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Very little is known about the complex structure of universal covers ¥ of projective-
algebraic manifolds X. According to the Shafarevich Conjecture, such complex manifolds
X should always be holomorphically convex. Nonetheless, there is up to this point no
overwhelming supporting evidence for this conjecture. A weakened conjecture is the state-
ment that the holomorphic convexity of X is a property of the homotopy type of X. (We
may reasonably extend the latter conjecture to include the larger class of compact Kihler
manifolds.) In this vein we consider in the present article sufficient topological conditions
on a compact Kihler manifold X guaranteeing that the universal cover X is a Stein
manifold. We study compact Kahler manifolds whose fundamental groups =, (X') admit
non-trivial discrete representations into semisimple Lie groups of the noncompact type.
We prove the Steinness of their universal covering spaces X by imposing an additional
homological condition on the representations. More precisely, we prove

Main Theorem. Let G be a semisimple Lie group of the noncompact type and K = G
be a maximal compact Lie group. Let I' = G be a Zariski-dense torsion-free discrete subgroup
and denote by N the corresponding Riemannian locally symmetric space ' \G|K. Let X be
a compact Kdhler manifold whose fundamental group m,(X) admits a representation
®:7n,(X) > G such that &(n,(X))=T. If furthermore the induced homomorphism
P, : H,(X,R) - H,(N,R) is injective, then the,universal covering space X of X is a Stein
manifold.

Our result includes as a special case the following situation. Let 2 be a bounded sym-
metric domain and I be a torsion-free discrete group of holomorphic isometries such that
Q/T' = N is compact. Let X, be a complex submanifold of N of dimension at least 3 which
is a complete intersection of smooth hyperplane sections (with respect to some projective
embedding of N). If X is a compact Kihler manifold homotopic to X, then by the
Lefschetz Theorem =, (X) is isomorphic to m,(N) =TI < G = Aut,(£2) and the induced
homomorphism H,(X,R) — H,(N,R) is an isomorphism. In this special case our Main
Theorem can also be deduced from the work of Simpson [Si] on complex variations of
Hodge structures.
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Here N = G/K, equipped with a canonical metric induced by the Killing form of the
Liealgebra of G, is a Riemannian symmetric manifold of the noncompact type. In particular,
it is of nonpositive Riemannian sectional curvature. This entitles us to use the method of
harmonic maps. We consider a harmonic map f: X — N inducing @ and its lifting
F: X - N=G/K to universal covers. In the ensuing discussion we assume for simplicity
that @ : 7, (X) — G is faithful, so that F: ¥ - G/K is proper.

By Grauert’s solution to the Levi Problem [G], X is Stein if and only if there exists
on X a strictly plurisubharmonic exhaustion function. From the 83-Bochner-Kodaira
formula of Siu [S 2] and Sampson [Sa] and comparison theorems in Differential Geometry
it follows readily that the pull-back ¢ by F: ¥ — G/K of the square of a geodesic distance
function on the symmetric space G/K is a real-analytic plurisubharmonic exhaustion
function. To invoke Grauert’s result the trouble is that ¢ is in general only weakly pluri-
subharmonic. The key step of our proof of the Main Theorem consists of the following
proposition on the structure of the Levi form L(¢) =id0¢. In a nutshell it says that X
can be decomposed into locally closed complex-analytic subvarieties in such a way that
the zero eigenspaces of L(¢) are transverse to each piece of the decomposition.

Proposition 1. Let X be as in the Main Theorem and X be its universal cover. Assume
that @ : n,(X) — G is injective and let ¢ be the real-analytic plurisubharmonic exhaustion
function on X as defined in (2.1). Then there exists a finite set {Sy,..., S, = X} of complex-
analytic subvarieties of X satisfying the following properties:

1) S;=S,& 8, =X;

(2) each irreducible component of S; is a proper subvariety of an irreducible component
of Sivy fori<p;

(3) S; contains the singular locus of S;,, for i<p—1;

(4) denoting by S, the inverse image of S, with respect to the universal covering map
X - X, ¢ls,,, -3, is strictly plurisubharmonic for i < p.

Decomposing X into a union of complex manifolds as given in Proposition 1, we
could invoke Narasimhan’s generalization [N 1] of Grauert’s solution to the Levi Problem
to prove the Steinness of X. To do this on each X, = {¢ < ¢} we have to modify the weakly
plurisubharmonic exhaustion function (¢ — @)~ ! to get a strictly plurisubharmonic exhaus-
tion function. We do this inductively on X, N S;. The key induction step consists of applying
a theorem of Siu’s [S1] asserting that a Stein space in any complex space admits a Stein
neighborhood. Since XN S; may be singular we need the solution of the Levi problem in
the case of singular spaces, as given in [N1].

