
2156 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 7, JULY 2010

On Perimeter Coverage in
Wireless Sensor Networks
Ka-Shun Hung and King-Shan Lui, Senior Member, IEEE

Abstract—Many sensor network applications require the
tracking and the surveillance of target objects. However, in
current research, many studies have assumed that a target object
can be sufficiently monitored by a single sensor. This assumption
is invalid in some situations, especially, when the target object is
so large that a single sensor can only monitor a certain portion
of it. In this case, several sensors are required to ensure a
360𝑜 coverage of the target. To minimize the amount of energy
required to cover the target, the minimum set of sensors should
be identified. Centralized algorithms are not suitable for sensor
applications. In this paper, we describe our novel distributed
algorithm for finding the minimum cover. Our algorithm requires
fewer messages than earlier mechanisms and we provide a
formal proof of correctness and time of convergence. We further
demonstrate our performance improvement through extensive
simulations.

Index Terms—Sensor network, perimeter coverage, minimum
cover.

I. INTRODUCTION

W IRELESS sensor networks have caught lots of atten-
tions in recent years. People expect many applications

which may be too dangerous or too costly to be done by human
to be performed by wireless sensor nodes easily. Examples of
such applications include environmental monitoring, industrial
control, battlefield surveillance, home automation and security,
health monitoring, and asset tracking [1], [2]. In monitoring
applications, sensor nodes usually cooperate to achieve a cer-
tain monitoring objective. The monitoring objective is usually
transformed to a coverage problem, which can be regarded as
a measurement on quality of service (QoS) of how well the
sensor network functions in the physical world. There are two
common monitoring objectives suggested and widely studied
[3]. They are area coverage and target coverage.

Area coverage refers to the cover of a certain target area,
so that any changes within the target area can be discovered
immediately and an appropriate action can then be made on
time. On the other hand, target coverage refers to the cover
of one or more target objects within the area considered. For
instance, in an art gallery, several invaluable arts are monitored
instead of the whole gallery.

In this paper, however, we are specifically interested in a
scenario in which the perimeter of a large target object is our
main concern. One typical application scenario is to monitor

Manuscript received June 20, 2008; revised April 6, 2009 and November 20,
2009; accepted April 24, 2010. The associate editor coordinating the review
of this paper and approving it for publication was D. Zeghlache.

This work was supported in part by the University of Hong Kong Seed
Funding Programme for Basic Research, Project No. 200811159057.

The authors are with the Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong (e-mail:{kshung, kslui}@eee.hku.hk).

Digital Object Identifier 10.1109/TWC.2010.07.080817

the coastline of a large lake so as to ensure that no people can
go through its perimeter intentionally or accidentally. Another
application scenario is to monitor the wall of the prison so
as to ensure no criminal can escape easily by digging hole
through the wall. Therefore, perimeter monitoring is also an
important problem.

Due to the limited battery power, it is desirable to activate
as few sensors as possible to cover the whole perimeter of the
target object. By activating the minimum set of sensors, the
total amount of energy required to monitor the target object is
minimal. Moreover, it is possible to identify multiple sets of
sensors so that they can be activated one after the other in each
round to further extend the network lifetime [4]. Other than
extending the lifetime, the additional sets of sensors found
can also act as backups so that another set can be activated
immediately in case any node fails suddenly.

The problem of perimeter coverage is very similar to
the circle-cover problem in a circular-arc graph in which a
number of centralized algorithms have been proposed [5]–
[8]. Unfortunately, all these proposed algorithms cannot be
directly applied in a wireless sensor network scenario which is
distributed in nature. Previously, we [9] proposed a distributed
algorithm to solve this problem. The approach requires all the
nodes passing through 0𝑜 to initiate the search and thus the
overhead is not optimal. In this paper, we further enhance our
distributed protocol so that it is possible to find a minimum
set of sensors to cover the target object using 𝑂(size of the
minimum set) number of messages. We also provide a formal
proof of correctness and convergence time analysis of our
proposed algorithm.

The paper is organized as follows. In Section II, we will
briefly discuss the related work about the coverage problems
in wireless sensor networks and the circle-cover problems
in circular-arc graphs. Then, the perimeter coverage problem
will be discussed in Section III. Afterwards, our proposed
distributed protocol to solve the perimeter coverage problem
in wireless sensor networks will be discussed in details in
Section IV. Through extensive simulations, we show that
our proposed algorithm outperforms some earlier developed
distributed minimum cover algorithms in Section V. Finally,
we conclude our paper in Section VI.

II. RELATED WORK

Our problem is analogous to the problem of finding a
minimum size open cover on a topological space 𝑆 in the
topology literature, where 𝑆 wraps around on a certain value
range in a real line [10]. We are interested in studying the
problem from the algorithmic perspective, and the perimeter
coverage problem has been studied as the circle cover problem

1536-1276/10$25.00 c⃝ 2010 IEEE

HUNG and LUI: ON PERIMETER COVERAGE IN WIRELESS SENSOR NETWORKS 2157

in circular-arc graphs. Therefore, in this section, we will
briefly discuss the related work on the coverage problems
in wireless sensor networks and the related work on the
centralized algorithms proposed for the circle-cover problems
in circular-arc graphs.

A. Coverage in Wireless Sensor Networks

As we have discussed before, there are two main kinds of
coverage problems suggested and studied in wireless sensor
networks. They are area coverage and target coverage.

1) Area Coverage: Area coverage problem refers to the
cover of the whole target area by the sensors. There are a
number of variations, including single area coverage, multiple
area coverage and fractional area coverage, etc. Single area
coverage problem generally refers to the problem of finding
a minimum set of sensors which can cover the whole area. A
centralized algorithm to find a small-sized connected sensor
cover is presented in [11], while a localized algorithm for
area coverage with no prior knowledge of neighbor existences
and neighbor location is presented in [12]. Cao et al. [13]
considered the movement of the sensor so as to cover the area
which has not been covered by random distribution of the
sensors.

The studies above assume every point within the target area
has to be covered by at least one sensor. However, due to
various reasons, a certain area, such as some sensitive military
area, may be required to be covered by multiple sensors
instead. This leads to the 𝑘-coverage problems suggested in
the literature. Huang et al. [14], [15] transformed the coverage
problem to a decision problem so as to determine whether the
target area is covered by at least 𝑘 sensors. On the other hand,
fractional coverage problem has also been considered in [16],
[17]. In this problem, it is generally not necessary to cover
the whole target area. Instead, only a certain fraction of the
target area has to be covered by the sensors.

2) Target Coverage: Target coverage problem refers to the
cover of a certain target object or a number of target objects
within a certain area. Kar and Banerjee [18] studied how
to place sensors to ensure all the targets are covered. Their
algorithm runs in a polynomial time. Cardei et al. [19], [20]
studied the target coverage problem with the focus in energy
efficiency. They assumed that the placement of the nodes
are random and they aimed at selecting a maximum number
of disjoint sets of sensors such that every set can cover all
the target objects. By doing so, the network lifetime can be
increased. They proved that the disjoint set problem is NP-
complete, and they proposed a centralized algorithm to solve
this problem. Later, Thai et al. [21] proposed a 𝑂(𝑙𝑜𝑔𝑁)
distributed algorithm to solve the target coverage problem,
where 𝑁 is the number of sensors in the network.

