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unstructured perturbations is not true when the perturbations are block 
structured. For a limited class of problems, quadratic stability in the face 
of structured complex perturbations is equivalent to scaled 1 1  . / I  norms, 
and hence / I  Tx: synthesis techniques, coupled with diagonal constant 
scalings, can be used to design quadratically stable systems. 
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On the Norms Used in Computing the Structured 
Singular Value 

NAM-MU TSING 

Abstmct- Different norms are considered to replace the Euclidean 
norm in an algorithm given by Fan and Tits (IEEE h n s .  Automat. 
Contr., vol. 33, pp. 284-289, 1988) which is used for the computation 
of the structured singular value of any matrix. It is shown that the 11 
norm is the best possible norm in a certain sense. 

Recently, there has been a considerable amount of interest in the study 
of the structured singular value, the concept of which was originated 
by Doyle [ I ]  and is used as a tool for the analysis and synthesis of 
feedback systems with structured uncertainties (e.g., see [2], [3] and 
their references). 

Let M be an n x n complex matrix, and X = ( k ,  , . . .  ,k,,,) 
an m tuple of positive integers which satisfies E,”_, k, = n. 
For i = 1 , .  ’ , m, denote the ith-block-projection matrix by P, = 
block diag ( O k ,  , . . ,OK, _ ,  , I k ,  , Ok, , , . . , Opm ) where O1 and I k  are 
the zero matrix and identity matrix, respectively, of order k x k for any 
positive integer k .  Then the structured singular value of M with respect 
to the block structure X is the nonnegative scalar 

where 1) ‘ 1 1  denotes the Euclidean (1>) norm in 6 and DB the correspond- 
ing unit sphere. One major issue in the study of p(M)  is the computation 
of it. In their paper [2], the authors devise an algorithm [ 2 ,  Algorithm 
I ] ,  which we shall explain immediately, to compute p(M). They first 
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define, for any real number a ,  the Hermitian matrices 

A , ( a ) = a P ,  -MHP,M, f o r i = I ; . . , m  

and the m-form numerical range associated with AI (a);  ’ .  ,A, (a ) :  

W ( a )  = { ( V I , .  . . ,U,,,) E ii”’ : 3 E 8s 
suchthatu, =xHA,(a)xfora l l i} .  

A function c(.) : il + ii, which depends on M and X, is then defined 
bY 

c(a) = min { l lull : U E W ( a ) }  

where 1 1 . 1 1  again denotes the Euclidean norm (on iY” this time). Then 
they show [2, Corollary 1 and Proposition I] that, for any matrix M with 
structure X, c(,) satisfies 

c(.) is continuous (1) 

( 2 )  c ( p 2 )  = 0, c(a)  > o for all a > p2 

and 

c(a + s) 5 c(a)  + s for all s 2 0 and real a (3) 
where p = p ( M ) .  The initial step in [2, Algorithm I ]  is to set = 
U*(M) where E ( M )  is the largest singular value of M .  The iteration step 
is to set ak+l = ak - c ( a k )  f o r k  = 0, 1, 2;. . . The authors show in [2, 
Theorem 21 that, since c(.) satisfies (l)-(3), Algorithm 1 will generate 
a monotonic decreasing sequence { a k  } with Iirm,, f f k  = p2 . The 
structured singular value p can thus be obtained. They also remark in 
the footnote that the Euclidean norm in the definition of c(.) can be 
replaced by the I ,  norm to get the strongest version of Proposition 1. 
The purpose of the present note is to elaborate on this remark. 

Suppose we consider any norm N(.) on iY“ instead of the Euclidean 
norm. Similar to the case of c(.), we may define a function CN : il - R 
(which also depends on M and X) by 

c N ( a )  = min { N ( u )  : u t W ( a ) } .  

It is not hard to see that C N ( . )  always satisfies ( I )  and (2); and if in 
addition C N ( . )  satisfies (3) also, then the function c(.) in Algorithm 1 
can be replaced by cN( . ) .  Let 

X = {N(.) : N(.) is a norm on Tim and c v ( . )  satisfies 

condition (3) for all matrices M with structure X} . 

