetic coefficient, respectively. The total energy ( F ) of the system is 

composed of bulk free energy ( LF ), gradient energy ( GF ), elastic energy ( elaF ) and 

electrostatic energy ( electroF ), i.e., L G ela electroF F F F F= + + + . The expressions of these 

energy terms can be found in Hong et al. (2009) and Li et al. (2002). A six-order 

polynomial is used as Landau-Devonshire potential for the bulk free energy as follows: 
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where 1α  is the temperature dependent dielectric stiffness constant; and other coefficients 

are temperature independent higher order dielectric stiffness constants. The gradient 

energy , ,
1
2G ijkl i j k lV

F P P dVβ= ∫  represents the domain wall energy in the ferroelectric 

nanodot, where ijklβ  are the gradient energy coefficients; and the commas in the 

subscripts denote spatial differentiation. The elastic energy is expressed as 

0 01 ( )( ( ) ( ))( ( ) ( )) ,
2ela ijkl ij ij kl klV

F c dVε ε ε ε= − −∫ r r r r r                             (2) 
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where ( )rijklc  and ( )rijε  are the elastic stiffness tensors and total strains, respectively. 

The stress-free strains 0 ( )rijε  consist of two parts: the spontaneous strains generated 

during ferroelectric phase transition from cubic to tetragonal, and the mismatch strains 

induced by different lattice parameters between the nanodot and substrate, 

i.e. 0 ( ) ( ) ( ) ( ) ( )r r r r rmis
ij ijkl k l ijQ P Pε ε= + , in which ( )rijklQ are the electrostrictive coefficients. 

The mismatch strains are defined with respect to the substrate, i.e. 

( ) ( ) /rmis
ij PTO sub suba a aε = − , where PTOa  and suba  are the lattice parameters of PTO and 

substrate, respectively. In this case, only the in-plane components are considered, 

i.e. 0mis mis mis mis
zz xy yz xzε ε ε ε= = = = and mumis mis

xx yyε ε= =  (for the case of isotropic mismatch) or 

xx yy
m m( u ) ( u )mis mis

xx yyε ε= ≠ =  (for the case of anisotropic mismatch). As the present model is 

elastic but inhomogeneous, an iterative method (Hu and Chen, 2001) is used to obtain the 

elastic solution. Besides, all the stress-free boundary conditions applied onto the surfaces 

of the PTO nanodot can be automatically satisfied since the elastic constants of gas are 

zero. For simplicity, the elastic moduli of the substrate are assumed to be the same as 

those of the ferroelectric part even though the case of different elastic moduli can also be 

investigated using the same approach. The electrostatic energy is induced by the 

inhomogeneous polarizations, i.e. 0
1 ( )
2electro i ij j iv

F E E P dVε κ= − +∫  where iE , 0ε  and ijκ  

represent the electrostatic field, the dielectric constant of vacuum and the relative 

dielectric constant, respectively. In the present study, ijκ  are considered as isotropic and 

homogeneous constants for the whole model. The Maxwell’s equation is employed to 

determine the electrostatic potential using the finite difference method under the open-
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circuit boundary condition. Sufficient simulation steps are carried out to obtain stable and 

convergent results. 

 

All the parameters used in the present simulation are listed as follows. The 

coefficients of the bulk free and elastic energies (in SI units and the temperature is in oC) 

are: 5
1 3.8 ( 479) 10Tα = × − × , 7

11 7.3 10α = − × , 8
12 7.5 10α = × , 8

111 2.6 10α = × , 

8
112 6.1 10α = × , 9

123 3.7 10α = − × , 11 0.089Q = , 12 0.026Q = − , 44 0.03375Q = , 

11
11 1.75 10c = × , 10

12 7.94 10c = × , 11
44 1.11 10c = × , 27T = , which are obtained from Li et 

al. (2002a, 2002b). The spontaneous polarization, and relative dielectric constant and the 

reference values of the gradient energy coefficient are 2
0 0.757 CmP −= , 

11 22 33 66κ κ κ= = =  and 10 2 4
110 1.73 10  C m Nβ − −= × , respectively (Li et al., 2002a). The 

gradient energy coefficients are assumed as 11 110/ 2β β = , 12 110/ 0β β = , 44 110/ 1β β =  and 

'
44 110/ 1β β = . The grid spacing along the three axes are the same, i.e., 0x y z l∆ = ∆ = ∆ = , 

where 0 110 1/ 1 nml β α= = . 

