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CIRCULANT PRECONDITIONERS FOR MARKOV-MODULATED
POISSON PROCESSES AND THEIR APPLICATIONS TO
MANUFACTURING SYSTEMS*

WAI KI CHING', RAYMOND H. CHAN!, AND XUN YU ZHOU#

Abstract. The Markov-modulated Poisson process (MMPP) is a generalization of the Poisson
process and is commonly used in modeling the input process of communication systems such as
data traffic systems and ATM networks. In this paper, we give fast algorithms for solving queueing
systems and manufacturing systems with MMPP inputs. We consider queueing systems where the
input of the queues is a superposition of the MMPP which is still an MMPP. The generator matrices
of these processes are tridiagonal block matrices with each diagonal block being a sum of tensor
products of matrices. We are interested in finding the steady state probability distributions of
these processes which are the normalized null vectors of their generator matrices. Classical iterative
methods, such as the block Gauss—Seidel method, are usually employed to solve for the steady
state probability distributions. They are easy to implement, but their convergence rates are slow in
general. The number of iterations required for convergence increases like O(m), where m is the size
of the waiting spaces in the queues. Here, we propose to use the preconditioned conjugate gradient
method. We construct our preconditioners by taking circulant approximations of the tensor blocks
of the generator matrices. We show that the number of iterations required for convergence increases
at most like O(logy m) for large m. Numerical results are given to illustrate the fast convergence.

As an application, we apply the MMPP to model unreliable manufacturing systems. The pro-
duction process consists of multiple parallel machines which produce one type of product. Each
machine has exponentially distributed up time, down time, and processing time for one unit of prod-
uct. The interarrival of a demand is exponentially distributed and finite backlog is allowed. We
consider hedging point policy as the production control. The average running cost of the system can
be written in terms of the steady state probability distribution. Our numerical algorithm developed
for the queueing systems can be applied to obtain the steady state distribution for the system and
hence the optimal hedging point. Furthermore, our method can be generalized to handle the case
when the machines have a more general type of repairing process distribution such as the Erlangian
distribution.
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method, manufacturing systems, hedging point policy
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1. Introduction. The Markov-modulated Poisson process (MMPP) is a gener-
alization of the Poisson process and is widely used as the input model of communica-
tion systems such as data traffic systems [8] and ATM networks [23]. An MMPP is a
Poisson process whose instantaneous rate is itself a stationary random process which
varies according to an irreducible n-state Markov chain. If n is 1, then the process is
just a Poisson process. We say that the MMPP is in phase k, 1 < k < n, when the
underlying Markov process is in state k, and in this case the arrivals occur according
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to a Poisson process of rate Ax. The process is characterized by the generator matrix
Q@ of the underlying Markov process and the rates Ay, Ao, ..., \y,.

In this paper, we first discuss a numerical algorithm for solving the steady state
probability distributions of queueing systems with MMPP inputs. We then relate
queueing systems with MMPP inputs to the production process in unreliable man-
ufacturing systems under the hedging point production control. Our algorithm can
be applied to solve for the steady state probability distribution of these systems and
hence their optimal hedging points.

We consider a queueing system with (¢g+1) trunks, where each trunk has m waiting
spaces and s multiple exponential servers. The analysis of these queueing systems can
be used to determine call congestions in teletraffic networks with alternate routing; see
Meier-Hellstern [13]. A call will overflow to other trunks if its first destination trunk is
full and will be blocked from the system if all the trunks are full. The analysis of these
queueing systems can be decomposed into the study of each trunk independently; see
Meier-Hellstern [13]. For each trunk, the overflow from other trunks is modeled by a
24-state MMPP which is a superposition of g independent 2-state MMPPs; i.e., each
trunk is an (MMPP/M/s/s + m) queue. The generator matrices of these processes
are (s +m+1)27 x (s+m+1)29 tridiagonal block matrices with each diagonal block
being a sum of tensor products of matrices. We are interested in finding the steady
state probability distributions of the queues which are the normalized null vectors of
the generator matrices.

Usually classical iterative methods, such as the block Gauss—Seidel method, are
used to solve for the steady state probability distribution. They are easy to implement,
but their convergence rates are slow in general; see the numerical results in section
7. Here, we propose to use the preconditioned conjugate gradient (PCG) method.
Our preconditioners are constructed by taking circulant approximations of the tensor
blocks of the generator matrix. We prove that the preconditioned system has singular
values clustered around 1 independent of the size of the waiting spaces m. Hence
the conjugate gradient method will converge very fast when employed to solve the
preconditioned system for large m. In fact, we prove that the number of iterations
required for convergence grows at most like O(log, m). Numerical examples are given
in section 7 to illustrate the fast convergence. For the case of a single server (s = 1),
our generator matrix corresponds to a class of quasi-birth—death (QBD) processes
which can be solved efficiently by the folding algorithm; see Ye and Li [22]. We will
compare the complexity of our PCG method with that of the folding algorithm in
section 7. The cost of our PCG method increases more slowly than that of the folding
algorithm when the problem size increases. In fact, for large values of ¢ (¢ > 6), the
PCG-type method is more efficient than the folding algorithm.