For @:7,(X) = G not necessarily injective we can replace X by an intermediate
regular covering space X * corresponding to Ker @ to prove that X* is Stein. We can then
conclude the Steinness of X by invoking Stein [St] on covering spaces of Stein spaces.

To prove Proposition 1 we have to show that the zero eigenspaces of the Levi form
L(¢) must be transverse to the sets on which ¢ is weakly plurisubharmonic. We argue by
contradiction. Assuming that Proposition 1 fails, we construct non-trivial 2-dimensional
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homology classes which are collapsed to zero under the harmonic map, contradicting with
the hypothesis that &, : H,(X,R) - H,(N,R) is injective. For the construction of such
homology classes we use the notion of semi-Kéhler structures as developed in Mok [M 1],
[M2]. In other words, we use meromorphic foliations equipped with compatible degenerate
Kaéhler metrics. These semi-Kéhler structures arise from harmonic maps via the use of the
80-Bochner-Kodaira formula. The argument leading to the construction of the 2-dimen-
sional homology classes can be summarized in the following more general proposition,
applied to non-singular models of subvarieties of X.

Proposition 2. Let S be a compact Kéhler manifold and g : S — N be a non-constant
harmonic map of S into a Riemannian manifold (N, h) of nonpositive sectional curvature in
the complexified sense. Suppose the g* Tt-valued 1-form dg is everywhere degenerate and
the kernel is generically of dimension £. Then, there is a holomorphic foliation % on S defined
outside a complex-analytic subvariety V< S of codimension 22, such that 4, agrees with
Ker (g (x)) on a dense open subset of S. Furthermore, there exists a 2¢-dimensional homology
class & such that g*é 0, where & is represented by a current @ of bi-dimension (¢, ¢) such
that outside of V, O is a measured foliated cycle © defined by leaves of %.

We will start in §1 with recalling some basic facts about harmonic maps of compact
Kéhler manifolds into Kéhler manifolds of nonpositive curvature in the complexified sense.
This will lead to the existence of a meromorphic foliation together with a compatible
Kihler semi-metric. In § 2 we explain first of all how to construct a weakly plurisubharmonic
exhaustion function ¢ on X such that the kernel of the Levi form L(¢) is related to the
meromorphic foliation. We analyze the kernel of L(¢) and obtain a decomposition of ¥
consisting of pieces on which ¢ is strictly plurisubharmonic, proving Proposition 1. The
main difficulty is to establish Proposition 2 using semi-Kéhler structures. In §3 we will
invoke Narasimhan’s theorem [N1] to prove by induction the Steinness of X. Finally,
along the same line of arguments, we prove a strengthened version of our Main Theorem
in the case of compact Kéhler surfaces X by dropping the homological condition on second
Betti groups. We prove in this case the holomorphic convexity of the intermediate regular
covering space X * corresponding to Ker &.

§ 1. Harmonic maps on compact Kihler manifolds

(1.1) The J0-Bochner-Kodaira formula. Let (X,g) be a compact Kahler manifold
and (N, h) be a Riemannian manifold. We consider harmonic maps f: (X, g) — (N, h). On
(X, g) write (g,5) for the metric tensor in local holomorphic coordinates (z,); (g*®) for the
conjugate inverse of (g,). Then, fis harmonicif and only if it satisfies the Laplace-Beltrami

equation
I aZf: N af’ 6f“
a,B.j.k 32 aZﬂ aZ a

for each i. Here ("I};) are the Riemann-Christoffel symbols of (¥, #). The term inside the
parenthesis defines components of the complex Hessian Vof of f. f is said to be plurihar-
monic if and only if VJf = 0. For harmonic maps f: (X, g) = (N, h) we have the following
00-Bochner-Kodaira formula of Siu [S2] and Sampson [Sa]. In what follows X and N
need not satisfy the hypotheses of the Main Theorem.



4 Mok, Universal covers of compact Kdihler manifolds

Proposition (Siu [S2], Sampson [Sa]). Let (X, g) be a compact Kéhler manifold and
(N, h) be a Riemannian manifold. Let f: (X, g) — (N, h) be a smooth harmonic map. Then,

JIVOfI?+ H(of®df;0f®df) =0,
X

where H(-,~) is some Hermitian bilinear form defined by the curvature tensor of (N, h).
Suppose furthermore that (N, h) is of nonpositive sectional curvature in the complexified
sense. Then, H(Of® 0f;, 0f ® 0f) = 0. As a consequence both terms inside the integrand
vanish identically. In particular, f is pluriharmonic.

Here (N, h) is said to be of nonpositive curvature in the complexified sense if and
only if RY;5: < 0 for the curvature tensor RY of N and for complexified tangent vectors
A and B. Here and in what follows df = df + df where df is an f*T\*-valued (1, 0)-form
and 0f is an f* T, -valued (0, 1)-form.