 

3. Results and discussion 

 

3.1. Isotropic mismatch strains 

 

The single-vortex structure in which the polarization dipoles aligning with the 

confined boundaries of the PTO nanodot is stabilized when the isotropic mismatch strains 
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are not larger than zero ( mu 0≤ ), as shown in Fig. 2a, due to the strain-dipole coupling 

(Pertsev et al., 1998) and the annihilation of the depolarization fields. If the electrostatic 

energy is not considered, the domain structures formed will be very different, which will 

be shown later. Fig. 2b-2d present the domain structures of ferroelectric nanodot under 

different compressive mismatch strains. When mu  is equal to 0.01, the original vortex 

structure lying on the (001) plane disappear, and instead out-of-plane 180o stripe domains 

are produced alternating between the [100] and [010] direction. The in-plane 

polarizations, which constitute 40% of the total dipoles as shown in Fig. 2c, 

symmetrically lie on the upper and bottom interfaces to seal part of the dipole flux. Such 

domain configuration can be taken as a combination of Landau-Lifshitz closure domain 

structure (Landau and Lifshitz, 1935) and Kittel vertical stripe pattern (Kittel, 1946), 

whose existence in ferroelectric thin films due to poor screening of depolarization fields 

has been illustrated (Prosandeev and Bellaiche, 2007). This special domain configuration 

arises from the competition between the compressive mismatch elastic energy and the 

electrostatic energy. This is because the compressive mismatch strains are well known for 

preference of c-domains along the z-axis (Pertsev et al., 1998), while the stripe domains 

with in-plane polarizations that form dipole flux are effective in suppressing the 

depolarization field inside the nanodot. Fig. 2d displays the predominating stripe domains 

which constitute nearly 90% of the whole ferroelectric body when the isotropic mismatch 

strain is increased to 0.05; meanwhile some in-plane polarizations exist at the upper and 

lower interfaces to connect the antiparallel polarization dipoles along the z-axis. The 

width of the stripe domain on the (100) plane in Fig. 2d is larger than that in Fig. 2c by a 

ratio of 4/3, which has also been found in both experimental and numerical studies on 
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180o stripe domains in ferroelectric thin films (Prosandeev and Bellaiche, 2007; Streiffer 

et al., 2002). By combining with the results provided in Prosandeev and Bellaiche (2007), 

the width of the stripe domain in ferroelectric nanostructures can be correlated with the 

volume percentage of stripe domains which are remarkably affected by compressive 

mismatch strains and dead layer thicknesses (Prosandeev and Bellaiche, 2007). Note that 

although similar variation of domain patterns with mismatch strains has been identified in 

lower dimensional nanoferroelectrics using first-principle calculations (Ponomareva et al., 

2005), the special mixed domain consisting of zigzag stripe domain and closure dipole 

flux was not mentioned in the existing works. In addition, to the best of our knowledge, 

to-date, the mentioned domain configuration has never been studied by the phase field 

method. 

 

Fig. 3 presents the variation of toroidal moment zG  per unit cell, whose definition 

is the same as that provided in Naumov et al. (2004), and percentage of zP  with isotropic 

mismatch strain, where zP  percentage is the volume of polarizations along the z-axis of 

the ferroelectric nanodot. In the case where the nanodot is subjected to tensile mismatch 

strains, stable single-vortex structure with significant zG  value and null zP  is always 

obtained. When the compressive mismatch strain is larger than 0.003 the original vortex 

structure disappears, instead zigzag and not straight stripes (refer to Fig. 2c and 2d) are 

formed, which is similar to the domain structures that exist in BaTiO3 nanoparticles 

(Naumov and Bratkovsky, 2008), except that in the present PTO nanodot in-plane 

polarizations apparently exist at the top and bottom interfaces to form closure dipole flux. 

In addition, the intermediate domain phase presented in Fig. 2b, which is remarkably 
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different from the Skyrmion-like intermediate phase (Naumov and Bratkovsky, 2008), 

reveals that the transformation “vortex-to-stripe” starts from the formation of vertical 

domains on one lateral plane.  

 

3.2. Anisotropic mismatch strains 

 

Anisotropic mismatch strains were found to have significant effects on the 

dielectric constants (Lin et al., 2004) and the strain-temperature domain stability 

diagrams (Zembilgotov et al., 2005; Sheng et al., 2008a) of ferroelectric nanostructures 

compared to the isotropic ones. For the present PTO nanodot, under the influences of 

confined boundaries and depolarization fields, some unique vortex and stripe domain 

structures are produced by the anisotropic mismatch strains. An asymmetric double-

vortex domain structure in which in-plane polarization dipoles along the x-direction are 

the majority, as shown in Fig. 4a, exist when the strains are set as 

xx yy
m mu 0.01 and u 0.0= − = . Obviously, it is due to the fact that both the tensile and zero 

mismatch strains prefer in-plane polarizations, meanwhile the majority of these dipoles 

rotate to the direction of larger tensile strain. This is the first discovery of such double-

vortex domain pattern located on the growth plane of the ferroelectric nanodot. Fig. 4b 

presents another double-vortex domain pattern situated on the yz-plane because xx
mu 0.01=  

favors c-domain while yy
mu 0.0=  prefers in-plane dipoles. In comparison with the 

isotropic case (refer to Fig. 2c), the decrease of the compressive mismatch strain along 

the y-axis from 0.01 to zero reduces the volume portion of the c-domain, and the 

labyrinthic domain walls become orderly (refer to Fig. 4b). By prescribing a positive yy
mu  



 10 

to the nanodot, the volume of in-plane polarization dipoles increases and single-vortex 

domain pattern is formed, as shown in Fig. 4c. 