Then Algorithm 1 will work with c(.) being replaced by any CN (.) where 
N(.) E 32. In view of the iteration step of the algorithm, we may want 
to choose a norm NO( . )  E 32 such that 

cN,,(a) 2 cN(a) for aII N(.) E and a > p2 

so that the resulting algorithm has the fastest convergent rate and is thus 
the most efficient. The following result shows that 1 1  . / ] I  , i.e., the 1, norm 
on ii“‘ defined by 

will give such a “best possible” norm. 
Theorem: Let X = ( k ,  , . . . , k , )  be a given block structure. Then 
a) II . 1 1 1  E 32, and 
b) for any N(.) E 32, / lul l  I 2 N(u)  for all u E iY“ so that 

c i ( a )  := min {IIuIII : u E W ( a ) }  2 cN(a )  

for any real a and complex matrix M with block structure X .  
Proof: 
a) The proof of the fact that c l ( . )  satisfies (3) is similar to (and 
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simpler than) that of e(.) given in the proof of [ 2 ,  Proposition 11. Hence, 

b) We prove by contradiction. Suppose N(.) E 32, but N(u)  > 
11 U 1 1  I for some U t i f m .  Let {e  I , . . . ,e,,, } be the standard basis for ;Y" . 
Without loss of generality, we may assume 

I1 . I l l  E X .  

/ m \ ,n m 

for all U = ( U , , .  , ,U,) t ii"' , which contradicts the assumption. Let 

L = { U  E ilm : U ,  + W Z U ~  + . . . + W,U, = I } 

be a supporting hyperplane to the ball in i P  with respect to N(.) with 
radius (1  + 4). As e, is on L ,  we have 

minN(u) = N ( e l )  = 1 + q 
" F L  

Note that some of the w , ' s  may be zero. However, for any E > 0, 
we can choose nonzero w: , . . . , W ;  E ii which are arbitrary close to 
W ?  , . . . , w , ~ ,  respectively, such that if 

L' = { U  E illm : ui + W S U ~  + . . . + w:,u, = 1 } 

then 

miq N(u)  > N ( e l )  - E .  
" E L  

Now choose h,  PI,. . , P, t ii such that h - Of = 1 and A - P,' = 1 /w,' 
for i = 2 , .  . . ,m.  Then, by defining 

m 

= PIP, (4) 
/ = ,  

(which depends on E because the 0 , ' s  depend on e ) ,  we have, for any 
real a.  

and 

Hence. 

C N ( h  ~ 1) = N(0)  = 0.  

Also, 

C N ( ~ )  = min {N(u)  : U, = (A - @ ) a , ,  a, 2 0, i = 1 , .  . . ,m,  

a ,  + . . . + a ,  = I }  

=min  { N ( u ) :  V I  = a l  2 O , u ,  = U , / W ! ,  

i = 2 , . . . , m , u l  + . . . + a ,  = l }  

a, L O ,  

=min  { N ( u ) :  u I  +w:u2 + " . +  wku, = I ,  U ,  20, 
wlu, > O , i  = 2 , . . . , m }  

2 min { ~ ( u ) :  U E L'}  

> N ( e l )  - E  

= ( I + q ) - E  

= (1 + q )  + C N ( A  - 1) - € .  

As E > 0 is arbitrary, we may choose 0 < E < q so that, for the matrix 
M defined in (4), we have 

C N ( ( ~  - 1) + 1) = c N ( ~ )  > c N ( A  - 1) + 1. 

As a result, CN(.) does not satisfy (3) for this matrix M ,  and hence, 
N(.) 6 3. Thus, if N(.) t 31, then we must have 

JIu/J  I 2 N(u)  for all U E ;f"' , 
and hence, 

cI(a) =min  {lIu11, : U t W ( a ) }  

2 min { N ( u ) :  U E W ( a ) }  

= cN ( a )  for any real a.  0 

Now the problem remains to devise a method for computing c1 (a )  so 
that ihe algorithm can be implemented. The computation of cI (a)  for 
any given A4 and 3C can be, in general, difficult. However, there are 
existing methods for computing the value 

ci(a)  := min {IlullI : U E C O W ( ~ ) }  

where CO W ( a )  denotes the convex hull of W(a) .  Let (., .) denote the 
usual inner product in P . Since the I, norm (11 1) =) is the dual norm 
of the I, norm, we have 

c: (a)  = min /1uIlI 
" E m  W ( a )  

uEco W ( O )  o ~ E l "  
min max ( U ,  a ) .  ( 5 )  - - 

l a l = S 1  
As CO W(a)  and {a  E 2" : lJallm 5 I }  are convex sets, and (., .) is 
bilinear, the max and min in ( 5 )  can be interchanged to yield 

where A.,,, and A,,, denote, respectively, the smallest and largest eigen- 
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value. Several existing algorithms are available for solving the convex 
problem (6). We refer to a recent paper by Boyd and Yang [4, Sect. 
71 discussing the details, including the advantages and disadvantages, of 
these numerical algorithms. As a result, if W ( a )  is convex (which is al- 
ways the case when m I 3; see [ 5 ] ,  for example), c ,  (a)(=c{ (a ) )  could 
be computed with any of these algorithms. If m 2 4, then W ( a )  may 
not be convex. In this case. replacing c ( , )  by c{(.) in [2, Algorithm I ]  
will result in a sequence { fi} with limit 

which is clearly an upper bound for F ( M ) .  This is exactly the same 
situation as the case of c ( . )  and c'(.) discussed in [ 2 ] .  