(1.2) Meromorphic foliations and compatible Kihler semi-metrics. One application
of the Bochner-Kodaira formula for harmonic maps is to show that f'is either holomorphic
or anti-holomorphic under certain assumptions on the curvature tensor of the target
manifold. This was the first application in Siu [S2] for the problem of strong rigidity.
Short of that we can still affirm that f is pluriharmonic and that it leads to holomorphic
foliations. We state what we need in the following proposition, for which the method of
proof relies on an argument of Siu [S3] based on verifying the Frobenius condition.

Proposition 3 (Carlson-Toledo [CT]). In the statement of the 00-Bochner-Kodaira
Sormula suppose (N, h) is a Riemannian symmetric space of the noncompact type. Then,
S*TE can be endowed a holomorphic structure such that 0 f becomes a holomorphic section
with values in Hom(Ty, f*Ty"). In particular, where 0f is of constant rank, the distribution
x — Ker(9f)(x)) defines an integrable holomorphic distribution and thus a holomorphic
foliation.

The distribution x — Ker((9f)(x)) gives rise to a meromorphic foliation % on X.
This means that there exists a complex-analytic subvariety V' < X of complex codimension
= 2 such that & defines a holomorphic foliation on X — V. There is a d-closed semipositive
(1,1)-form w on X compatible with & on a dense open set of X in such a way that w can
be intepreted at generic points as defining a Kdhler form on a local complex submanifold
transverse to the foliation. w is defined as follows. The Riemannian semi-metric, as a
symmetric 2-tensor field, decomposes into types in terms of the complex structure of X.
The (1,1)-part then defines a Hermitian semi-metric, which one can show to be a Kdhler
semi-metric in the sense that the corresponding (1, 1)-form w is d-closed, as a consequence
of the pluriharmonicity of f (cf. Mok [M1]). % and w are compatible on a dense open
set U on X in the sense that for x € U, the kernel of the semipositive (1,1)-form w(x) is
the same as Ker((6f)(x)). As in Mok [M 2] we call (X, %, o, V) a semi-Kihler structure.
We will also use the terminology concerning semi-Kdhler structures as developed in [M 1],
[M2].

(1.3) We will need to consider restrictions of pluriharmonic maps f: X —» N to
possibly singular irreducible subvarieties S = X. Consider the restriction f|g: S - N. We
replace S by a non-singular Kéhler model S obtained by desingularizing S and denote by
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v: 8 - S the desingularization. The composite map fv: $ — N is smooth and plurihar-
monic outside a complex-analytic subvariety so that it is globally pluriharmonic on S. On
the other hand, the representation ®|, : 7,(S) — =, (N) gives rise canonically to a re-
presentation ¥: n,(S) - 7, (N). By the uniqueness theorem for harmonic maps of Hart-
mann [H], fov:8 — N is up to geodesic translations on N the unique harmonic repre-
sentative for the representation ¥': r, (S) — =, (V). For the purpose of proving factorization
theorems on irreducible subvarieties using harmonic maps, passing to desingularizations
we can always reduce to the case of compact Kihler manifolds.

§ 2. Decomposition of X

(2.1) Let(X,g) be acompact Kdhler manifold satisfying the hypothesis of the Main
Theorem. For the ensuing discussion we make the additional simplifying assumption that
the representation @ : 7, (X) — G is faithful. To prove that the universal cover X is Stein
we are going to use the real-analytic plurisubharmonic exhaustion function ¢ to decompose
X into a union of locally closed complex submanifolds as given in Proposition 1.

Write N =I'\G/K and write (N, k) for the corresponding Riemannian locally sym-
metric manifold. Let f: (X, g) — (N, h) be a harmonic map inducing @: 7, (X) -» n,(N) =T
on fundamental groups. The existence of f follows from Eells-Sampson [ES] in the case
of cocompact I' = G and from Corlette [C] in the general case. Let F: X - N =G /K be
the lifting to universal covering spaces.

Let d(-, -) denote the geodesic distance function on the Riemannian symmetric space
N = G/K and write r(%) for d(o; %), where o denotes an arbitrary base point on G/K. Let
@ be the smooth function defined by ¢ (5) = r2(F(p)) for je X. Since F: ¥ » G/K is
actually pluriharmonic and the canonical metric on G /X is real-analytic, ¢ is real-analytic.
On a neighborhood of p denote by (z,) a system of local holomorphic coordinates. Denote
by (4;) a system of normal geodesic coordinates at F(j). From the pluriharmonicity of F
it follows that
ou' oul

02 2 .
P = ; 6u,-6ujr (F(P));az 2,

e
02,02,

()

Recall that G/ K, equipped with the canonical metric, is of nonpositive Riemannian
sectional curvature. By comparing G/K with the flat Euclidean space of the same real
dimension we conclude that r? is strictly convex on G/K. It follows from (*) that ¢ is
plurisubharmonic on X. Furthermore, if # is a complexified tangent vector of type (1,0)
at j, the formula shows that  lies in the kernel of the Levi form L(¢) = id0¢ if and only
if it lies on the kernel of dF. From the discussion on semi-Kéhler structures in (1.2), it
follows also that the kernel of L(¢) agrees with that of the lifted semi-Kéahler form &.