The analysis of the MMPP queueing systems can be applied to the production
planning of manufacturing systems. We consider manufacturing systems of multiple
parallel machines producing one type of product. Usually positive inventory is stored
to hedge against uncertain situations such as the breakdown of machines and the
shortfall of products; see Akella and Kumar [1]. It is well known that the hedging point
policy is optimal for one-machine manufacturing systems in some simple situations;
see [1, 3, 10, 11]. For two-machine flowshops, hedging policies are no longer optimal
but near optimal; see [16, 15]. A hedging point policy is characterized by a number h:
the machines keep producing the product at the maximum possible production rate
if the inventory level is less than h, maintain the inventory level h as far as they can
if the inventory level reaches h, and stop producing if the inventory level exceeds h.
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When the optimal policy is a zero-inventory policy (i.e., the hedging point is zero),
then the policy matches with the just-in-time (JIT) policy. The JIT policies have
strongly been favored in real-life production systems for process discipline reasons
even when they are not optimal. By using the JIT policy, the Toyota company has
managed to reduce work-in-process and cycle time in the presence of the stochastic
situations mentioned above; see Monden [14]. We focus on finding optimal hedging
point policies for the manufacturing systems.

We note that in [1, 3, 10, 11] only one-machine systems are considered, and,
in addition, the repairing process of the machine is assumed to be exponentially
distributed. Ching and Zhou [6] consider one-machine manufacturing systems with
the repairing process being Erlangian distributed. The algorithm proposed here can
deal with the more general case of multiple machines. Each machine is unreliable
and has exponential up time and down time, and the demand is a Poisson process.
The production process of the machines can be modeled as an MMPP. The generator
matrix for the machine-inventory system is a particular case of the queueing systems
discussed above, with the queue size m being the size of the inventory which in practice
can easily go up to the thousands. Our numerical method developed for the queueing
networks above is well suited for solving the steady state probability distribution for
these processes. Given a hedging point, the average running cost of the machine-
inventory system can be written in terms of the steady state probability distribution.
Hence the optimal hedging point can also be obtained. Moreover, our algorithm can
also handle the case when the repair time has a more general distribution, e.g., the
Erlangian distribution.

The outline of the paper is as follows. In section 2, we present the generator
matrix for the queueing system (MMPP/M/s/s+m). In section 3, we construct pre-
conditioners by taking circulant approximations of the tensor blocks of the generator
matrices. In section 4, we prove that the preconditioned systems have singular values
clustered around 1. The cost count of our method is given in section 5. In section
6, we apply our method to the production planning of manufacturing systems with
multiple parallel machines. Numerical examples are given in section 7 to illustrate the
fast convergence rate of our method. Finally, concluding remarks are given in section
8.

2. The queueing system. In this section, we present the queueing system
(MMPP/M/s/s+m) arising in telecommunication networks; see, for instance, Meier-
Hellstern [13]. In order to construct the generator matrix of the queueing process, we
first define the following queueing parameters:

(i) 1/, the mean arrival time of the exogenously originating calls,
i) 1/p, the mean service time of each server,
) s, the number of servers,
v) m, the number of waiting spaces in the queue,
) ¢, the number of overflow queues, and
)

parcels, where
_( o o5 (N0
(1) Q; = < o o ) and Aj= ( 0 0 >

Here 0j1, 02, and Aj, 1 < j < g, are positive MMPP parameters. Conventionally,
an infinitesimal generator ) has nonnegative off-diagonal entries and zero row sums.
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For ease of presentation, in our discussion all the infinitesimal generators are of the
form —Q!, which has nonpositive off-diagonal entries and zero column sums.

The input of the queue comes from the superposition of several independent
MMPPs, which is still an MMPP and is parametrized by two 27 x 29 matrices (Q,T).
Here

2 Q=@QL® L)+ (L®QeL® L)+ + (L - ®LcQ,),

(3) A:(A1®12®"'®12)+(IQ®A2®12®"~®12)+"'+(12®"'®12®Aq),
and
F:A-i-)\lgq,

where I> and I3q are the 2 x 2 and 27 x 27 identity matrices, respectively, and ®
denotes the Kronecker tensor product. In the following, we will drop the subscript of
the identity matrix I if the dimension of the matrix is clear from the context.

We can regard our (MMPP/M/s/s + m) queue as a Markov process on the state
space

{(i,/)|0<i<s+m,1<j <29}

The number i corresponds to the number of calls at the destination, while j corre-
sponds to the state of the Markov process with generator matrix ). Hence the genera-
tor matrix of the queueing process is given by the following (s+m+1)27x (s+m+1)2?
tridiagonal block matrix A:

Q+T —ul 0
- Q+T+ul —2ul

A= -I' Q+T +sul —sul

-I' Q+T+spul —sul
0 -r Q+sul
(4)
For simplicity, let us write n = (s + m + 1)29. The steady state probability

distribution vector p = (p1,p2, - .,pn)t is the solution to the matrix equation Ap = 0
with constraints

ZP@ =1
i=1
and

p; >0 foralll<i<n.

