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Asymptotics of Entropy Rate in Special Families of
Hidden Markov Chains
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Abstract—We derive an asymptotic formula for entropy rate of
a hidden Markov chain under certain parameterizations. We also
discuss applications of the asymptotic formula to the asymptotic
behaviors of entropy rate of hidden Markov chains as outputs of
certain channels, such as binary symmetric channel, binary era-
sure channel, and some special Gilbert-Elliot channel.

Index Terms—Entropy, entropy rate, hidden Markov chain,
hidden Markov model, hidden Markov process.

I. INTRODUCTION

C ONSIDER a discrete finite-valued stationary stochastic
process . The entropy rate of is

defined to be

here, denotes the joint entropy of
, and is taken to mean the nat-

ural logarithm.
If is a Markov chain with alphabet and

transition probability matrix , it is well known that can
be explicitly expressed with the stationary vector of and .
Let denote a finite alphabet , and let denote
a function defined on alphabet , taking values in ; then the
stochastic process defined by
is called a hidden Markov chain; alternatively a hidden Markov
chain can be defined as a Markov chain observed in noise. For
a hidden Markov chain , turns out to be the integral of
certain function defined on a simplex with respect to a measure
due to Blackwell [4]. However, Blackwell’s measure is some-
what complicated and the integral formula appears to be difficult
to evaluate in most cases. In general, it is very difficult to com-
pute ; so far there is no simple and explicit formula for

.
Recently, the problem of computing entropy rate of a hidden

Markov chain has drawn much interest, and many approaches
have been adopted to tackle this problem. For instance, Black-
well’s measure has been used to bound the entropy rate [16]
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and a variation on the Birch bound [3] was introduced in [5].
An efficient Monte Carlo method for computing the entropy
rate of a hidden Markov chain was proposed independently by
Arnold and Loeliger [1], Pfister et. al. [18], and Sharma and
Singh [20]. The connection between the entropy rate of a hidden
Markov chain and the top Lyapunov exponent of a random ma-
trix product has been observed [6], [11]–[13]. In [7], it is shown
that under mild positivity assumptions the entropy rate of a
hidden Markov chain varies analytically as a function of the un-
derlying Markov chain parameters.

Another recent approach is based on computing the coeffi-
cients of an asymptotic expansion of the entropy rate around
certain values of the Markov and channel parameters. The first
result along these lines was presented in [13], where for a bi-
nary symmetric channel with crossover probability [denoted
by BSC ( ) ], the Taylor expansion of around is
studied for a binary hidden Markov chain of order one. In par-
ticular, the first derivative of at is expressed very
compactly as a Kullback-Liebler divergence between two dis-
tributions on binary triplets, derived from the marginal of the
input process . Further improvements and new methods for
the asymptotic expansion approach were obtained in [17], [21],
[22], and [8]. In [17], the authors express the entropy rate for a
binary hidden Markov chain where one of the transition proba-
bilities is equal to zero as an asymptotic expansion including a

term.
This paper is organized as follows. In Section II we give an

asymptotic formula (Theorem 2.8) for entropy rate of a hidden
Markov chain around a weak Black Hole. The coefficients in the
formula can be computed in principle (although explicit com-
putations may be quite complicated in general). The formula
can be viewed as a generalization of that under the Black Hole
condition considered in [8]. The weak Black Hole case is im-
portant for hidden Markov chains obtained as output processes
of noisy channels, corresponding to input processes, for which
certain sequences have probability zero. Examples are given in
Section III. Example 3.1 was already treated in [9] and [10] for
only the first few coefficients; but in this case, these coefficients
were computed quite explicitly.

II. ASYMPTOTIC FORMULA FOR ENTROPY RATE

Let be the simplex, comprising the vectors

and let be all with for . For ,
let denote the matrix such that
for with , and otherwise. For ,
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define the scalar-valued and vector-valued functions and
on by

and

Note that defines the action of the matrix on the simplex
.

Definition 2.1: (see [8]) Suppose that for every ,
is a rank one matrix, and every column of is either strictly
positive or all zeros. We call this the Black Hole case.

Remark 2.2: The term Black Hole comes from the fact that
in this case each is defined on the whole simplex and the
image of on is a single point.

It was shown [8] that is analytic around a Black Hole
and the derivatives of can be exactly computed around
a Black Hole. In this sequel, we consider weakened assump-
tions and prove an asymptotic formula for entropy rate of a
hidden Markov chain around a “weak Black Hole,” which con-
tains the Black Hole as a special case, thus, generalizing the
corresponding result in [8].