(2.2) In this section we assume Proposition 2 on the construction of homology
classes and deduce Proposition 1. We observe first of all that Proposition 1 is an immediate
consequence of

Proposition 1.  Let X be a compact Kdhler manifold satisfying the hypothesis of the
Main Theorem and ¢ be the plurisubharmonic exhaustion function as defined in (2.1). Let
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S < X be a positive-dimensional irreducible complex-analytic subvariety. Then, there exists
a proper complex-analytic subvariety T = S which contains the singularities of S, such that
the holomorphtc tensor 0f |ge I' (X, Hom(Ts, f*T,E)) is injective on S — T. As a consequence,
letting V denote the preimage of V in X under the universal covering map X - X for any
subvariety V < X, the plurisubharmonic function ¢ is strictly plurisubharmonic on § — T.

We proceed to deduce Proposition 1’ from Proposition 2. To this end we argue by
contradiction. As explained in (1.3) for the proof of Proposition 1’ we may assume that
S is non-singular. The failure of Proposition 1’ means equivalently that

af lS € F(X’ Hom(TS’ f*TNC))

has a non-trivial kernel everywhere on S. Let £ be the generic rank of Ker(0f |). Assuming
Proposition 2 we will have a 2/-dimensional homology class ¢ which is collapsed to zero
under the harmonic map f. For /=1 we will have a contradiction with the hypothesis
that f, : H, (X, R) - H, (N, R)is injective in the Main Theorem. For ¢ = 2 and X projective-
algberaic by slicing by hyperplane sections we may always replace S by some S’ such that
0f |5 is generically of rank 1. In general, we have

Lemma 1. Let X be a compact Kdhler manifold satisfying the hypothesis of the Main
Theorem. Then, X is projective-algebraic.

For the proof of Lemma 1 we need the following result, which will be referred to as
the Factorization Theorem.

Theorem (Mok [M1]). Let X be a compact Kdhler manifold with fundamental group
n,(X) =T and let G be a semisimple Lie group of the noncompact type. Let & :n,(X) - G
be a discrete Zariski-dense representation. Then, there exists a finite unramified covering X'
of X and a modification X - X' of X', a non-singular projective-algebraic variety Z of the
general type, a surjective holomorphic map o : X — Z with connected fibers and a represen-
tation £ : ny(Z) = G such that ® = £ - 6, on n,(X"), where o, 7, (X) = n,(Z) is induced
by ¢ and n,(X) is canonically identified wzth 7, (X").

Proof of Lemma 1. By MoiSezon’s Theorem a compact Kdhler manifold X is pro-
jective-algebraic if and only of it is MoiSezon. This is in particular the case if X is of the
general type. For X satisfying the hypothesis of the Main Theorem using the Factorization
Theorem it suffices to show that o : X — Z has generically zero-dimensional fibers. Other-
wise let E, = X be a generic fiber, of dimension m > 0, so that ¢(E,) is a point b while
the image E of E, on X under the composite map X — X’ — X is still of dimension m.
Leth:Z — N be a harmonic map inducing = : n,(Z) — =, (N) = I' on fundamental groups.
Denote by f: £ — N the lifting of f: X - N to £. We may choose 4 such that f=hoa,
so that f(E,) = h(c(E,)) = h(b) is a point. As f(E,) =f(E) the (m, m)-cycle Ec X is
collapsed to a point under f. We claim that the image of H, (E, R) in H, (X, R) is non-zero.
To see this let £ — E be a desingularization of E. It suffices to observe that for the composite
map v: E - X, v, (H,(E, R)) + 0, which follows from duality and the fact that v*a =0
for any Kihler class ae H2(X,R). As a consequence, Ker(f, : H,(X,R) — H,(N,R)) is
non-zero, contradicting the hypothesis of the Main Theorem.
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From Lemma 1 we deduce that Proposition 1 is a consequence of Proposition 2, the
proof of which will be given in the next section.

(2.3) It remains to prove Proposition 2. The only thing yet unproved is the last
statement asserting the existence of ¢ € H,,(S, R) such that g, ¢ = 0. We adopt now the
notations of Proposition 2 and consider a harmonic map g: S — N, where S is a compact
Kéhler manifold and N = I'\G/K. (In other words, we replace S as N in Proposition 1’
by a desingularization and denote the lifted map by g and the lifted foliation by %.)