Note that the matrix A is irreducible and has zero column sums, positive diagonal en-
tries, and nonpositive off-diagonal entries. From Perron—Frobenius theory, the matrix
A has a one-dimensional null space with a positive null vector; see Varga [20, p. 30].
Therefore, the steady state probability distribution vector p exists.
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Many useful quantities such as the steady state distribution of the number of calls
at the destination, the blocking probability, and the waiting time distribution can be
obtained from the vector p; see Meier-Hellstern [13]. We note that p can be obtained
by normalizing the solution x of the nonsingular system

(5) Gx = (A+eqel)x=e,.

Here e, = (0,...,0,1)! is an n-vector. The matrix G is nonsingular because it is
irreducible diagonally dominant with the last column being strictly diagonally domi-
nant. We will solve the linear system (5) by conjugate gradient (CG)-type methods;
see [2, 18]. The convergence rate of CG-type methods depends on the distribution of
the singular values of the matrix G. The more clustered the singular values of G are,
the faster the convergence rate will be; see Axelsson and Barker [2].

However, this is not the case for our matrix GG, and we will see in the numerical
results in section 7 that the convergence for system (5) is very slow. To speed up
the convergence, a preconditioner is used. In essence, we solve instead of (5) the
preconditioned system

(6) GClw=e,

for w by CG-type methods. Obviously, the solution x to (5) is given by C~'w.
A good preconditioner C' is an easy-to-construct matrix, the preconditioned matrix
GC~! has singular values clustered around 1, and the preconditioned system Cy = r
can be solved easily for any vector r; see Axelsson and Barker [2]. We will show that
our preconditioner satisfies these three criteria in the next three sections.

3. Construction of our preconditioners. In this section, we discuss the con-
struction of preconditioners for the linear system (6). Our preconditioner C' is con-
structed by exploiting the block structure of the generator matrix A in (4). Notice
that the generator A can be written as the sum of tensor products:

(7) A=I®Q+BoI+R®A,

where B and R are (s +m + 1) x (s +m + 1) matrices given by

A — 0
A A+p —2up

B = A A+sp —sp

and
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For small s, we observe that B and R are close to the tridiagonal Toeplitz matrices
tridiag[—A, A + sy, —sp] and tridiag[—1, 1, 0],

respectively. Our preconditioner is then obtained by taking the “circulant approxi-
mation” of the matrices B and R, which are defined by ¢(B) and ¢(R) as follows:

A+sp —sp -
A A+ spu —sp
(8) «(B) = ' RO
A A+su —sp
—Sp - A+ sp
and
1 -1
-1 1
9) c(R) = -1
-1
0 -1 1

We note that ¢(B) and ¢(R) are Strang’s circulant approximations of the Toeplitz ma-
trices tridiag[—A, A+ s, —su| and tridiag[—1, 1, 0], respectively; see Chan [5]. Clearly,
we have the following lemma.

LEMMA 1. rank(B — ¢(B)) = s+ 1 and rank(R — ¢(R)) = 1.

Using the theory of circulant matrices (see Davis [7]) we also have the following.

LEMMA 2. The matrices ¢(B) and ¢(R) can be diagonalized by the discrete Fourier
transform matriz F; i.e.,

F*(¢(B))F=® and F*(¢(R)F =17,
where both ® and U are diagonal matrices. The eigenvalues of ¢(B) and c¢(R) are
given by

—2mi(j—1) —2mi(—1)(s+m)
(10) (725]:)\(176 §+mj+11)+3,u(176 : si7i+l+ )’ ‘7:1,’5+m+1
and
—27i(j—1)

(11) Ypy=1—e stmtr | j=1,...,s+m+ 1.

Thus, the matrices ¢(B) and ¢(R) can be inverted easily by using fast Fourier
transforms.
We first approximate our matrix A in (7) (and hence G in (5)) by

(12) D=1®Q+c¢(B)®I+c(R)®A.

We observe that D is irreducible and has zero column sums, positive diagonal entries,
and nonpositive off-diagonal entries. Hence D is singular and has a null space of
dimension one. Moreover, D is unitarily similar to a diagonal block matrix:

(13) (F*@DDFRN)=12Q+®®[+V® A =diag(Dy,C2,Cs, ..., Cssmit).
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Here the blocks are

(14) Ci = Q + il + YA, i=2,...,5+m+1,
and D, = @ with D; being the only singular block.
Let
(15) C1 = Q + ezey,
where egs = (0,...,0,1) is a 2%-vector. Since C; is irreducible diagonally domi-

nant with the last column being strictly diagonally dominant, it is nonsingular. Our
preconditioner C for the matrix G in (5) is defined as

(16) C = (F®I)diag(C’1,Cg,...,Cs+m+1)(F*®I),

which is clearly nonsingular.

4. Convergence analysis. In this section, we study the convergence rate of our
algorithm when m, the number of waiting spaces, is large. In the queueing systems
considered in Meier-Hellstern [13], the number of waiting spaces m in each queue is
much larger than the number of overflow queues ¢. In section 6, we apply the MMPP
to model manufacturing systems of ¢ parallel machines and m possible inventory
states. In practice, the number of possible inventory states is much larger than the
number of machines in the manufacturing systems and can easily go up to thousands.