The author wishes to thank Dr. M. K.  H. Fan and Dr. A. L. Tits for 
introducing their interesting paper to him and their helpful comments. 
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All Stabilizing Controllers as Frequency-Shaped 
State Estimate Feedback 

JOHN B. MOORE, KEITH GLOVER, A N D  

ANDREW TELFORD 

Abstract-This paper shows that the class of all strictly proper sta- 
bilizing controllers for proper linear plants can be structured as state 
estimate feedback with frequency shaping in the state estimates and/or 
in the state estimate feedback law. The selection of where the frequency 
shaping takes place is at the designer's discretion. The parameterization 
of the controller class can be in terms of an arbitrary proper stable 
transfer function, with the closed-loop system transfer functions affine 
in this transfer function. With constant output feedback permitted in 
addition to the state estimate feedback, the class of all proper stabilizing 
controllers can be generated in a like manner. The results of the paper 
are useful in engineering applications where the states represent physical 
variables. 

I. INTRODCCTION 

Consider the 5tabilizable and detectable linear system with state equa- 
tions 

X = A X  + Bu,  y = C X  + D u  (1.1) 
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and transfer function G E R, (real rational proper) as 

G = C ( s 1 -  A ) - ' B  + D .  ( 1  .a 
Consider also a linear constant state estimate feedback controller 

X =AX + B u  - H ( y  - j ) , j  = C X  + D u ,  U = FX (1.3) 

with transfer function K E Rsp (real rational strictly proper) 

K = - F [ s I - ( A + B F + H C  + H D F ) ] - ' H .  (1.4) 

The controller is known to be stabilizing if and only if 

[SI  - ( A  + B F ) ] - ' ,  [sZ - (A + H C ) ] - '  E R H m  (1.5) 

where R H X  is the class of all real rational stable transfer functions. 
In frequency-shaped estimation and control, the gains H, F a r e  gen- 

eralized as stabilizable and detectable filters with transfer functions 
H,  F E R, . The resulting controllers are known to be stabilizing, with 
all states asymptotically stable for arbitrary initial conditions if and only 
if [ I ]  

F ,  H stabilize GF , G H  , respectively 

(The result is also derived as a byproduct of the theory of this paper.) 
In this paper, we show that for the plant G of (1 .  l ) ,  (1.2), the class of 

all stabilizing controllers (1.3), parameterized in terms of F ,  H E RHOC 
satisfying (1.6), is the entire class of strictly proper stabilizing controllers 
for the system (plant) (1 .  I ) .  Moreover, the entire class can be generated 
in terms of a stabilizing F E R, for GF where H E R, is an arbi- 
trary stabilizing minimum phase "controller" for GH , and likewise, in 
terms of a stabilizing H E R, for GH where F is an arbitrary stabilizing 
minimum phase controller for G F .  With constant output feedback per- 
mitted in addition to the state estimate feedback, the class of all proper 
stabilizing controllers can be generated using a mild variation. More- 
over, the parameterizations can be in terms of arbitrary transfer func- 
tions Q,= , QH E RH", with the closed-loop transfer functions affine 
in Q F ,  Q H .  

The theory on the class of all stabilizing controllers was introduced 
by KuEera [2] for discrete time and Youla et al. [3] for continuous time, 
and later formulated in an axiomatic framework [4], [ 5 ] .  The results of 
this paper build on from, and complement, these characterizations, as do 
those involving modification to standard state estimate feedback in [I]. 

The controller structures of this paper have the advantage that they are 
decomposed into a state estimator and state feedback law, where at the 
discretion of the designer, generally one or the other or both are fre- 
quency shaped. Thus, any stabilizing controller can be viewed in terms 
of filtered feedback of each state estimate or as direct feedback of each 
frequency-shaped state estimate. This has appeal in engineering situa- 
tions where the states represent physical internal variables. For example, 
knowledge that an effective controll?r feeds back a low-pass filtered ve- 
locity or position estimate could be instructive when improving the design 
by introducing additional sensors or improving sensor locations. In situa- 
tions where state estimation is required in addition to control, the results 
of this paper give useful implementation possibilities. Gain scheduling 
could be more systematic in the framework of state estimate feedback. 
This is not to say that state estimate feedback is the best design approach, 
as illustrated in cases when the frequency shaping in the state estimate 
feedback cancels out the observer dynamics. 

In Section 11, known theory [4], [7]  for the class of all stabilizing 
controllers is reviewed and extended for use in subsequent sections. In 
Section 111, the main results of the paper are developed. Some useful 
related results are summarized in Section IV, and conclusions are drawn 
in Section V .  

~71. 