Definition 2.3: Suppose that for every , is either
an all zero matrix or a rank one matrix. We call this the weak
Black Hole case.

Let denote a subset of and assume . For a real
function defined on , we say is analytic around

if can be analytically continued to a neighborhood of
in , thus admitting a Taylor series expansion around ,

which converges to around . For a given analytic
function around , let denote its order, i.e.,
the degree of the first nonzero term of its Taylor series expansion
around . We say the transition probability matrix is
normally parameterized (for concrete examples, see Section III)
by around if

1. each entry of is an analytic function around ,
2. when , is nonnegative and irreducible,
3. is a weak black hole, i.e., for every , is

either an all zero matrix or a rank one matrix.
In the following, expressions like will be used to

mean and we drop the subscripts if the context is
clear: , mean , , respectively,
and further , mean ,

, respectively.

Proposition 2.4: Suppose that is analytically param-
eterized by and when , is nonnegative
and irreducible. Then for any fixed hidden Markov sequence

,
1. is analytic around ;
2. is

analytic around , where denotes possible states
of Markov chain ,

3. is analytic around .
Proof: We first prove that when , has a unique

positive stationary vector , which can be extended to an
analytic function around .

When , is nonnegative and irreducible. By Perron-
Frobenius theory [19], has a unique positive stationary
vector, say . Since

(here denotes the adjugate operator on matrices), one can
choose to be any normalized row vector of .
So can be written as

where each is a nonnegative analytic function of and the
first nonzero term of Taylor series expansion of each has
a positive coefficient. Then we conclude that for each

and thus , which is uniquely defined on , can be
continuously extended to via setting
and the extended function is analytic around .

1. Now

(1)

here . It then follows that
is analytic around .

2. Let denote . Then one
checks that satisfies the following iteration:

(2)

starting with . Because
is analytically parameterized by and is
nonnegative and irreducible when , inductively we
can prove (the proof is similar to the proof of analyticity of

) that for any , can be written as follows:

where ’s are analytic functions around . Note
that for each

The existence of the Taylor series expansion of
around (for any ) then follows.

3. One checks that

(3)

Analyticity of immediately follows from (3)
and analyticity of around , which has been
shown in 2.
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Lemma 2.5: Consider two formal series expansion
such that and

, where . Let be the
quotient of and with . Then is
a function dependent only on and .

Proof: Comparing the coefficients of all the terms in the
following identity:

we obtain that for any ,

The lemma then follows from an induction (on ) argument.

For a mapping analytic around
and a hidden Markov sequence , define

for all , define

where denotes the possible states of Markov chain . Let
denote the coefficient of in the Taylor series ex-

pansion of (note that does not depend
on )

We have the following lemma.

Lemma 2.6: For two mappings ,
analytic around , if

, we then have

Proof: Let and
, here again denotes the

possible states of Markov chain . Consider the Taylor series
expansion of , around

(4)

(5)

We shall show that for with

where for any hidden Markov sequence

if ord

if ord

and is similarly defined.

Note that

(6)

Now with (4) and (5), we have

(7)

where superscript denotes the th-order derivative with re-
spect to .

We proceed by induction on (from to ).
First consider the case when . When

, the statement is vacu-
ously true; when , necessarily

is a rank one matrix, and
. Then we have

where follows from the fact that is a rank one ma-
trix. (Similarly as in Remark 2.2, when is a rank one matrix,
the mapping will map every with to
one single point.)

Now suppose and that for
with .
If , since the leading coefficient

vector of the Taylor series expansion in (7) is nonnegative,
for all with and

. So applying Lemma 2.5 to the
expression shown in (8) at the bottom of the next page, we
conclude that for all , depends only on

implying that depends only on (or some of)

A completely parallel argument also applies to the case when
; more specifically, the statements

above for the case are still true if we
replace with , which implies that depends only
on (or some of)



1290 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 3, MARCH 2010

Thus, when , we have
for with

If , by (3) necessarily we have

Again by Lemma 2.5 applied to (8), for any , de-
pends only on

Similarly, if , we deduce that for any
, depends only on

Thus, if , for any with

we have .
Now, let

Then one can show that [see the equation at the bottom of the
page], where the first term in the expression above is equal to

(since is a rank one matrix), and the “other terms”
are functions of

(9)

It follows that is a function of the same quantities in
(9). By a completely parallel argument as above, is
the same function of of the same quantities in (9). So we have

for with

Notice that

The lemma then immediately follows from (3) and the proven
fact that for with

By Proposition 2.4, for any hidden Markov string
(or ), (or )
is analytic. So for , , if (or ) is equal
to (or ), then

(or ) will be equal to (or
); and if for a Markov state , (or ) is

equal to (or ),
then (or ) will be equal to
(or ). In what follows, slightly abusing the
notation, we use to represent the coefficient of in
the expansion of , namely

(10)
and we use to represent the coefficient of in
the expansion of , namely

(11)

(8)
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It then immediately follows from Lemma 2.6 that [see Propo-
sition 2.7].