We prove that if the queueing parameters A, p, s, g, and 0;; are fixed independent
of m, then the preconditioned system GC~! in (6) has singular values clustered around
1 as m tends to infinity. Hence when CG-type methods are applied to solve the
preconditioned system (6), we expect fast convergence. Numerical examples are given
in section 7 to demonstrate our claim. We start the proof by the following lemma.

LEMMA 3. We have rank(G — C) < (s +2)27 4 2.

Proof. We note that by (5) we have rank(G — A) = 1. From (7), (12), and Lemma
1, we see that rank(A — D) = (s+2)29. From (13), (15), and (16), we see that D and
C differ by a rank-one matrix. Therefore, we have

rank(G — C) < rank(G — A) + rank(A — D) + rank(D — C) = (s + 2)29 + 2.

Hence the inequality is proved. 0

THEOREM 1. The preconditioned matriz GC~' has at most 2((s + 2)29 + 2)
singular values not equal to 1.

Proof. We first note that

GC'=I1+(G-0)C =1+ Ly,
where rank(Ly) < (s +2)29 4+ 2 by Lemma 3. Therefore,
C*G*GO™ —I=Li(I+ L)+ L,

is a matrix of rank at most 2((s + 2)27 + 2). 0

Thus the number of singular values of GC~! that are distinct from 1 is a constant
independent of m. In order to show fast convergence of PCG-type methods with
preconditioner C, one still needs an estimate of o, (GC™1), the smallest singular
value of GO~!. If 01 (GC™1) is uniformly bounded away from zero independent
of m, then the method converges in O(1) iterations; if omin(GC~1) decreases like
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O(m~%) for some « > 0, then the method converges in at most O(log, m) steps; see
Van der Vorst [19] or Chan [4, Lemma 3.8.1].

In the remainder of this section, we show that even in the worst case in which
Omin(GC™1) decreases in an order faster than O(m~%) for any a > 0 (e.g., like
O(e™™)), we can still have a fast convergence rate. Note that in this case the matrix
equation (6) is very ill conditioned. Our trick is to consider a regularized equation of
(6) as follows:

(17) C*G*G+m ™ PNC'w = C*G* ey,

where [ is any positive constant.
In the following, we prove that the regularized preconditioned matrix

CG*G+m P nCc!

has eigenvalues clustered around 1 and its smallest eigenvalues decrease at a rate no
faster than O(m~4="). Hence PCG-type methods will converge in at most O(log, m)
steps when applied to solve the preconditioned linear system (17). Moreover, we prove
that the 2-norm of the error introduced by the regularization tends to zero at a rate of
O(m~=5). To prove our claim, we must get an estimate of the upper and lower bounds
for ||C~1|]2. We begin our proof by the following lemma.

LEMMA 4. Given any matriz W, if the smallest eigenvalue of W + W* | denoted
by Amin(W + W*), satisfies Amin(W +W*) > 6§ > 0, then ||[W 1|2 < 2/6.

Proof. For any arbitrary x, using the Cauchy—Schwarz inequality, we have

S1x[[3 < Aumin (W + W)||x[[3 < x* (W + W*)x = 2x" Wx < 2[[x||2][Wx]]2.

Since Wx is arbitrary, this implies ||[W~1||s < 2/6. 0

Now we are ready to estimate ||C71]|5.

LEMMA 5. Let the queueing parameters A, i, s,q, and o;; be independent of m.
Then there exist positive constants 71 and o independent of m such that

T1 § ||Cil‘|2 S T2m2.

Proof. We first prove the left-hand side of the inequality. From (16), we see that
C is unitarily similar to a diagonal block matrix. We therefore have

ICl2 = max {||C1[2, [|Call2, - - [|Cormnll2} -

Using (14), (10), and (11), it is straightforward to check that ||C;||1 and ||C;||s,
1<i<s+m+1, are all bounded above by

1

= <max{oj1} + max{aj2}> +2A+sp+1).
1 J J

Using the inequality

-1z < VI Tl oo

we see that [|Cil|2, ¢ = 1,...,s + m + 1, are all bounded above by 1/7. Thus
||C||]2 < 1/7 and hence 71 < ||C71|o.
Next we prove the right-hand side of the inequality. We note again by (16) that

1€z = max {ICT |2, [|C5 Iz, - IO g 12} -
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From (15), we can see that C is a 27 x 27 nonsingular matrix with entries independent
of m. Thus ||C; |2 is bounded independent of m. To obtain bounds for ||C; ||,
i=2,...,5s+m+ 1, we first symmetrize the matrices. Define ¥ = ¥; ® --- ® X,

where
1 0 .
EJ:<O 011)7 .]:17aq
052

We see that ||X||2 and ||$71||2 are bounded independent of m. By (1) and (2), we
see that QY is a symmetric semidefinite matrix. Thus

CQE:QZ—H;S,E—&—%AE, i:2,...,5+m+1,

are symmetric matrices too. By (11), we see that (;AX 4+ (;AX)*), i = 2,...,s+
m + 1, are diagonal positive semidefinite matrices. Therefore,

From (10), we have

i — D
) ) V) > TP AN (/ =9 )
053+ 0i) 2 A (0T )i s
Since
sin9>min{29,2<1—9>} Vo € [0, 7,
T 7r
we have

) ) ) —1y—=1_ - 4(1'*1)2 i—1 ’
Amin(9:3 + (¢:2)7) 2 AlIZ77 2 mln{(s+m+1)2’4<1_s+m+l)

AN ,
> ol Yt i=2,...,s+m+1.