 

The domain structures under very high anisotropic mismatch strains can be 

significantly different from those under isotropic strains (refer to Fig. 2) or low 

anisotropic ones (refer to Fig. 4). Stripe domains become clear and prominent when 

compressive mismatch strains are applied along both the x and y-directions and at least 

one of the two strains is sufficiently large. Fig. 5a presents a domain structure in which 

the a- and c-domains coexist. However, for the case of xx yy
m mu 0.0 and u 0.05= = , the 

domain structure is similar to that shown in Fig. 4b in which the double-vortex domain 

pattern is situated on the xz-plane (not shown here). With the increase of compressive 

strain in the x-direction, the a-domain portion decreases and stripe domains with nearly 

straight domain wall along the diagonal of xy-plane are formed (refer to Fig. 5b and 5c). 

For the case of xx yy
m mu 0.04 and u 0.05= = , zigzag stripe domains with closure dipole flux 

on the upper and bottom surfaces, similar to that due to isotropic mismatch strain shown 

in Fig. 2d, is clearly formed. This result is in agreement with that obtained by first-

principles calculations, which showed that a zigzag stripe pattern can be transformed to a 

normal stripe pattern when large anisotropic mismatch strains are prescribed (Naumov 

and Bratkovsky, 2008). The nearly straight stripe domain wall along diagonal direction 

and the zigzag stripe domain wall are compared in Fig. 6. 

 

Compared with the case of ferroelectric thin film under short-circuit condition 

studied by Sheng et al. (2008a, 2008b) using the phase field method, the domain patterns 
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obtained in the present study show some similar correlation between the domain 

structures and mismatch strains, i.e. the preference of a and c domains when a 

ferroelectric nanostructure is subjected to applied tensile and compressive mismatch 

strains, respectively, and the remarkable differences of domain structures between the 

case of isotropic and anisotropic. However, since the existence of depolarization field due 

to the adoption of open-circuit condition significantly affects the domain patterns, the 

single-vortex and double-vortex patterns as well as the stripe domains with closure dipole 

flux are obviously different from the previously reported patterns.  

 

3.3. Without electrostatic energy 

 

The electrostatic energy is important for producing the above discussed irregular 

domain structures, all of which can effectively minimize the residual polarization charges 

on ferroelectric nanodot surfaces and, hence, annihilate the depolarization fields. 

However, in some cases the depolarization fields can be adequately compensated by 

interfacial free charges, e.g., by exposing a ferroelectric thin film to an ionic adsorbate 

(Fong et al., 2006), a monodomain may be stabilized. Therefore, there is a need to study 

the domain structures of PTO nanodot without accounting for the electrostatic energy, 

which are shown in Fig. 7. Both c and a-domains exist when the mismatch strain is zero 

(refer to Fig. 7a), and single c-domain with polarizations pointing in the same direction is 

induced by compressive mismatch strains (not shown here). The latter domain structure is 

the same as that of the corresponding thin film studied in Fong et al. (2006). The tensile 

mismatch strain mu 0.01=  results in formation of periodical a-domains with 90o domain 
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walls parallel to the (110) planes (refer to Fig. 7b). With the increase of tensile mismatch 

strains, the a-domains separated by 90o domain walls become complex, however, there is 

no formation of in-plane vortex structure. Thus, it can be inferred that the tensile 

mismatch strains are prone to create in-plane polarization dipoles, while 90o domain 

walls are produced for elastic relaxation. 

 

4. Summary 

 

In summary, a three dimensional phase field model has been devised to study 

several unique domain structures in PTO epitaxial nanodots. The depolarization fields as 

well as the isotropic/anisotropic mismatch strains show remarkable influences on the 

domain patterns. Single-vortex structures and mixed domain configurations, which 

consist of zigzag stripe domain patterns and closure dipole fluxes, are produced to 

suppress the depolarization fields in nanodots due to the combined effects of electrostatic 

and isotropic mismatch elastic energies. The width of the stripe domain is found to be 

related to the volume percentage of polarizations along the z-axis, which are significantly 

affected by compressive mismatch strains. The intermediate phase between the above two 

domain configurations is a combination of vortex structure and stripe domain. A unique 

double-vortex structure emerges as one prototype domain pattern under low anisotropic 

mismatch strains; while stripe domains with nearly straight domain wall along the in-

plane diagonal are formed under very high anisotropic mismatch strains. Finally, obvious 

differences between the domain structures are observed if the electrostatic energy is not 

considered. 
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