B. Circle-Cover in Circular Arc Graphs

In this paper, we are specifically interested in the an-
gle/perimeter coverage problem. Unlike the area coverage
problem in which a certain target object area is of particular
interest, we are interested in whether the perimeter of the
target object is 360∘ covered by enough sensors. Unlike the
target/point coverage problem in which the target objects

are small and can be covered by a single sensor near the
object’s vicinity, in our perimeter coverage problem, a sensor
can only cover a certain portion of the perimeter. In fact,
the angle/perimeter coverage problem is the same as finding
a circle-cover in the circular-arc graph. Circular-arc graph
problems have been studied for quite a long time. Generally
speaking, there are two main types of algorithms — sequential
and parallel algorithms.

1) Optimal Sequential Algorithms: Lee and Lee [5] pro-
posed an optimal sequential algorithm for finding the mini-
mum circle-cover. They formally proved that the time com-
plexity for finding the minimum circle-cover is 𝑂(𝑁𝑙𝑜𝑔𝑁) if
the arcs are not sorted and 𝑂(𝑁) if the arcs are sorted with
the use of one processor, where 𝑁 is the number of arcs.

2) Optimal Parallel Algorithms: On the other hand,
Bertossi [6] was known to be the first to propose a parallel al-
gorithm to tackle this problem. The algorithm achieves a time
complexity of 𝑂(𝑙𝑜𝑔𝑁) with the use of 𝑂((𝑁2/(𝑙𝑜𝑔𝑁)+𝑞𝑁)
processors, where 𝑞 is the minimum number of arcs overlap
at a certain point in the graph. Ref. [7] and Ref. [8] proposed
similar optimal parallel algorithm to tackle this problem. Both
approaches achieve a time complexity of 𝑂(𝑙𝑜𝑔𝑁). However,
the algorithm in [7] requires 𝑂(𝑁/𝑙𝑜𝑔𝑁) processors, while
the one in [8] requires 𝑂(𝑁) processors. All the algorithms
discussed are centralized, so the processors are supposed to
be able to access all the sorted arcs in the graph.

3) Distributed Algorithms: All the algorithms discussed
above find the minimum circle-cover of the circular-arc graphs
without any specific applications in mind. At the same time,
all of them are centralized with one or more processors. On
the other hand, Watfa and Commuri [22], [23] proposed a
distributed algorithm to find a subset of nodes to cover the
border of a rectangle. Unfortunately, they did not provide the
proof of correctness of their algorithm.

To the best of our knowledge, we are the first to propose an
optimal distributed algorithm to find the minimum number of
visual sensor nodes which are necessary to cover 360𝑜 of the
target object [9]. Unfortunately, the protocols in [9] require
a large number of messages, which is expensive for wireless
sensor networks. In this paper, we describe our new optimal
protocol that requires only a few messages. We compare our
algorithm with other existing algorithms both theoretically and
through extensive simulation.

III. PROBLEM STATEMENT AND DEFINITIONS

We are considering a system in which the perimeter of
a big target object has to be monitored. The target object
is surrounded by randomly distributed sensors. Each sensor
can monitor only part of the perimeter, and each sensor can
communicate to its neighbors only. We would like to identify
a set of sensors that can monitor the whole perimeter. To save
energy, the number of sensors needed should be minimized.
Before we describe our distributed protocol, we define our
problem in this section.

A. Cover Range, Cover, and Size of Cover

For the ease of discussion, we model the perimeter of an
object as a circle and use [0∘, 360∘) to denote the whole

2158 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 7, JULY 2010

Target Object

00

s
i

t
i

1
2

3
4

5

6

7

8

9

s
1

t
1

(a) Cover Range (b) A Simple Sensor Network

Fig. 1. Illustrations of covers.

perimeter. The target is surrounded by a randomly distributed
set of sensors 𝑆. Each sensor can cover only a portion of
the perimeter and we call this portion the cover range. We
denote the cover range of sensor 𝑖 ∈ 𝑆 as [𝑠𝑖, 𝑡𝑖], which is
a portion of the whole perimeter [0∘, 360∘). The range spans
in the clockwise manner as illustrated in Fig. 1(a). The term
𝑠𝑖 is the starting angle of the range, while 𝑡𝑖 is the ending
angle of the range. If 𝑖 does not cover 0∘, 𝑠𝑖 < 𝑡𝑖; otherwise,
𝑡𝑖 < 𝑠𝑖. The cover range of two or more sensors is the union of
their ranges. Although we model the perimeter as a circle, it is
worth noting that our protocol works for any arbitrary shape of
perimeter as long as sensors can determine their cover ranges.
How a sensor determines the range is application dependent
and it is outside the scope of this paper. Interested readers are
referred to [24]–[26].

A cover is a proper subset 𝐷 of 𝑆 such that for each angle
𝛾 ∈ [0∘, 360∘), there exists a sensor 𝑗 ∈ 𝐷 such that 𝛾 ∈
[𝑠𝑗 , 𝑡𝑗], where [𝑠𝑗 , 𝑡𝑗] denotes the cover range of the Sensor
𝑗 ∈ 𝐷. In other words,

∪
𝑖∈𝐷[𝑠𝑖, 𝑡𝑖] = [0∘, 360∘). Fig. 1(b)

illustrates a scenario of 9 sensors surrounding a target object.
Each arrow represents the cover range of a node. In the figure,
the sets {1, 3, 5, 7, 8}, {1, 2, 3, 5, 6, 9}, and {1, 3, 5, 7, 9} are
all covers. On the other hand, the cover size a.k.a. size of
cover of 𝐷, denoted as ∣𝐷∣, is the number of sensors in the
cover 𝐷. In the figures, the sizes of the covers {1, 3, 5, 7, 8},
{1, 2, 3, 5, 6, 9}, and {1, 3, 5, 7, 9} are 5, 6, and 5, respectively.

B. Minimum Cover

The minimum cover (MC) is the cover with the minimum
size. Formally, 𝐶 is a minimum cover if 𝐶 is a cover such
that for every cover 𝐷, ∣𝐶∣ ≤ ∣𝐷∣. In Fig. 1(b), both {1, 3, 5,
7, 8} and {1, 3, 5, 7, 9} are a minimum cover with the cover
size equals to 5. Minimum cover is not necessarily unique. In
the next section, we will describe our protocol that allows a
sensor to determine whether it is inside a selected minimum
cover.

We define the smallest cover that consists of Sensor 𝑖,
denoted as 𝑀𝐶(𝑖), to be the smallest cover among those
covers that consists of 𝑖. In other words, ∣𝑀𝐶(𝑖)∣ ≤ ∣𝐷∣ for
every cover 𝐷 where 𝑖 ∈ 𝐷. For example, {1, 2, 3, 5, 6, 9} is
a cover in Fig. 1(b). It is also 𝑀𝐶(2) since 2 is a member
and it is the smallest in size among all covers that consist
of 2. However, it is not 𝑀𝐶(1) because there is another
cover {1, 3, 5, 6, 9} that consists of 1 and is smaller in size.
The example also illustrates that not every 𝑀𝐶(𝑖), such as

𝑀𝐶(2), is an MC. On the other hand, there must exist a
sensor 𝑖 such that 𝑀𝐶(𝑖) is also an MC.