In the case where ¢ is holomorphic, the measured foliated cycle © to be constructed
is equivalently (by Poincaré duality) a closed (m — £, m — ¢)-current which can be defined
locally as follows. Let U= D x D' be a distinguished polycylinder on S such that {z} x D’
corresponds to a leaf of the holomorphic foliation 4|, so that D is a parameter space for
the space of local leaves. The semi-Kéahler form w corresponds to a closed (1,1)-form @
on D which is almost everywhere positive definite. We write § for the corresponding
generically non-degenerate metric on D, and S2:=g~!(¢); t € g(S); for a level set of g. By
Sard’s Theorem we may choose ¢ such that S? is smooth and such that g is a submersion
onto its image on a neighborhood of S”. Denote by S, any connected component of such
a choice of S°. As S, is saturated with respect to the foliation %, we can identify UN S,
with 2 X D’ for some real submanifold ¥ < D. Perturbing ¢ slightly if necessary we may
furthermore assume that for any distinguished polycylinder U= D x D' = § — V adapted
to ¥, the restriction |, is almost everywhere non-degenerate so that its volume form
defines a non-trivial positive measure on X which we denote symbolically by dA. The
definition of a current is local. The closed positive (m — £, m — ¢)-current @ can be defined
as follows. Let 1 be a smooth (¢, £)-form on U with compact support. Then, by definition

® @@=Nf0a@,

2 \L;

where L, denotes the leaf corresponding to {z} x D". It is clear that this definition does
not depend on the choice of U in the sense that for any two overlapping distinguished
polycylinders U and U’ and for any U” = Un U’, the currents defined on U and U’ restrict
to the same current on U”. When % is holomorphic, this defines a closed positive
(m — £, m — ¢)-current @ with support on the smooth level set S, of g. In the general case
there exists a complex-analytic subvariety ¥V < S of complex codimension at least 2 such
that ¢ is holomorphic on S — ¥, for a generic choice of S, we can certainly assume that
S,n (S — V) is non-empty and that as a consequence by the same definition (x) we have
defined a non-trivial closed positive (m — £, m — £)-current on S — V, which we will continue
to denote by @. The problem is therefore to prove that @ can be extended trivially as a
closed positive current on S. If that can be done, it is immediate that the trivially extended
current @ represents by Poincaré duality a non-zero class ¢ in H,,(S, R) which is mapped
to zero under g. (This is the case because of the obvious fact that the pull-back of an
(¢,¢)-form is zero on S, since g maps S, into a point, and because we are taking the trivial
extension @.) We remark that the fact that V is of complex codimension at least 2 is not
sufficient to imply the extendibility of @ since ¢ is arbitrary. In place of Remmert-Stein-type
extension theorems we need a Bishop-type extension theorem, which in the case of closed
positive currents is furnished by the following theorem of Skoda [Sk].
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Theorem (Skoda [Sk]). Let U be a domain in C™ and E = U be a complex-analytic
subvariety. Let T be a closed positive ( p, p)-current on U for some p, 1 < p < m. Suppose
T is of finite total mass on U with respect to the Euclidean Kdhler form B, i.e.,

| TAp™ P<o0.
U-E

Then, T can be trivially extended as a closed positive (p, p)-current on U.

Recall that S is a projective-algebraic manifold and in particular Kéhler. Denote by
u some Kéhler form on S. To apply Skoda’s Theorem it suffices to show that

(#) | @apmP<oo.

S-v

From the definition of @ this follows readily from the following lemma.

Lemma 2. We use notations as in the preceding paragraph. Denote by y the Kdhler
metric on S whose Kdhler form is u+ w. Denote by dv the positive measure on the smooth
level set S, defined by the restriction x|, of x to S,. Let U= DX D’ be a distinguished
polycylinder on S adapted to 4. Then,

j( Ej)dl(z)< [ av
2 \L, [' -

SenU

Proof. The proof of Lemma 2 is analogous to that of Mok [M 1], Lemma 4, p. 573,
where the statement, with some obvious modification, already applies to the situation when
S, is assumed to be a complex submanifold. The proof for the general case where S, and
2 are only smooth manifolds is similar, except for the fact that the volume forms involved
are no longer exterior powers of Kéhler forms. Applying Fubini’s Theorem the lemma
reduces readily to proving the following statement in linear algebra:

(S) Let P, Q be real r-by-r symmetric matrices such that P is positive definite and
Q is positive semi-definite of rank ¢ <r, and P, Q are of the form

A B D 0
P=[B‘ c]’ Q=[0 0]’

where D is positive definite. Then

A+D B

det (P + Q) = det [ B C

] > det (D) - det (C).