By Weyl’s theorem [9, p. 181], we then have
T .
Amin (i 2 + (9;2)*) > 2 0= 2,...,8+m+1,
where 7 = 4)||S71||; ! is a positive constant independent of m.

Thus by (18) we get

T

)\mm(C,E—&—(ClZ)*) > t=2,....,s+m+1.

m?’
Hence by Lemma 4 we have
—1-1 2 5 .
E7°C7 |2 < m7, i1=2,...,s+m+1.
T

Therefore,

-1 —1—1 2m? .
1CT 2 < ZEILIETC e < - 1B, i=2,. s +m+1.
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Since ||Cy ]2 is bounded above independent of m, we have
_ _ 2m?
¢z < max {lC7 e, " 12l = ram,

where 79 is a positive constant independent of m. Hence we have proved the
lemma. 0

THEOREM 2. Let the queueing parameters A, i, s,q, and 045 be independent of m.
Then for any positive B the reqularized preconditioned matriz

(19) CHG*G+m *Pno?

has eigenvalues clustered around 1 and the smallest eigenvalue decreases at a rate no
faster than O(m=*=P). Furthermore, the error introduced by the regularization is of
the order O(m=P).

Proof. We note by Theorem 1 that

CHG*G+m ™4 PNNC =T+ Ly+m™*PCc—C1,

where Lo is a Hermitian matrix with rank(Ls) < 2((s + 2)2%2 4+ 2). By Lemma 5, we
have

lim m~ 4 #|C7*C7 |y < lim m™? =0.
m— 00 m— 00

Thus by Cauchy’s interlace theorem [9, p. 184] the regularized preconditioned matrix
in (19) has eigenvalues clustered around 1 as m tends to infinity. The error introduced
by the regularization is given by m~4=%||C~*C~1||5, which by Lemma 5 tends to zero
like O(m=").

As for the smallest eigenvalue of the regularized preconditioned matrix in (19),
we note that

(20)  min X (GG +m~*P)x _ minjg o (GG +m ™ )x o
[|1x[[2=1 x*C*Cx - mMax||x||,=1 x*C*Cx ~ mAts’

where the rightmost inequality follows from Lemma 5. We recall that = and ( are
positive constants independent of m. Hence the smallest eigenvalue of the regularized
preconditioned matrix in (19) decreases no faster than O(m=*=7). 0

Thus we conclude that PCG-type methods applied to (17) with 8 > 0 will con-
verge in at most O(log, m) steps; see Van der Vorst [19] or Chan [4, Lemma 3.8.1]. To
minimize the error introduced by the regularization, one can choose a large 3. Recall
that regularization is required only when the smallest singular value of the matrix
GC~!in (6) tends to zero faster than O(m~=%) for any a > 0. In view of Lemma 5 (or
cf. (20)), this can happen only when the smallest singular value of G has the same
decaying rate. This will imply that the matrix G is very ill conditioned. We note,
however, that in all our numerical tests in section 7 we found that there is no need to
add the regularization.

5. Cost analysis. In this section, we derive the computational cost of the PCG-
type method. We compare our PCG method with the block Gauss—Seidel (BGS)
method used in Meier-Hellstern [13] and the folding algorithm of Ye and Li [22].
We show that the cost for PCG-type algorithms is O(29(s + m + 1)logy(s + m +
1) + ¢(s + m + 1)2%). The computational cost per iteration of the BGS method is
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O((s+m+1)227); see Meier-Hellstern [13]. Thus PCG-type methods require an extra
O(log,y(s +m + 1)) of work per iteration compared with the BGS method. However,
as we will soon see in the numerical examples of section 7, the fast convergence of our
method can more than compensate for this minor overhead in each iteration.

When the queue has a single server, i.e., s = 1, our generator matrix A corre-
sponds to a class of QBD processes which can be solved efficiently by the folding
algorithm of Ye and Li [22]. The complexity of the folding algorithm is approximately
250234 Jog, (s+m+1)+3(s+m-+1)227 operations, where 1 < a < 2. We will compare
the computational cost of our PCG method with the folding algorithm in section 7.
Our PCG method is more efficient than the folding algorithm for large problems.

In PCG-type algorithms for (6), the main cost per iteration is to compute the
matrix-vector multiplication of the form GC~'y twice for some vector y. By using
the block tensor structure of A in (7), the multiplication of Gz requires (s+m+1)g2?
operations for any vector z. By (16), we see that C 1y is given by

(F @ Ndiag(Cy ', Cy ..., Ol ) (F* @ Dy.
It involves the matrix-vector multiplications of the form
(F*® Dz and (F®I)z.

By using fast Fourier transforms, they can be obtained in 6(s+m+1)291log,(s+m+1)
operations. The vector

diag(Cy ', Cy .., 00 1)z

can be obtained by solving (s + m + 1) linear systems involving the matrices C;
i=1,...,s+m+1. Since each matrix is of size 29 x 2%, if GE is used, O((s+m+1)239)
operations will be required. We now show that it can be reduced to O((s+m+1)¢2?)
operations.