C. Backward and Forward Neighbors

Two nodes are neighbors if their cover ranges overlap.
Formally, Sensor 𝑖 and Sensor 𝑗 are neighbors if 𝑠𝑖 < 𝑠𝑗 < 𝑡𝑖
or 𝑠𝑖 < 𝑡𝑗 < 𝑡𝑖 or 𝑠𝑗 < 𝑠𝑖 < 𝑡𝑗 or 𝑠𝑗 < 𝑡𝑖 < 𝑡𝑗

1.
Each node can communicate directly with neighbors only.
It is possible that [𝑠𝑗 , 𝑡𝑗] completely contains [𝑠𝑖, 𝑡𝑖], that is
𝑠𝑗 < 𝑠𝑖 < 𝑡𝑖 < 𝑡𝑗 , like Sensors 9 and 8 in Fig. 1(b). In
this situation, it is not necessary for 𝑖 to participate in the
selection process. It is because 𝑖 can be replaced by 𝑗 even if
it appears in an MC. Since 𝑖 and 𝑗 can identify this situation
after they discover each other when the protocol starts, for
the ease of discussion, in the following, we assume that each
sensor that participates in our algorithm has a cover range that
is not completely inside the cover range of another participant.
When two sensors have overlapping cover ranges, one of them
is a backward neighbor and the other is a forward neighbor.
Sensor 𝑖 is a backward neighbor of Sensor 𝑗 and Sensor 𝑗
is a forward neighbor of Sensor 𝑖 if 𝑠𝑖 < 𝑠𝑗 < 𝑡𝑖. Refer
to Fig. 1(b), Sensors 2, 7, and 8 are pruned as their cover
ranges are completely inside Sensors 1, 6, and 9, respectively.
After Sensors 2, 7, and 8 are pruned, Sensor 3 is the forward
neighbor of Sensor 1, while Sensor 9 is the backward neighbor
of Sensor 1. It is possible that a portion of the perimeter of the
target object is not covered by any sensor, i.e., a gap exists. We
do not consider this situation in this paper but refer interested
readers to [9], [27] for details.

D. Default Member

A sensor is a default member if it covers a portion of the
perimeter that no other sensor is covering. Formally, Sensor 𝑖
is a default member if there exists a certain angle 𝛾 ∈ [𝑠𝑖, 𝑡𝑖]
such that 𝛾 ∕∈ [𝑠𝑗 , 𝑡𝑗] for any other sensor 𝑗. In this case,
Sensor 𝑖 must be in any cover and 𝑀𝐶(𝑖) must be a minimum
cover. Sensor 𝑖 can identify whether it is a default member by
checking whether there is any backward neighbor overlaps
the sensing range with a forward neighbor. For example, in
Fig. 1(b), Sensor 1 is a default member since there is no
backward neighbor with a cover range overlapping with a
forward neighbor.

IV. DISTRIBUTED MINIMUM COVER (DMC)

In this section, we will describe our distributed protocol for
identifying the minimum cover in details. The formal proof
of the mechanism, the pseudocodes, and a complete example
are in the Appendix.

A. Finding MC(i)

As mentioned before, if Sensor 𝑖 is a default member,
then 𝑀𝐶(𝑖) is a minimum cover. Even if there is no default
member, there must exist a sensor 𝑖 such that 𝑀𝐶(𝑖) is a
minimum cover. If we could identify this sensor 𝑖, finding

1This applies when both 𝑖 and 𝑗 do not cover 0∘ . The definition can be
extended easily to ranges that cover 0∘ but we leave it out for the ease of
discussion.

HUNG and LUI: ON PERIMETER COVERAGE IN WIRELESS SENSOR NETWORKS 2159

𝑀𝐶(𝑖) would solve our problem. Therefore, we first describe
how we can find 𝑀𝐶(𝑖) given 𝑖.

Sensor 𝑖 must be in 𝑀𝐶(𝑖). Therefore, to find 𝑀𝐶(𝑖), we
need to find the smallest set of sensors that cover the remaining
portion of the perimeter that Sensor 𝑖 cannot cover, which is
[𝑡𝑖, 𝑠𝑖]. For example, to find 𝑀𝐶(1) in Fig. 1(b), we need to
identify as few sensors as possible to cover 𝑡1 to 𝑠1 in the
clockwise manner. We adopt the greedy strategy to find these
sensors. Without loss of generality, we assume Sensor 𝑖 selects
a forward neighbor, and sensors are selected in the clockwise
direction. That is, Sensor 𝑖 selects 𝑗 such that 𝑡𝑗 ≥ 𝑡𝑘 for
all forward neighbor 𝑘. We call the forward neighbor selected
in this manner the greedy forward neighbor, and denote the
greedy forward neighbor of node 𝑖 as 𝐺𝐹𝑁(𝑖). Sensor 𝑖
informs its greedy forward neighbor 𝑗 that it is selected, and
Sensor 𝑗 selects its own greedy forward neighbor. The process
ends when a selected node realizes that Sensor 𝑖 is a forward
neighbor. To facilitate this, the identity of Sensor 𝑖 has to be
carried around in the selection process. Refer to the example
in Fig. 1(b), suppose that we want to find 𝑀𝐶(1). 𝐺𝐹𝑁(1) is
3 and so Sensor 1 informs Sensor 3 that it is selected. Sensor
3 selects Sensor 5 as it is the greedy forward neighbor of 3.
Sensor 5 selects Sensor 6 and Sensor 6 selects Sensor 9. As
Sensor 1 is a forward neighbor of Sensor 9, Sensor 9 informs
Sensor 1 and the searching process is concluded.

It is worth noting that each selected node only knows which
neighbors, one backward and one forward, are also selected,
but no node, even 𝑖, has the complete knowledge of 𝑀𝐶(𝑖).
Besides, only the selected nodes would send a message, and
so the message complexity is 𝑂(∣𝑀𝐶(𝑖)∣), which is very
efficient.

B. Greedy Forward Neighbor (GFN)

We now have a mechanism that finds the minimum cover
containing a certain sensor. If we can identify a sensor 𝑖 that
is in an MC, we solve the problem. Before we describe how
to find this sensor, in this section, we describe some properties
related to GFN. The proofs can be found in the Appendix.

Property 1: Let 𝑖 and 𝑗 be two sensors.

∙ Property 1.1: If 𝑗 is a forward neighbor of 𝑖, 𝐺𝐹𝑁(𝑖) is
either 𝑗 or a forward neighbor of 𝑗.

∙ Property 1.2: If 𝑗 is a forward neighbor of 𝑖 and
𝐺𝐹𝑁(𝑖) ∕= 𝑗 and 𝐺𝐹𝑁(𝑗) ∕= 𝐺𝐹𝑁(𝑖), 𝐺𝐹𝑁(𝑗) is
a forward neighbor of 𝐺𝐹𝑁(𝑖).

∙ Property 1.3: If nodes 𝑖 and 𝑗 share the same greedy
forward neighbor, i.e, 𝐺𝐹𝑁(𝑖) = 𝐺𝐹𝑁(𝑗), and 𝑠𝑖 ≤ 𝑠𝑗 ,
then ∣𝑀𝐶(𝑖)∣ ≤ ∣𝑀𝐶(𝑗)∣.

These properties allow us to develop our efficient distributed
algorithm which will be described in the next section.

C. Finding MC

1) Main Algorithm: Let 𝑆0 be the set of sensors that cover
0∘. At least one of the sensors in 𝑆0 must be in an MC.
Intuitively, if we find out 𝑀𝐶(𝑞) for all 𝑞 ∈ 𝑆0, the minimum
size 𝑀𝐶(𝑞) will be the minimum cover. However, if different
𝑀𝐶(𝑞)’s are found independently, it may be very expensive
as there may be many nodes in 𝑆0. Therefore, we “combine"

the searches of different 𝑀𝐶(𝑞)’s and then “prune” some
unnecessary searches to reduce the message overhead. We now
describe how to prune and combine the searches, followed by
how the search terminates.