Proposition 2.7: Given fixed sequences , ,
, with such that

for , and some , we have for with

(12)

Consider (10). In the following, we use to de-
note the truncated (up to the -st term) Taylor series ex-
pansion of , i.e.

Theorem 2.8: For a hidden Markov chain with normally
parameterized , we have for any ,

(13)
where ’s and ’s for are functions (more
specifically, elementary functions built from log and polyno-
mials) of for and can be computed
from .

The following theorem [3] states the Birch upper bound and
lower bound of , which we shall use in the proof of The-
orem 2.8.

Theorem 2.9 (Birch, 1962): For any ,

Proof of Theorem 2.8: First fix such that
. Consider the Birch upper bound on

Note that for ,

(14)

(We used simplified notation above: means summation

over all , while means sum-

mation over all with ; the
same notational convention will be followed in the rest of the
proof.) So, in the following we only consider the sequences

with . For such sequences, since
, we have

(15)

and by Lemma 2.6, we have

(16)

Now for any fixed

(17)

where (a) follows from (14); (b) follows from (15); (c) follows
from (16), (14) and the fact that

Expanding (17), we obtain

where ’s and ’s for are functions de-
pendent only on for and can be computed
from (in fact for fixed , and are functions depen-
dent only on for and can be computed
from ). In particular, [see (18) at the bottom of the
next page] will contribute to and the terms , and
[see (19) at the bottom of the next page] will contribute to the
terms and the terms .

Using Corollary 2.7, one can apply similar argument as above
to the Birch lower bound

For the same , one can show that takes the same form
(17) as , which implies that and have
exactly the same coefficients of for and of
for when . We thus prove the theorem.
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Remark 2.10: Theorem 2.8 still holds if we assume each
entry of is merely a function of in a neighbor-
hood of : the proof still works if “analytic” is replaced
by “ ,” and the Taylor series expansions are replaced by
Taylor polynomials with remainder. We assumed analyticity of
the parametrization only for simplicity.

Remark 2.11: Note that at a Black Hole, we have
for any hidden Markov symbol se-

quence . Thus, from the discussion surrounding (18) and
(19) above, we see that for all . By the proof of
Theorem 2.8, (13) is a Taylor polynomial with remainder; this
is consistent with the Taylor series formula for a Black Hole in
[8].

III. APPLICATIONS TO FINITE-STATE MEMORYLESS CHANNELS

AT HIGH SIGNAL-TO-NOISE RATIO

Consider a finite-state memoryless channel with stationary
input process. Here, is an i.i.d. channel state process
over finite alphabet with for , is
a stationary input process, independent of , over finite alphabet

and is the resulting (stationary) output process
over finite alphabet . Let

denote the probability that at time , the channel
output symbol is given that the channel state is and the
channel input is . The mutual information for such a channel
is

where follows from the memoryless property of the channel,
and for ,

Now we introduce an alternative framework, using the con-
cept of channel noise. As above, let be an i.i.d. channel state
process, and let be a stationary input process, independent of

, over finite alphabets , . Let (respectively, ) be finite
alphabets of abstract error events (respectively, output symbols)
and let be a function. For each and

, let be a conditional probability distribution on
. This defines a jointly distributed stationary process

over . If is a first-order Markov chain with tran-
sition probability matrix , then is a Markov chain
with transition probability matrix , defined by

and , define a hidden Markov chain, denoted .
We claim that the output process , described in the first para-

graph of this section, fits into this alternative framework (when
is a first-order Markov chain). To see this, let ,

and define if and
, and 0 otherwise. Define . Then,

is a hidden Markov chain. So, from hereon we
adopt the alternative framework.