First we recall from the definitions of C;, @, and A in (14), (2), and (3) that

Ci=((@Qi+ ¢l +YiM)RI®--- )+ (TR (Qa+ ¢l +YiMa)RI® ---® )
21) (IR @ (Qq+ ¢l +1ilyg)),

where @); and A;, j = 1,...,q, are given in (1). By using Schur’s triangularization
theorem [9, p. 79], we can find 2 x 2 unitary matrices U;; and lower triangular matrices
L;; such that
(22)  U5(Qj+ il +vihj)Usj =Ly, 1<i<s+m+1, 1<j<q
Fori=1,...,s+m+1, define
Ui=Un @ - @ Uy

and

Li=Lyu®I® N+ LpRI®--- @)+ +(IRI[® - @1® Lyy).
We see from (21) and (22) that

Ui*CiUi:Li7 1§z§s+m+1
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Hence the vector C; 'w can be computed as U;L; 'Ujw.
The matrix-vector multiplication of the form U;w and U;w can be done in 2(¢27)
operations by making use of the formula

Uw=(U; 010 - @DIeUyeI0 &) - I2]® &I Ujw.

We note that the matrix L; is a lower triangular matrix and each row of it has at
most ¢ nonzero entries. Hence L;lw can be obtained in ¢2¢ operations. Thus for any
vector w the vector C;” 'w can be obtained in 3(¢27) operations. Hence we conclude
that the vector

diag(Cy ", C5 ..., Cl L )r

can be computed in approximately 3(s +m + 1)g2? operations.

In summary, each iteration of PCG-type methods needs 2(6(s+m +1)271log,(s+
m+1)+4(s+m+1)g29) ~ O(mlog, m) operations, as compared to O((s+m+1)229) ~
O(m) operations required by the BGS method. As we proved in section 4, PCG-type
methods will converge in at most O(log, m) steps (see also the numerical results in
section 7); therefore, the total complexity of our methods will be O(m logg m). As
a comparison, the numerical results in section 7 show that the number of iterations
required for convergence for the BGS method increases linearly like O(m). Therefore,
the total complexity of the BGS method is about O(m?) operations.

As for storage, PCG-type methods, the folding algorithm, and the BGS method
require O(2%(s + m + 1)) memory. Clearly, at least O(29(s + m + 1)) memory is
required to store the approximated solution in each iteration.

6. The failure-prone manufacturing systems. In this section, we study a
general kind of failure-prone manufacturing system. These systems consist of ¢ mul-
tiple parallel machines producing one type of product. Each machine is subject to
random breakdowns and repairs. The processing time for one unit of product, the up
time, and the down time of each machine are exponentially distributed. The interar-
rival time of a demand is exponentially distributed. The systems allow finite backlog
and a penalty cost is associated with the rejection of a demand. Moreover, there is
an inventory cost for holding each unit of product and a shortfall cost for each unit
of backlog.

The hedging point policy has been shown to be optimal for one-machine one-
product manufacturing systems with repair time exponentially distributed; see [1, 3,
10, 11]. In those works, the discrete inventory levels of the product are approximated
by a continuous fluid flow model. Analytic optimal control is found to be threshold
(hedging point)-type by solving a pair of Hamilton—Jacobi-Bellman equations. The
control is optimal in the sense that it minimizes the average (or discounted) running
cost of the manufacturing systems. In this paper, we focus on finding the optimal
hedging point for the manufacturing systems under consideration.

It should be noted that in [1, 3, 10, 11, 21, 17] only one machine is considered and
the machine has only two states—up and down. Here we consider g parallel unreliable
machines. The production process of the machines is then an MMPP. The states of
the machines and the inventory level can be modeled as an irreducible continuous time
Markov chain. For different values of the hedging point A, the average running cost
C(h) can be written in terms of the steady state distribution of the Markov chain.
Therefore, the optimal hedging point can be obtained by varying different values of h.
Let us first define the following parameters for the manufacturing systems as follows
(see Ching and Zhou [6]):
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(i) g, the number of machines,

ii) 1/0j1, the mean up time of the machine j, j =1,...,¢,
(i) 1/0;2, the mean repair time for the machine j, j =1,...,¢,
(iv) 1/A;, the mean processing time for one unit of product on machine j, j =
1’ N ) q)

(v) 1/, the mean interarrival time of demand,
(vi) h, the hedging point, and
(vil) g, the maximum allowable backlog.
For each machine j, j = 1,...,¢q, let Q; be the generator matrix of the machine
states and A; be the corresponding production rate matrix. Here

L Jj1 —0342 A= /\j 0
@ ( —oj1 o) ) wmd A < 0 0
(cf. (1)). Each machine has two states—either “up” or “down.” Since there are
q machines, there are 29 states for the system of machine. We denote the set of

machine states by 2. The superposition of the ¢ machines forms an MMPP and is
characterized by the following 29 x 2¢ generator matrix:

Q=L@ L)+ (LEQL® L)+ + (L - ®L®Q)
(cf. (2)). The corresponding production rate matrix is given by

A=MRLe QL)+ (LML L)+ + (L@ - @A)
(cf. (3)).