2) Pruning and Combining mechanism: Let 𝑞𝑚 be the
sensor in 𝑆0 with the largest ending angle. That is, 𝑡𝑞𝑚 > 𝑡𝑖
for all 𝑖 ∈ 𝑆0 and 𝑞𝑚 is a forward neighbor of all the nodes
in 𝑆0. By Property 1.1, for all 𝑞 ∈ 𝑆0, 𝑞 ∕= 𝑞𝑚, 𝐺𝐹𝑁(𝑞)
is either 𝑞𝑚 or a forward neighbor of 𝑞𝑚. Let 𝑇 ⊆ 𝑆0 such
that 𝑇 = {𝑞∣𝐺𝐹𝑁(𝑞) = 𝑞𝑚}. Suppose that 𝑠𝑖 ≤ 𝑠𝑗 where
𝑖, 𝑗 ∈ 𝑇 . Then, by Property 1.3, we know that ∣𝑀𝐶(𝑗)∣ ≥
∣𝑀𝐶(𝑖)∣ where 𝑖 ∕= 𝑗. Therefore, we do not have to bother
finding 𝑀𝐶(𝑗) and we can prune the search of 𝑀𝐶(𝑗). On
the other hand, it is worth noting that every forward neighbor
of every 𝑞 ∈ 𝑆0 is also a neighbor of 𝑞𝑚 because both 𝑞𝑚 and
a forward neighbor of 𝑞 cover 𝑡𝑞 . In other words, based on
the cover ranges of its neighbors, 𝑞𝑚 can identify 𝐺𝐹𝑁(𝑞)
for all 𝑞 ∈ 𝑆0. Suppose now 𝑞𝑚 realizes that both 𝑖 and 𝑗
select the same GFN 𝑓 and 𝑠𝑖 < 𝑠𝑗 . In this case, 𝑞𝑚 can
prune the search of 𝑀𝐶(𝑗) because {𝑖, 𝑓} also covers the
range that {𝑗, 𝑓} can cover. Generally speaking, when two or
more nodes select the same greedy forward neighbor, we can
prune some of the searches.

To further reduce the message overhead, we “combine” the
unpruned searches by one message. In other words, in our
algorithm, 𝑞𝑚 initiates the algorithm and sends the information
of the unpruned searches to 𝐺𝐹𝑁(𝑞𝑚). That is, 𝑞𝑚 sends
𝐺𝐹𝑁(𝑞𝑚) a list of < 𝑞, 𝑠𝑞, 𝐺𝐹𝑁(𝑞) > where 𝑞 ∈ 𝑆0, 𝑠𝑞
is the start angle of 𝑞 and 𝑞 is not pruned. Note that each
𝐺𝐹𝑁(𝑞) in the list is different and is not 𝐺𝐹𝑁(𝑞𝑚). For
each 𝑞 ∕= 𝑞𝑚 in the list, according to Property 1.2, 𝐺𝐹𝑁(𝑞𝑚)
must be a forward neighbor of 𝐺𝐹𝑁(𝑞) and so 𝐺𝐹𝑁(𝑞𝑚)
can identify 𝐺𝐹𝑁(𝐺𝐹𝑁(𝑞)) for all 𝑞.

Specifically, the list being passed around the nodes con-
sists of entries in the form of < 𝑞, 𝑠𝑞, 𝐺𝐹𝑁𝑘(𝑞) > where
𝑞 ∈ 𝑆0 and 𝑞 is not pruned. We define 𝐺𝐹𝑁2(𝑖) to
be 𝐺𝐹𝑁(𝐺𝐹𝑁(𝑖)), which is the greedy forward neighbor
of the greedy forward neighbor of 𝑖. Similarly, 𝐺𝐹𝑁𝑘(𝑖)
means 𝐺𝐹𝑁(𝐺𝐹𝑁(...(𝐺𝐹𝑁(𝑖)))) where 𝐺𝐹𝑁 is found
for 𝑘 times. For convenience, we label 𝐺𝐹𝑁0(𝑖) to be 𝑖.
Therefore, 𝑘 is related to how many hops that message has
gone through. For example, 𝑞𝑚 sends out < 𝑞, 𝑠𝑞, 𝐺𝐹𝑁(𝑞) >
and 𝐺𝐹𝑁(𝑞𝑚) sends out < 𝑞, 𝑠𝑞, 𝐺𝐹𝑁2(𝑞) >.

3) Terminating Condition: In our algorithm, 𝑞𝑚 starts the
search by sending out a message to 𝐺𝐹𝑁(𝑞𝑚). Only nodes
that are 𝐺𝐹𝑁𝑘(𝑞𝑚) for 0 ≤ 𝑘 < ∣𝑀𝐶(𝑞𝑚)∣ would receive
a message and send out a message. Besides, each entry <
𝑞, 𝑠𝑞, 𝑓 > in the message received by 𝐺𝐹𝑁𝑘(𝑞𝑚) satisfies
𝑓 = 𝐺𝐹𝑁𝑘(𝑞). For a forward neighbor of 𝐺𝐹𝑁𝑘(𝑞𝑚) which
overhears the search message from 𝐺𝐹𝑁𝑘(𝑞𝑚), it determines
that it is not in any 𝑀𝐶 if it is neither 𝑞 nor 𝑓 in any entry
< 𝑞, 𝑠𝑞, 𝑓 > in the search message.

The search can stop when the message goes around the
perimeter and reaches a node 𝐺𝐹𝑁𝑘(𝑞𝑚) which receives the
entry < 𝑞, 𝑠𝑞, 𝑓 > and realizes that 𝑞 is a forward neighbor
of 𝑓 . In this case, 𝑀𝐶(𝑞) is an MC. The node 𝐺𝐹𝑁𝑘(𝑞𝑚)
informs 𝑞 that it is in an MC. Then, 𝑞 informs its GFN and
the GFN further inform its own GFN and so on.

The message complexity of our protocol is 𝑂(∣𝑀𝐶∣). Since

2160 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 7, JULY 2010

0 degree

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 2. An illustrative example.

the search messages are combined, only certain nodes need
to process the search message. Algorithm 1 in the Appendix
illustrates what 𝐺𝐹𝑁𝑘(𝑞𝑚) should do when it receives the
search message. Lines 5 − 11 describe how 𝐺𝐹𝑁𝑘(𝑞𝑚)
determines whether it can terminate the search. Lines 12− 28
describe how a search can be pruned. Finally, a combined
message containing the information of the unpruned searches
is sent out as described in Lines 29−30. The complete proof of
the mechanism and an example can be found in the Appendix.

D. Finding Multiple MCs

We can observe two features of our protocol. Firstly, each
message carries a list of < 𝑞, 𝑠𝑞, 𝑓 > where each tuple
represents a search of an MC. Moreover, these MCs are unique
and each sensor is inside at most one of them. It is because if
they share a common sensor, the pruning mechanism would be
applied on them and, only the search of one MC will remain.
Previously, we simply choose one of the MCs as the final MC
selected. However, multiple MCs are possible to be found with
𝑂(size of the minimum cover) number of messages by using
this mechanism.