We proceed to prove Statement (S). Without loss of generality we may replace D
by a diagonal matrix with diagonal entries a,, ..., a,. Write {e,, ..., ¢,} for the canonical
basis of R" and write e =€, A *** A e,. Write y,, ..., 4, for the column vectors of P and
Viseoos ¥, 0, ..., 0 for the column vectors of Q. We have

My A Ap,=det(P)-e, etc.,
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so that
det(P+ Q) e= U+ v)A " A+ VIAp A A,

SEVIA T AVAR AT A Uy A A AR A A+ T

where X is the sum of a finite number of exterior products, each of which is obtained from
By A s AUA R gq Ao A, by teplacing s of the first ¢ column vectors y;, 1<i < ¢, by
v; for some s, 1 < 5 < t. Any such exterior product in X is then of the form det(R) - ¢ where
R is obtained from P by replacing s of the first # column vectors of P by those of Q. Since
we assume that D is a diagonal matrix with diagonal entries a,, ..., q,; a; > 0; it is clear
that det(R) = a;(y, " @, det (T') for some positive definite matrix 7. From this it follows
readily that

det(P + Q) > det (D) - det(C) + det (P) > det (D) - det(C),
proving Statement (S).
Lemma 2 follows readily from Statement (S), applied pointwise to the integrands.

We proceed to complete the proof of Proposition 2. Since @ is an integral of currents
defined by the leaves of the holomorphic foliation %|s_,,, its mass with respect to the
background Kahler metric u + w on S is locally the integral of the corresponding masses
of the leaves L, with respect to the transverse measure dA(z). It follows from Lemma 2
that the total mass is finite and that by the Theorem of Skoda cited above the trivial
extension @ of @ from S — V to S exists and defines a non-zero closed positive current.
6 defines a non-zero cohomology class in H2™~9(S, R) and by Poincaré duality a non-
Zero homology class ¢e H, ,(S R): To show that g, £ is zero it is equlvalent to show that
the direct image under g of @ as a current is zero. We have 8 (@)(0) = 6 (g*0). Let
U=~ D x D’ be a distinguished polycylinder adapted to ¢ and ¢ = 0 be a smooth function
on U with compact support. Since the leaves of ¥|g_, are mapped to a point and & is
the trivial extension of @, we have

O(o-g*o) = J(LJ g*o) di(z) =

z

as g*o|,, = 0. By an argument using partition of unity it follows that g,, (@)=6(g*s)=0.
Equivalently g, & = 0 and the proof of Proposition 2 is completed.

In the next section we will use the decomposition of X as given in Proposition 1 to
prove that X is Stein. The proof will rely on Narasimhan’s generalization [N 1] to complex
spaces of Grauert’s solution to the Levi problem [G], together with Siu’s theorem [S1]
that a Stein subvariety of a complex space always admits a Stein neighborhood.

§ 3. Solution of the Levi problem on X with the weakly plurisubharmonic
exhaustion function ¢

(3.1) We recall first of all Grauert’s solution to the Levi problem by means of the
bumping technique. We have
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Theorem (Grauert [G]). Let Z be a complex manifold on which there is a twice con-
tinuously differentiable strictly plurisubharmonic exhaustion function . Then, Z is a Stein
manifold.

To prove the Steinness of X in the Main Theorem, we will make use of the (in general
weakly) plurisubharmonic exhaustion function ¢ of Proposition 1 and the decomposition
given there. We will proceed by induction. Since the complex-analytic subvarieties
S,= 8, c --- = §, = Xarepossibly singular for §; with i < p, we will need the generalization
to complex spaces of Grauert’s solution to the Levi problem, as given in Narasimhan
[N1]. For the statement we need the notion of strictly plurisubharmonic functions on a
complex space. Let U be a domain in some CY and 4 = U be a complex subvariety. Let
yp: A - [—o00,00) be an upper semi-continuous function on 4. We say that y is plurisub-
harmonic on A4 if and only if for any x € A there exists a neighborhood U, of x in U such
that v = |, .y, on 4N U, for some continuous plurisubharmonic function % on AN U,.
i is said to be strictly plurisubharmonic if for any x € 4 we can choose U, and { such

N

that  —e Y |z]? is plurisubharmonic on U,, where (z,, ..., zy) are the Euclidean coor-

i=1
dinates of CV. There is an a priori weaker notion of “weakly plurisubharmonic functions”
on complex spaces, where an upper semi-continuous function yp : 4 - [ — 00, 00) is said to
be “weakly plurisubharmonic” if and only if for any holomorphic map f of the unit disk
4 into A4, y o f is either subharmonic or identically — co. In Fornaess-Narasimhan [FN],
§ S it was proven that this notion of “weakly plurisubharmonic” functions on complex
spaces is equivalent to the former notion of plurisubharmonic functions. We have

Theorem (Narasimhan [N1]). Let Z be a complex space on which there is a conti-
nuous strictly plurisubharmonic exhaustion function y. Then, Z is a Stein space.