We let a(t) be the state of the system of machines at time ¢. Therefore, a(t) has
27 possible states. The inventory level takes integer value in [—g, h] because we allow
maximum backlog of g and the hedging point is h. Here negative inventory means
backlog. We let z(t) be the inventory level at time ¢. The machine-inventory process
{(a(t),z(t)),t > 0} forms an irreducible continuous time Markov chain in the state
space

{(yz) | €Q, x=—g,...,0,...,h}.

Each time it visits a state the process stays there for a random period of time that
has an exponential distribution and is independent of the past behavior of the process.
If we order the state spaces of the machine-inventory process lexicographically, we get
the following (h+g+1)2%x (h+4g+1)2? generator matrix H for the machine-inventory
system:

Q+A —ul 0
A Q+A+pul —pul

H= —A Q+A+pl —pl v

AN Q+A+pl  —pl
0 —A Q+pl

where [ is the 2" x 2™ identity matrix. Clearly, the matrix H has the same tensor
block structure as that of the generator matrix A in (4). In fact, H is a particular case
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of A with s =1, A =0, and m = h+ g — 1. Therefore, the techniques and algorithms
developed in the previous sections can be used to obtain the steady state distribution
of the process efficiently. Numerical results are given in section 7 to illustrate the fast
convergence.

Important quantities such as the average running cost of the machine-inventory
system can be written in terms of its steady state distribution. Let

pla,z) = tlim Prob {a(t) = a,z(t) = x}
be the steady state probability distribution, and let

p;zzp(k‘,]), J:_g7_(g_1)7a07ah
ke

be the steady state distribution of the inventory level of the system. The average
running cost for the machine-inventory system is then given by

h —1
(23) C(hy=cry jpi—cp > jpi+cpup_g,  0<h<D,

Jj=1 Jj=-g

where c¢; is the inventory cost per unit of product, cp is the backlog cost per unit of
product, cp is the penalty cost for rejecting an arrival demand, and b is the maximum
inventory capacity; see Ching and Zhou [6]. Hence once p; are given, we can easily
find A* which minimizes the average running cost function C'(h) by evaluating C(h)
forall 0 < h <b.

We remark that our method can be generalized to handle the case in which each
machine has the Erlangian distribution of [ phases. Suppose the mean times of repair
for machine j,j5 = 1,...,q, are the same in each phase and are equal to 1/0j2. In
this case, the generator matrix for the machine-inventory system can be obtained by
replacing the generator matrix of the machine state and its corresponding production
rate matrix by Q; and A;, respectively, where

041 —0j52 )\z 0
—0j 1 052 0
Qj = —0j2 052 and A; = 0
0 —0352 052 0 0

Hence we see that the techniques and algorithms developed previously can be applied
to this case too.

7. Numerical results. In this section, we illustrate the fast convergence rate
of our method by examples in queueing systems and manufacturing systems. The
conjugate gradient squared (CGS) method (see Sonneveld [18]) is used to solve the
preconditioned system (6). The method does not require the transpose of the iteration
matrix GC~!. Using the folding algorithm, one can obtain the steady state probability
vector with a residual error of order 10713 to 10716; see Ye and Li [22]. In order to
compare our method with the folding algorithm, the stopping criterion for the CGS
and BGS methods is set to be

||[Apk||2 < 10712,
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where pj is the computed steady state probability distribution at the kth iteration
and

n
H(y17y2v"'7yn)t”2£ Zyzz
=1

In all our numerical examples, the residual errors lie between 1073 to 107'6, which
is comparable to the folding algorithm; see Ye and Li [22]. The initial guess for both
methods is the vector of all ones normalized such that its lo-norm is equal to 1. All
the computations were done on an HP 712/80 workstation with MATLAB.

Let us first give the numerical results for the queueing networks. We compare
the numerical results of the CGS, preconditioned CGS, and BGS methods for the
number of overflow queues ¢ = 1,2, 3,4 and the number of servers s = 2. The MMPP
parameters are arbitrarily chosen to be 01 =2/3,050 =1/3,7 =1,...,q. The other
queueing parameters are given by p =2, A=1,and \; =1/¢,j =1,...,q. We recall
that the size of the matrix is (s +m +1)2? x (s +m + 1)29. The number of iterations
required for convergence is given in Table 1. The symbols I, C, and BGS represent
the methods used, namely, CGS without preconditioner, CGS with our preconditioner
C in (16), and the block Gauss—Seidel method, respectively. Numbers of iterations
greater than 2000 are signified by “xx.”