By finding multiple MCs, we can turn on different sets of
sensors at different time to increase the network lifetime. In
case a sensor of an MC fails, we can switch to another MC
immediately without having interruption in monitoring. Let
MC1 and MC2 be two MCs that do not share any common
sensor. Suppose that MC1 is being used and Sensor 𝑖 in MC1
fails. In MC2, there must be sensors that cover [𝑠𝑖, 𝑡𝑖]. As
they are neighbors of 𝑖, they can detect the node failure.
These sensors should turn on immediately to cover the affected
portion on the perimeter. After all the nodes in MC2 have
turned on, the nodes in MC1 can safely go to the sleep state
to complete the switching process.

V. PERFORMANCE ANALYSIS

A. Algorithms for Comparison

We compare our proposed algorithm with two other algo-
rithms. The first one is the modification of the sequential algo-
rithm proposed in [5]. We denote this algorithm as the GMLL
Algorithm. The other algorithm is the distributed algorithm
proposed in [9]. We denote this algorithm as the Exhaustive
Algorithm.

1) GMLL Algorithm: In this algorithm, a randomly chosen
node 𝑖 ∈ 𝑆 looks for 𝐺𝐹𝑁(𝑖). Node 𝐺𝐹𝑁(𝑖) continues to
look for 𝐺𝐹𝑁2(𝑖) and so on. This process continues until a
node has been visited twice, and this node is a node in MC.
Refer to the example in Fig. 2, suppose Sensor 2 initiates the
algorithm. It selects its GFN, i.e., Sensor 8. Sensor 8 will
further select its GFN, i.e., Sensor 11. This process continues
until the same sensor is reached. In other words, the algorithm
involves Sensors 2, 8, 11, 13, 5, 10, and finally Sensor 13
again. At this moment, Sensor 13 knows that it is a node in
MC. After a node in MC is determined, similar to our proposed
algorithm, the node can then inform its GFN that it is in MC
and so on. In this algorithm, visiting the same node twice
indicating that a termination decision can be made. Therefore,
this approach requires 𝑂(∣𝑀𝐶∣∣𝑆0∣) number of messages in
the worst case, but it is not always that the search goes through
all the nodes in 𝑆0. For the details of the algorithm, the readers
are referred to [5].

2) Exhaustive Algorithm: This algorithm is very similar to
the parallel algorithm proposed in [6]. In this algorithm, every
node 𝑞 ∈ 𝑆0 initiates the search for 𝑀𝐶(𝑞) individually. All
the searches can be carried out in parallel. After every node
𝑞 ∈ 𝑆0 determines 𝑀𝐶(𝑞), it informs the other nodes in 𝑆0.
The one with the minimum size is the minimum cover. Then,
the node in 𝑆0 and also in the minimum cover informs its
GFN and so on. This algorithm terminates with 𝑂(∣𝑀𝐶∣∣𝑆0∣)
number of messages because this approach requires each node
𝑞 ∈ 𝑆0 to initiate the search for 𝑀𝐶(𝑞) individually.

Our distributed algorithm terminates with 𝑂(∣𝑀𝐶∣) number
of messages. Therefore, we can conclude that our distributed
algorithm performs better than the Exhaustive Algorithm and
the GMLL Algorithm in terms of message complexity.

B. Simulation Results

We further study the performances of the algorithms through
simulations. The simulation environment is similar to the one
adopted in [9]. We consider a square area of 200 𝑢𝑛𝑖𝑡𝑠 ×
200 𝑢𝑛𝑖𝑡𝑠, which is divided into 200× 200 grids, where each
grid is of size 1 𝑢𝑛𝑖𝑡2. The probability that there is a sensor
in each grid is 0.5. We assume that each sensor can monitor
an object that is within a certain distance from itself. We call
this distance the sensing range of the sensor. In other words,
the sensing area of a sensor forms a circle which is centered
at the sensor with a radius equals to the sensing range of that
sensor. The portion of the perimeter that falls in the sensing
area is the cover range of the sensor. The target perimeter is
a circle centered at (100, 100) with a radius of 62.5 units.
In the experiment, we adjust the sensing range of the sensors
from 18 units to 36 units with a step of 0.05 unit, and this
contributes to 360 points on each line shown in Figs. 3 to 7.
We generated 60 different topologies for each sensing range
step, and so each point on the figure is an average results taken
from these 60 different topologies.

Two performance metrics are studied in our simulations.
The first one is the total number of messages generated by
the protocol. The second one is the average time it takes for
a node to determine whether it is in the selected minimum
cover after the algorithm starts. This measures how early a

HUNG and LUI: ON PERIMETER COVERAGE IN WIRELESS SENSOR NETWORKS 2161

18 20 22 24 26 28 30 32 34 36
0

100

200

300

400

500

600

Sensing Range

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s

Exhaustive Algorithm (No. of Messages to find MC)

GMLL Algorithm (No. of Messages to find MC)

Our Proposed Algorithm (No. of Messages to find MC)

Exhaustive Algorithm (Time to determine MC)

GMLL Algorithm (Time to determine MC)

Our Proposed Algorithm (Time to determine MC)

Fig. 3. Number of messages vs. sensing range.

node which is not selected to be in the MC can go to the
sleep mode to save energy. A node can determine that it is
not in the MC when it overhears the message and finds out
that it is not a GFN of any backward neighbor in our algorithm
(Section IV-C). Other nodes that cannot determine its status
by overhearing will know whether it is in the MC after the
search is complete. As there is only one message at any time
before our algorithm terminates, the time required to make a
decision is directly related to the number of messages that have
been generated before the decision can be made. Therefore,
we measure the time by counting the number of messages
needed. Similar approach can be used to measure the time of
the GMLL Algorithm, except that a node can only determine
whether it is in MC after the search is complete. On the other
hand, since all the searches in the Exhaustive Algorithm can
be carried out in parallel, the time can be approximated by
measuring the number of messages needed to find 𝑀𝐶(𝑞),
where 𝑞 ∈ 𝑆0, together with the number of messages needed
to exchange among nodes in 𝑆0.

Figs. 5 to 7 are used to explain the performance of the
algorithms shown in Figs. 3 and 4. Fig. 5 illustrates the change
in the size of MC with increasing sensing range. On the other
hand, Fig. 6 shows the change in the size of 𝑆0. In Fig. 7,
we consider the number of rounds, excluding the first round
and the notification round, that GMLL Algorithm needs to
go through in different sensing ranges. Fig. 4 presents the
number of messages required where only the performances
of our proposed algorithm and the GMLL Algorithm are
shown. It can be observed that the number of messages of
our proposed algorithm exhibits similar staircase behavior
as ∣𝑀𝐶∣ in Fig. 5. The simulation results support that the
message complexity of our mechanism is directly related to
the size of 𝑀𝐶.

On the other hand, the number of messages required in the
Exhaustive Algorithm shows a seesaw increasing trend with
the sensing range in Fig. 3. The message complexity of this
algorithm is 𝑂(∣𝑆0∣∣𝑀𝐶∣) because it requires all the nodes
passing through 0∘ to initiate a search. When the sensing
range becomes larger, more nodes will initiate the search due
to the growth in the size of 𝑆0 as shown in Fig. 6. But at the
same time, the size of an MC decreases with an increase in

18 20 22 24 26 28 30 32 34 36
10

20

30

40

50

60

70

80

90

100

Sensing Range

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s

GMLL Algorithm (No. of Messages to find MC)

Our Proposed Algorithm (No. of Messages to find MC)

Fig. 4. Number of messages vs. sensing range in a zoom scale.

the sensing range as shown in Fig. 5. Specifically, a drop in
the number of messages can be observed in Fig. 3 at around
the sensing range region where a drop in ∣𝑀𝐶∣ is observed.
Therefore, this results in a seesaw increasing trend in the
number of messages as shown in Fig. 3. This demonstrates
that the simulation results agree with our theoretical analysis.