A related result from Narasimhan [N1] that we will need is

Proposition (Narasimhan [N1]). Let Z be a Stein space and n be a plurisubharmonic
Sunction on X. Then, for any real number c the open subset Z,={xe Z :n(x)<c}c Z is
Runge in Z.

For our proof of the Steinness of X in the Main Theorem we start with the weakly
plurisubharmonic (real-analytic) exhaustion function ¢ on X as in (2.5), Proposition 3.
We are going to construct strictly plurisubharmonic exhaustion functions on

XY ={xeX:p(x)<c}

by modifying by an inductive process using the decomposition of X. Together with

c—@ _
the proposition above on Rungeness we will be able to conclude the Steinness of X. For

the modification of

we need the following theorem of Siu:

Theorem (Siu [S1]). LetY be a complex space and A = Y be a Stein subvariety. Then,
there exists a Stein neighborhood V of A in Y.
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In the modification of weakly plurisubharmonic functions on f’c N S",, 1=5iZp,

we will actually be using restrictions of strictly plurisubharmonic functions defined on
tubular neighborhoods of :T’cnS",- in X.. For this reason the plurisubharmonic functions
to be constructed on X, N S; . ; will actually be plurisubharmonic in the stronger sense so
that the result of Narasimhan [N1] in the original form will be sufficient for our purpose.

(3.2) To prove the Steinness of X in the Main Theorem we will proceed to prove
inductively the statements

(*); The complex-analytic subvariety S; = X is a Stein space.

_ Statement (x), is valid since S, is non-singular and ¢ is strictly plurisubharmonic on
S, by definition. To prove (x), = (), ,,, 1 < i< p—1, we introduce for 1 < j < p and for
any c € R the statement

(*);. The complex-analytic subvariety S;n X, = X, is a Stein space.

By the proposition of Narasimhan [N1] on Rungeness cited in (3.1) we know that
(%), implies that §;nX,, is Runge in S;n X, whenever ¢’'<c. It follows readily that
Statement (*); , for a fixed j and for all ce R implies Statement (x);. (Actually, it is sufficient
to know the validity of (*), o for an increasing and diverging sequence of c,.) Thus, to
prove the Steinness of X it suffices to show (x); = (*); . 1, for any ceR.

Since S is Stein by the induction hypothesis there is a Stein neighborhood U of S
on X, according to the theorem of Siu [S1] cited in (3.1). Let ¢ = 0 be a smooth cut-off
function on X such that ¢ = 1 on some neighborhood of S; on X and such that Supp(¢) = U
with Supp(g) N X. relatively compact in U for any c € R. Since U is Stein there exists on
U a smooth strictly plurisubharmonic function &. The function ¢¢ defined on U can then
be extended trivially to a smooth function on X.

Fix any ce R. On §| +1 QI8 strlctly plurisubharmonic wherever ¢¢ fails to be strictly
plurisubharmonic. Since X, = = X there exists a positive constant K, such that K¢ + ¢¢

1
is strictly plurisubharmonic on S, ,,n X.. The continuous function o +K.o+olis

then strictly plurisubharmonic on S, , and is an exhaustion function since K ¢ + ¢¢ is
bounded. It follows from the theorem of Narasimhan cited in (3.1) that S, , n X, is Stein,
proving (x); = (*); +; . forall ce R. With this implication we have established by mductlon
the Steinness of X, proving the Main Theorem.

(3.3) In the case of 2 dimensions our method yields only a weakened version of the
analogue of the Main Theorem. On the other hand, the result applies to a more general
setting, as follows.

Theorem 1. Let X be a compact surface and G be a semisimple real Lie group of the
noncompact type. Suppose there exists a discrete Zariski-dense representation @ : n, (X) - G.
Let X* — X be the regular covering of X corresponding to Ker ®. Then X* is holomorphically
convex.
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Remarks. (i) In the event where Ker & is finite Theorem 2 asserts that X is itself
holomorphically convex, since there is a canonical finite covering X — X*. In this special
case Theorem 2 was also proved by Napier-Ramachandran [N-R], consequence of
Theorem 4.8. Their proof relied among other things on: (a) the result [N-R], Theorem 1
asserting in this case that X* has exactly one end, (b) the existence on X* of a real-
analytic plurisubharmonic exhaustion function and (c) a factorization theorem over
Riemann surfaces of Gromov [Gr].

(ii) For the case where @ : n,(X) — G arises from the hypothesis in the Main Theorem
(except for the fact that X, and X are of complex dimension 2) we have X* = X. It will
follow readily from the proof that the Stein reduction X of X is of complex dimension
2. In this case either X is itself Stein or X is obtained by blowing down a non-trivial
I-equivariant complex-analytic subvariety E of X of dimension 1. E is necessarily a count-
able union of compact complex-analytic subvarieties.