TABLE 1
Number of iterations for convergence.

s=2 g=1 q=2 q=3 q=4
m I C BGS I C BGS I C BGS I C  BGS
16 36 7 130 36 9 112 38 12 107 40 13 110
32 155 8 171 154 9 143 158 12 145 161 13 137
64 ok 7 242 ok 9 207 ok 12 213 ok 13 199
128 *k 8 366 K 10 325 *k 12 340 Kk 14 317
256 *% 8 601 *% 10 549 *% 12 582 *% 14 530
512 *% 8 1051 *% 10 988 ok 12 1046 *k 14 958
1024 *% 8 *% *k 10 *k *k 12 *% *% 14 %

We see that the numbers are roughly constant independent of m for the CGS
method with our preconditioner C. For the BGS method, the convergence rate is
approximately linear in m. Recall from section 5 that the costs per iteration of the
CGS method with preconditioning and of the BGS method are, respectively, O(29(s+
m+1)logy(s+m+1)) and O(229(s+m+ 1)) operations. We conclude that the total
cost of obtaining the steady state probability distribution vector for the CGS method
with preconditioning is approximately O(29(s + m + 1)logy(s + m + 1)) operations
while for the BGS method it is approximately O(229m(s + m + 1)) operations.

We next compare the flop counts between our PCG method and the folding
algorithm for the single server case (s = 1). For simplicity, we set (s +m 4+ 1) = 2¢
and we consider ¢ = 1,2,...,7. Our PCG method converges within 25 iterations for
all the numerical examples tested. We recall that the number of operations in each
iteration of PCG is

2{6(s +m +1)27logy(s+m+1) + 4(s+m+1)g27}.
Therefore, the total number of operations is at most

50{6(s +m+1)271logy(s + m+ 1) + 4(s + m + 1)¢2?}.
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Fic. 1. Computational flops of the PCG method and the folding algorithm for the single server
case.

The minimum cost of the folding algorithm is given by
26
3 23 log, (s +m + 1) + 3(s +m + 1)2%%,

see Ye and Li [22]. In Figure 1, we depict the computational costs of our PCG method
and the folding algorithm for different values of q. We see that the computational
cost of our PCG method increases at a slower rate than that of the folding algorithm.
The crossover point is at ¢ = 6.

Next we test our algorithm for the failure-prone manufacturing systems. We
assume that all ¢ machines are identical, and in each month (four weeks) each machine
breaks down once on average. The mean repairing time for a machine is one week.
Therefore, we have 0j7 =1/3,0j2 =1,5 =1,...,¢q. The mean time for the arrival of
demand is 1/5 week and the mean time for the machine system to produce one unit
of product is one day; therefore, we have p =5and \; =7/¢,7=1,...,q.

In Table 2, we give the number of iterations required for convergence for all three
methods. As in the queueing systems case, we see also that the numbers are roughly
constant independent of (g + h) for the CGS method with our preconditioner C. For
the BGS method, the convergence rate is again approximately linear in (g + h).

Finally, we consider examples of finding the optimal hedging point h*. We keep
the values of the machine parameters the same as in the manufacturing system ex-
ample above, except that we set ¢ = 4 and g = 50. Moreover, the inventory cost c;



Downloaded 03/24/14 to 147.8.204.164. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

480 WAI KI CHING, RAYMOND H. CHAN, AND XUN YU ZHOU

TABLE 2
Number of iterations for convergence.

g=1 q=2 q=3 q=

g+h I C BGS I C BGS I C BGS 1 C BGS
16 52 6 565 54 7 603 60 8 601 63 9 685
32 173 6 1491 177 8 1682 231 8 1443 180 10 1904
64 ok 6 ok ok 8 ok Kk 9 ok *% 10 ok
128 *% 8 *% *% 8 *% *% 9 *% *% 10 *%
256 *k 8 *% *k 9 *% *% 9 *k % 10 *%
512 *k 8 *ok *% 9 *ok *k 9 *k *k 11 *k
1024 kK 8 *ok *K 9 *k Kk 9 *k *ok 11 *k

TABLE 3

The optimal (h*,C(h*)) for different X\; and p.

n= 1 n= 2 n= 3
X=1  (3,181) (10,533) (200,14549)
N=15 (2,128) (5270)  (11,576)

and backlog cost cp per unit of product are 50 and 2000, respectively; the maximum
inventory capacity b is 200; and the penalty cost cp for rejecting a demand is 20000
(see (23)). In Table 3, we give the optimal pair of values (h*, C(h*)), the optimal
hedging point h*, and its corresponding average running cost per week C(h*) for
different values of \; and pu.

8. Concluding remarks. In this paper, we proposed a fast algorithm for solving
the steady state probability distribution for queueing systems with MMPP inputs.
The MMPP is commonly used in modeling the inputs of many physical systems;
see Heffes and Lucantoni [8] and Meier-Hellstern [13], for instance. Here we related
the MMPP to the production process of unreliable manufacturing systems under the
hedging point production control. Our algorithm derived for the queueing systems can
be applied to obtain the optimal hedging point. Numerical examples were reported
to illustrate the fast convergence rate of our algorithm.

For the manufacturing systems, there are two possible generalizations of the
model. The maximum allowable backlog g and the number of machines ¢ (with an
associated cost) can be considered as decision variables for the optimization problem.
We can also consider the machine failure rate o;; to be dependent on the produc-
tion rate A;. Note that in this case it has been shown that the optimal policy is
still of hedging point type if o1 is a linear function of the production rate A; in the
one-machine case; see Hu, Vakili, and Yu [12]. It would be interesting to extend our
method to these two cases.

Acknowledgment. The authors would like to thank the referees for their con-
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