For the GMLL Algorithm, we notice that the number of
messages required to find MC may go up and down in Fig. 3.
Recall that the GMLL Algorithm can terminate when a node
receives the search message twice. Therefore, the message
complexity depends on how many rounds the search message
goes around the perimeter before the search terminates. When
there are many MCs in a network, more rounds will be needed.
Fig. 7 shows that the number of rounds needed for different
sensing ranges. The number of rounds drops sharply at where
∣𝑀𝐶∣ drops in Fig. 5. It is because at that sensing range,
there are probably only one or two MCs in the network, and
a node will be visited twice very soon. On the other hand, the
number of MCs increases exponentially when the cover range
increases before ∣𝑀𝐶∣ drops again. Therefore, between two
consecutive drops, number of rounds increases exponentially.
This also explains why the message complexity of the GMLL
Algorithm in Fig. 3 exhibits a sawtooth curve.

Fig. 3 also illustrates the average time required for a node
to determine whether it is included in MC. In the Exhaustive
Algorithm, all the nodes cover 0∘ can start at the same time to
find MC as stated earlier, the average time needed is much less
than the number of messages needed in finding MC. On the
other hand, in the GMLL Algorithm, a node can only determine
whether it is in MC after a node in MC is determined. As a
result, the average time is similar to the number of messages
needed in finding MC. In contrast, in our proposed algorithm,
some of the nodes can conclude that they are not in MC before
the search process ends, and so the average time is generally
half of the total message overhead.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the angle/perimeter coverage
problem in which multiple sensors are expected to collaborate
to monitor the perimeter of a big target object. We proposed a
distributed algorithm to solve the problem with 𝑂(size of the

2162 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 7, JULY 2010

18 20 22 24 26 28 30 32 34 36
6

7

8

9

10

11

12

Sensing Range

|M
C

|

Fig. 5. Size of MC vs. sensing range.

18 20 22 24 26 28 30 32 34 36
30

35

40

45

50

55

60

65

70

75

80

Sensing Range

|S
0

|

Fig. 6. Size of 𝑆0 vs. sensing range.

minimum cover) number of messages and formally proved
the correctness and message complexity of our protocol.
Through extensive simulations, it is found that our proposed
algorithm outperforms other existing methods in terms of
message overhead and the average time required for a node
to determine whether it is in the selected MC.

VII. APPENDIX

A. Proof of Correctness of our Proposed Algorithms

Lemma 1 {𝐺𝐹𝑁 𝑗(𝑖) ∣ 0 ≤ 𝑗 ≤ 𝑘 and 𝐺𝐹𝑁𝑘(𝑖)
is a backward neighbor of 𝑖} is an 𝑀𝐶(𝑖).

Proof:
Suppose that given a certain 𝑀𝐶(𝑖), 𝐶 = 𝑀𝐶(𝑖)∖{𝑖} and
∣𝐶∣ = 𝑘. The cover ranges of the sensors in 𝐶 arranged in
clockwise order are [𝜎1, 𝜏1], ... , [𝜎𝑘, 𝜏𝑘], where 𝜏𝑗 < 𝜏𝑗+1

for 1 ≤ 𝑗 < 𝑘. We further assume that the set of greedy
forward neighbors selected is 𝐶′ with ∣𝐶′∣ = 𝑘′. The cover
ranges of the sensors in 𝐶′ are [𝑠1, 𝑡1], ... ,[𝑠𝑘′ , 𝑡𝑘′]. To argue
that 𝐶′ ∪ {𝑖} is also an 𝑀𝐶(𝑖), we proof 𝑘 = 𝑘′ by showing
𝜏𝑗 ≤ 𝑡𝑗 where 1 ≤ 𝑗 ≤ 𝑘′ using induction.

To simplify the notation, we label a sensor using the start
angle of its cover range. That is, 𝑠𝑗 denotes the sensor that

18 20 22 24 26 28 30 32 34 36
0

2

4

6

8

10

12

Sensing Range

N
u

m
b

e
r

o
f

A
d

d
it
io

n
a

l
R

o
u

n
d

s

Fig. 7. Number of additional rounds vs. sensing range.

covers [𝑠𝑗 , 𝑡𝑗]. Both 𝜎1 and 𝑠1 are forward neighbors of 𝑖. As
𝑠1 is the greedy forward neighbor, 𝜏1 ≤ 𝑡1. Assume it is true
for 𝑗 that 𝜏𝑗 ≤ 𝑡𝑗 . We now prove it is also true for 𝑗 + 1.

If 𝜏𝑗+1 ≤ 𝑡𝑗 , as 𝑡𝑗 < 𝑡𝑗+1, we have 𝜏𝑗+1 ≤ 𝑡𝑗+1. For
𝑡𝑗 < 𝜏𝑗+1, by the assumption that 𝜏𝑗 ≤ 𝑡𝑗 and because [𝜎𝑗 , 𝜏𝑗]
overlaps with [𝜎𝑗+1, 𝜏𝑗+1] (𝜎𝑗+1 ≤ 𝜏𝑗), it leads to 𝜎𝑗+1 ≤
𝑡𝑗 ≤ 𝜏𝑗+1. This implies 𝜎𝑗+1 is a forward neighbor of 𝑠𝑗 . As
𝑠𝑗+1 is the greedy forward neighbor of 𝑠𝑗 , 𝜏𝑗+1 ≤ 𝑡𝑗+1 and
it completes the proof. ■

Property 1 Let 𝑖 and 𝑗 be two sensors.

Property 1.1: If 𝑗 is a forward neighbor of 𝑖, 𝐺𝐹𝑁(𝑖) is either
𝑗 or a forward neighbor of 𝑗.
Proof:
As 𝑗 is a forward neighbor of 𝑖, it can be the greedy forward
neighbor of 𝑖. If 𝑥 = 𝐺𝐹𝑁(𝑖) ∕= 𝑗, 𝑡𝑥 ≥ 𝑡𝑗 and so 𝑥 is a
forward neighbor of 𝑗. ■

Property 1.2: If 𝑗 is a forward neighbor of 𝑖 and 𝐺𝐹𝑁(𝑖) ∕= 𝑗
and 𝐺𝐹𝑁(𝑗) ∕= 𝐺𝐹𝑁(𝑖), 𝐺𝐹𝑁(𝑗) is a forward neighbor of
𝐺𝐹𝑁(𝑖).
Proof:
Let 𝑥 = 𝐺𝐹𝑁(𝑖) and so 𝑠𝑥 ≤ 𝑡𝑖 while 𝑦 = 𝐺𝐹𝑁(𝑗) and
𝑠𝑦 ≤ 𝑡𝑗 . As 𝐺𝐹𝑁(𝑖) ∕= 𝑗 and 𝑗 is a forward neighbor of 𝑖,
𝑡𝑗 < 𝑡𝑥. As 𝑦 is 𝐺𝐹𝑁(𝑗), 𝑡𝑥 < 𝑡𝑦 . Therefore, 𝑦 is a forward
neighbor of 𝑥. ■