Now, we assume that is an irreducible first-order Markov
chain and that the channel is parameterized by such that for
each , , and , are analytic functions of For
each , let denote the corresponding transition proba-
bility matrix on state set and denote the family
of resulting output hidden Markov chains. We also assume that
there is a one-to-one function from into , , such
that for all , . In other words, behaves like
a “composite index” indicating how good the channel is, and
small corresponds to the high signal-to-noise ratio. Then one
can verify that is a weak black hole and is normally
parameterized. Thus, by Theorem 2.8, we obtain an asymptotic
formula for around . We remark that the above
naturally generalizes to the case where is a higher-order irre-
ducible Markov chain (through appropriately grouping matrices
into blocks).

In the remainder of this section, we give three examples to
illustrate the idea.

Example 3.1: [Binary Markov Chains Corrupted by BSC ( )]
Consider a binary symmetric channel with crossover proba-

bility . At time the channel can be characterized by the fol-
lowing:

(18)

(19)
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where denotes the input process, denotes binary addi-
tion, denotes the i.i.d. binary noise with
and , and denotes the corrupted output. Note
that this channel only has one channel state, and at ,

, so it fits in the alternative
framework described in the beginning of Section III.

Indeed, suppose is a first-order irreducible Markov chain
with the transition probability matrix

Then is jointly Markov with transi-
tion probability matrix (the column and row indices of the fol-
lowing matrix are ordered alphabetically)

and is a hidden Markov chain with
, . When ,

thus both and have rank one. If ’s are all positive,
then we have a Black Hole case, for which one can derive the
Taylor series expansion of around [8], [21]; if

or are zero, then this is a weak Black hole case with
normal parameterization (of ), for which Theorem 2.8 can be
applied and an asymptotic formula for around can
be derived.

For a first-order Markov chain with the following transition
probability matrix

where , it has been shown [17] that

as . This result has been further generalized [9], [10], [14]
to the following:

(20)

where is the input Markov chain of any order with tran-
sition probabilities , ,
where , is the output process obtained by passing

through a BSC ( ), and and can be explicitly
computed. Theorem 2.8 can be used to generalize (20) to a

formula with higher asymptotic terms. In particular, when
for , we define

an augmented Markov chain by

correspondingly we have output process ,
where

Then one check that for this augmented hidden Markov
chain, we have a Black Hole at , which implies that
the Taylor series expansions of around

can be explicitly computed (in principle); similarly when
for some , we

have a weak Black Hole, in which case an asymptotic formula
of around can be obtained.

Example 3.2: [Binary Markov Chains Corrupted by BEC ( )]
Consider a BEC ( ), i.e., a binary erasure channel with fixed

erasure rate . At time the channel can be characterized by

if
if

where denotes the input process, denotes the erasure,
denotes the i.i.d. binary noise with and

, and denotes the corrupted output. Again this
channel only has one channel state, and at ,

, , so it fits in the alternative framework de-
scribed in the beginning of Section III.

If the input is a first-order irreducible Markov chain with
transition probability matrix

and let denote the output process. Then is jointly
Markov with (the column and row indices of the following ma-
trix are ordered alphabetically)

and is hidden Markov with ,
and .

Now one checks that
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One checks that is normally parameterized by and thus
Theorem 2.8 can be applied. Furthermore, Theorem 2.8 can be
applied to the case when the input is an th-order irreducible
Markov chain to obtain asymptotic formula for around

.

Example 3.3: (Binary Markov Chains Corrupted by Special
Gilbert-Elliot Channel)

Consider a binary Gilbert-Elliot channel, whose channel state
(denoted by ) varies as an i.i.d. binary stochastic
process with , (here the channel state
varies as an i.i.d. process, rather than a generic Markov process).
At time the channel can be characterized by the

where denotes the input process, denotes binary ad-
dition, denotes the i.i.d. binary noise with

, , ,
and denotes the corrupted output. For such a channel,

, at for any
channel state . So it fits in the alternative framework described
in the beginning of Section III.

To see this in more detail, we consider the special case when
the input is a first-order irreducible Markov chain with tran-
sition probability matrix

and let denote the output process. Then
is jointly Markov with transition probability matrix , which
can be concisely written using Kronecker product as follows
(the column and row indices of the following matrix are or-
dered alphabetically) (see the equation at the top of the page)
where stands for the all one column vector of length 4.

is hidden Markov with

For some positive , let , . If , one checks
that

So, both and will be rank one matrices and one can check
that is normally parameterized by . Again, Theorem 2.8

can be applied to the case when the input is an th-order ir-
reducible Markov chain to obtain an asymptotic formula for

around .
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