Proof. By the Factorization Theorem there exists a finite unramified cover X’ of X
and a modification X of X", such that the representation &, restricted to 7, (X) = 7, (X"),
of finite index in 7, (X), factors through some = : n,(Z) — G via a surjective holomorphic
map o : ¥ - Z with connected fibers. Z is either a compact Riemann surface or a projective-
algebraic surface of the general type.

In the case Z is a Riemann surface, let £* — X be the regular covering of X cor-
respondlng to Kero,. Then o: X - Z lifts to a proper holomorphic map o*: X* - 2,
where Z is the umversal cover of the compact Riemann surface Z of genus =2 and is in
particular Stein. Since X* is obtained from some X’* by modification, where there is a
canonical finite covering X* — X'*, it follows readily that X* is also holomorphically
convex.

It remains to consider the case where the base space Z of 0: X — Z is of complex
dimension 2. There is a subgroup I''< I':'=n,(X) of finite index and a harmonic map
f:X'-> &(I'')\G/K, representing ®|., where X' — X is a finite unramified covering cor-
responding to I'’, K < G is a maximal compact subgroup and ¢(I'') = G is a torsion-free
discrete subgroup. We lift f'to f*: X'* —» G/K where X'* — X' is a regular covering corre-
sponding to Ker(®|,). f* is pluriharmonic by the d3-Bochner-Kodaira formula of Siu
and Sampson. f* is by definition proper. Write ¢ (x *) for r2(0; £ *(x*)), defined on X"¥,
as in (2.1), using now a canonical metric on the Riemannian symmetric manifold G/K. It
follows from the properness of f* that ¢ : X* — R is an exhaustion function. From this
as in Napier-Ramachandran [NR], Theorem (4.8), one may apply a result of Diederich-
Ohsawa [DO] which implies that a complex surface with a real-analytic plurisubharmonic
exhaustion function ¢ is holomorphically convex provided that ¢ is strictly plurisubhar-
monic at one point. Alternatively, one can also adapt the argument of § 3 to conclude that
X* is holomorphically convex, as follows.

The plurisubharmonic exhaustion function ¢ on X'* can only fail to be strictly
plurisubharmonic on the union of a discrete point set and a complex pure one-dimen-
sional subvariety E c X'*. Modifying ¢ in small neighborhoods of the discrete set of points
if necessary we may assume that ¢ is strictly plurisubharmonic on X'* — E, although the
new ¢ is only smooth and not real-analytic in general. Decompose E into irreducible
components. From the fact that ¢ is an exhaustion function any chain of compact irreducible
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components of E must be finite. For generic choices of regular values ¢’<c of
¢, En{x*e X'*:¢'< ¢(x*) < c}:=E,,  is a Riemann surface without compact irreducible
components. Hence E; . is Stein. By applying the theorem of Siu in (3.1) to E_ , for all
such choices of ¢’, ¢ it follows readily that for a generic choice d of regular value of ¢,
the domain X;* = {x*e X"*: ¢(x*) < d} with smooth boundary is a strongly pseudo-
convex manifold, from which it follows that X,;* is holomorphically convex. The holo-
morphic convexity of X'* then follows by passing to Stein reductions and by applying
the proposition on Rungeness (of Narasimhan [N1]) quoted in (3.1).

Finally, to complete the proof of Theorem 2 it suffices to observe that there is a
canonical finite unramified covering X'* — X *. The holomorphic convexity of X* follows
readily from the holomorphic convexity of X'*. The proof of Theorem 2 is complete.

Remarks (on the proof). There is an advantage in the alternative argument proving
holomorphic convexity of X’* in the second last paragraph. We do not need to use the
fact that the original exhaustion function ¢ is real-analytic but only the fact that the subset
on which ¢ fails to be strictly plurisubharmonic is a complex-analytic subvariety. With
this observation the argument generalizes readily to geometrically reductive (in the sense
of Labourie [La]) representations of n, (X') on the isometry group of complete Riemannian
manifolds with smooth metrics of nonpositive sectional curvature in the complexified sense.

Theorem 1, as it stands, is a consequence of the Bochner-Kodaira formula of Siu-
Sampson and classical solutions to the Levi problem. The more interesting and difficult
problem is to prove holomorphic convexity of X (and not of the intermediate covering
space X *) under the hypothesis of Theorem 1.

For a general discussion on the Shafarevich Conjecture, we refer the reader to
Narasimhan [N2]. For the resolution of the Shafarevich Conjecture in special cases and
related results, see Napier [Na] and Napier-Ramachandran [NR].
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