Property 1.3: If nodes 𝑖 and 𝑗 share the same greedy forward
neighbor and 𝑠𝑖 ≤ 𝑠𝑗 , then ∣𝑀𝐶(𝑖)∣ ≤ ∣𝑀𝐶(𝑗)∣.
Proof:
Let 𝐺𝐹𝑁(𝑖) = 𝐺𝐹𝑁(𝑗) = 𝑥, ∣𝑀𝐶(𝑖)∣ = 𝑘 and ∣𝑀𝐶(𝑗)∣
= 𝑘′. According to Lemma 1, {𝐺𝐹𝑁𝑚(𝑖)∣0 ≤ 𝑚 < 𝑘} is
an 𝑀𝐶(𝑖). Note that 𝐺𝐹𝑁𝑘−1(𝑖) = 𝐺𝐹𝑁𝑘−2(𝑥). That is,
𝐺𝐹𝑁𝑘−2(𝑥) is a backward neighbor of 𝑖 and 𝐺𝐹𝑁𝑘′−2(𝑥)
is a backward neighbor of 𝑗. Since 𝑠𝑖 ≤ 𝑠𝑗 , 𝑘 − 2 ≤ 𝑘′ − 2
and so 𝑘 ≤ 𝑘′ as stated in the property. ■

First of all, we use Lemma 2 and Lemma 3 to illustrate that
MC exists in our proposed distributed algorithm. Afterwards,
Lemma 4 illustrates that our distributed algorithm terminates

HUNG and LUI: ON PERIMETER COVERAGE IN WIRELESS SENSOR NETWORKS 2163

with an MC found. Finally, Theorem 1 and Theorem 2 prove
the correctness and the complexity of our proposed algorithm
discussed. Recall that 𝑞𝑚 is the sensor in 𝑆0 with the largest
ending angle. That is, 𝑡𝑞𝑚 > 𝑡𝑖 for all 𝑖 ∈ 𝑆0 and 𝑞𝑚 is a
forward neighbor of all the nodes in 𝑆0.

Lemma 2 In our algorithm, the search of 𝑀𝐶(𝑗), 𝑗 ∈ 𝑆0 is
pruned by 𝐺𝐹𝑁𝑘(𝑞𝑚) only if there exists another node 𝑖 ∈ 𝑆0

such that 𝑀𝐶(𝑖) is not pruned and ∣𝑀𝐶(𝑖)∣ ≤ ∣𝑀𝐶(𝑗)∣.
Proof:
As discussed in Section IV-C, only 𝐺𝐹𝑁𝑘(𝑞𝑚) will be
responsible for sending out search message after receiving
message 𝑀 from 𝐺𝐹𝑁𝑘−1(𝑞𝑚) which contains << 𝑞1, 𝑠𝑞1 ,
𝐺𝐹𝑁𝑘(𝑞1) >,...,< 𝑞𝐿, 𝑠𝑞𝐿 , 𝐺𝐹𝑁𝑘(𝑞𝐿) >>. According to
Properties 1.1 and 1.2, 𝐺𝐹𝑁𝑘(𝑞𝑚) can find the 𝐺𝐹𝑁𝑘+1(𝑞𝑖),
for each 𝑞𝑖 in 𝑆0.

From Algorithm 1 in Section VII-B, 𝐺𝐹𝑁𝑘(𝑞𝑚) will prune
the search for 𝑀𝐶(𝑗), where 𝑗 ∈ 𝑆0 under two situations.
Case 1: 𝐺𝐹𝑁𝑘+1(𝑖) = 𝐺𝐹𝑁𝑘+1(𝑗) and 𝑠𝑖 < 𝑠𝑗 , for some 𝑖
and 𝑗.

Let 𝐺𝐹𝑁𝑘+1(𝑖) = 𝐺𝐹𝑁𝑘+1(𝑗) = 𝑥, ∣𝑀𝐶(𝑖)∣ = 𝑙
and ∣𝑀𝐶(𝑗)∣ = 𝑙′. According to Lemma 1,
{𝐺𝐹𝑁𝑚(𝑖)∣0 ≤ 𝑚 < 𝑙} is an 𝑀𝐶(𝑖). Note that 𝐺𝐹𝑁 𝑙−1(𝑖)
= 𝐺𝐹𝑁 𝑙−𝑘−2(𝑥). That is, 𝐺𝐹𝑁 𝑙−𝑘−2(𝑥) is a backward
neighbor of 𝑖 and 𝐺𝐹𝑁 𝑙′−𝑘−2(𝑥) is a backward neighbor of
𝑗. Since 𝑠𝑖 ≤ 𝑠𝑗 , 𝑙 − 𝑘 − 2 ≤ 𝑙′ − 𝑘 − 2 and so 𝑙 ≤ 𝑙′.

Case 2: 𝐺𝐹𝑁𝑘(𝑞𝑚) = 𝐺𝐹𝑁𝑘+1(𝑗) and 𝑠𝑗 < 𝑠𝑞𝑚 , for some
𝑗.

Let 𝐺𝐹𝑁𝑘(𝑞𝑚) = 𝐺𝐹𝑁𝑘+1(𝑗) = 𝑥, ∣𝑀𝐶(𝑞𝑚)∣ = 𝑙 and
∣𝑀𝐶(𝑗)∣ = 𝑙′. According to Lemma 1, {𝐺𝐹𝑁𝑚(𝑞𝑚)∣0 ≤
𝑚 < 𝑙} is an 𝑀𝐶(𝑞𝑚). Note that 𝐺𝐹𝑁 𝑙−1(𝑞𝑚) =
𝐺𝐹𝑁 𝑙−𝑘−1(𝑥). That is, 𝐺𝐹𝑁 𝑙−𝑘−1(𝑥) is a backward neigh-
bor of 𝑞𝑚, and 𝐺𝐹𝑁 𝑙′−𝑘−2(𝑥) is a backward neighbor of
𝑗. Since 𝑠𝑗 < 𝑠𝑞𝑚 , 𝑙′ − 𝑘 − 2 ≤ 𝑙 − 𝑘 − 1. However,
𝐺𝐹𝑁 𝑙′−𝑘−2(𝑥) may also be a backward neighbor of 𝑞𝑚 (i.e.,
𝑙′− 𝑘− 2 = 𝑙− 𝑘− 1). Otherwise, 𝐺𝐹𝑁 𝑙′−𝑘−2(𝑥) can select
𝐺𝐹𝑁 𝑙′−𝑘−1(𝑥) and which must be a backward neighbor of
𝑞𝑚 (The worst case is when 𝐺𝐹𝑁 𝑙′−𝑘−1(𝑥) is 𝑗). In that
case, 𝑙′ − 𝑘 − 1 = 𝑙 − 𝑘 − 1. As a result, we know that
𝑙 − 𝑘 − 2 ≤ 𝑙′ − 𝑘 − 2 and so 𝑙 ≤ 𝑙′. ■

Lemma 3 In each message sent by 𝐺𝐹𝑁𝑘(𝑞𝑚), 0 ≤ 𝑘 <
∣𝑀𝐶(𝑞𝑚)∣, there must exist an entry < 𝑞, 𝑠𝑞, 𝑓 > such that
𝑀𝐶(𝑞) is an 𝑀𝐶.

Proof:
When 𝑞𝑚 constructs the message in the beginning, at least one
𝑞 where 𝑀𝐶(𝑞) is an MC is in the message. By Lemma 2,
𝐺𝐹𝑁𝑘(𝑞𝑚) will prune the search of 𝑀𝐶(𝑗). Then, 𝑗 ∈ 𝑆0

only if ∃𝑖 ∈ 𝑆0, where ∣𝑀𝐶(𝑖)∣ ≤ ∣𝑀𝐶(𝑗)∣ and the search
of 𝑀𝐶(𝑖) is unpruned. This means that if 𝐺𝐹𝑁𝑘(𝑞𝑚) prunes
the search of 𝑀𝐶(𝑗) which is an 𝑀𝐶, 𝑀𝐶(𝑖) which is
unpruned is also an 𝑀𝐶. As a result, when 𝐺𝐹𝑁𝑘(𝑞𝑚)
sends < 𝑞, 𝑠𝑞, 𝑓 > in message 𝑀 for each unpruned 𝑀𝐶(𝑞),
∃𝑞 ∈ 𝑆0 and an entry < 𝑞, 𝑠𝑞, 𝑓 > in message 𝑀 , such that
𝑀𝐶(𝑞) is an 𝑀𝐶. ■

Lemma 4 If 𝐺𝐹𝑁𝑘(𝑞𝑚) receives an entry < 𝑞, 𝑠𝑞, 𝑓 > in
the search message 𝑀 and 𝑞 is a forward neighbor of 𝑓 , then
𝑀𝐶(𝑞) is an 𝑀𝐶.

Proof:
If 𝐺𝐹𝑁𝑘(𝑞𝑚) receives an entry < 𝑞, 𝑠𝑞, 𝑓 > in which 𝑞 is
a forward neighbor of 𝑓 , the search for 𝑀𝐶(𝑞) is complete
according to Lemma 1, and ∣𝑀𝐶(𝑞)∣ = 𝑘 + 1. In this case,
𝐺𝐹𝑁𝑘(𝑞𝑚) can prune the search of 𝑀𝐶(𝑝) of other entry <
𝑝, 𝑠𝑝, 𝑓 > in message 𝑀 in which 𝑝 is not a forward neighbor
of 𝑓 . It is because the searches of these 𝑀𝐶(𝑝) still need one
more node to complete. i.e., ∣𝑀𝐶(𝑝)∣ > 𝑘 + 1 = ∣𝑀𝐶(𝑞)∣.
By Lemma 3, ∃𝑞 ∈ 𝑆0 and an entry < 𝑞, 𝑠𝑞, 𝑓 > in message
𝑀 sent by 𝐺𝐹𝑁𝑘−1(𝑞𝑚), such that 𝑀𝐶(𝑞) is an 𝑀𝐶. As a
result, we can conclude that if 𝐺𝐹𝑁𝑘(𝑞𝑚) receives an entry
< 𝑞, 𝑠𝑞, 𝑓 > in 𝑀 , and 𝑞 is a forward neighbor of 𝑓 . 𝑀𝐶(𝑞)
is an 𝑀𝐶. ■

Theorem 1 Our distributed algorithm is correct.

Proof:
By Lemma 2 and Lemma 3, we prove that our algorithm
proceeds with the search of 𝑀𝐶(𝑖), where 𝑖 ∈ 𝑆0, in which
at least one unpruned search of 𝑀𝐶(𝑖) is an 𝑀𝐶. Finally,
our algorithm terminates when 𝐺𝐹𝑁𝑘(𝑞𝑚) receives an entry
< 𝑞, 𝑠𝑞, 𝑓 > in which 𝑞 is a forward neighbor of 𝑓 . By
Lemma 4, we prove that 𝑀𝐶(𝑞) is an 𝑀𝐶. As a result, our
algorithm always terminates with an MC found and this proves
that our distributed algorithm is correct. ■

Theorem 2 Our distributed algorithm terminates with
𝑂(∣𝑀𝐶∣) number of messages.

Proof:
Our distributed algorithm starts with 𝑞𝑚 and terminates when
any 𝑞 in < 𝑞, 𝑠𝑞, 𝑓 > is a forward neighbor of 𝑓 . Only
𝐺𝐹𝑁𝑘(𝑞𝑚) will be responsible for sending out search mes-
sage. In the worst case, our algorithm terminates with 𝑞𝑚
being the forward neighbor of 𝑓 in < 𝑞𝑚, 𝑠𝑞𝑚 , 𝑓 >. According
to Lemma 1, 𝑀𝐶(𝑞𝑚) is found in case 𝑞𝑚 is a forward
neighbor of 𝑓 , so our distributed algorithm terminates with
𝑂(∣𝑀𝐶∣) number of messages for the search of 𝑀𝐶. After
the search of 𝑀𝐶, nodes in 𝑀𝐶 are informed. This also
requires another 𝑂(∣𝑀𝐶∣) number of messages. As a result,
our distributed algorithm terminates with 𝑂(∣𝑀𝐶∣) number
of messages in the worst case. ■

B. Example and Pseudocodes

We use Fig. 4 as an example the illustrate the whole
operation of our proposed distributed algorithm. Recall that
𝑞𝑚 is the sensor in 𝑆0 with the largest ending angle. In the
figure, 𝑞𝑚 = 6 and 𝑀𝐶(1) is pruned because 𝐺𝐹𝑁(1) = 6.
As 𝐺𝐹𝑁(2) = 𝐺𝐹𝑁(3) = 8, 𝑀𝐶(3) is pruned. Here,
𝐺𝐹𝑁(4) = 9 and 𝐺𝐹𝑁(5) = 10 and hence both 𝑀𝐶(4)
and 𝑀𝐶(5) are not pruned. After finding 𝐺𝐹𝑁(6) = 11,
Sensor 6 sends the information of the unpruned searches
to Sensor 11. To facilitate Sensor 11 to further identify the
𝑀𝐶 of the unpruned nodes, we tell Sensor 11 the greedy
forward neighbors of 2, 4, and 5. Now, Sensor 11 receives

2164 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 7, JULY 2010

<< 2, 𝑠2, 8 >,< 4, 𝑠4, 9 >,< 5, 𝑠5, 10 >,< 6, 𝑠6, 11 >>.
Since 𝐺𝐹𝑁(8) = 11, 𝑀𝐶(2) is pruned. On the other hand,
𝐺𝐹𝑁(10) = 𝐺𝐹𝑁(11) = 13 and so we should prune either
𝑀𝐶(5) or 𝑀𝐶(6). Since Sensor 5 starts earlier than Sensor
6 (i.e., 𝑠5 < 𝑠6), we should eliminate 𝑀𝐶(6). However,
𝑀𝐶(4) is not pruned, and Sensor 11 sends << 4, 𝑠4, 12 >,<
5, 𝑠5, 13 >> to Sensor 13. Finally, when Sensor 13 receives
<< 4, 𝑠4, 12 >,< 5, 𝑠5, 13 >>, it finds that Sensor 5 is a
forward neighbor of Sensor 13, it knows that 𝑀𝐶(5) is an
MC. Sensor 13 can inform Sensor 5 that it is in an 𝑀𝐶. Then,
Sensor 5 can inform its 𝐺𝐹𝑁 that it is in the 𝑀𝐶 and the
𝐺𝐹𝑁 can further inform its own 𝐺𝐹𝑁 and so on.

Algorithm 1 Node 𝑞 receives message << 𝑞1, 𝑠1, 𝑓1 >, ... <
𝑠𝐿, 𝑠𝐿, 𝑓𝐿 >>
1: Preconditions:
2: 𝑞 = 𝐺𝐹𝑁𝑘(𝑞𝑚) for some 𝑘.
3: 𝑓𝑖 = 𝐺𝐹𝑁𝑘(𝑞𝑖)
4: 𝑠𝑖 = 𝑠𝑞𝑖
5: /* Check whether an MC is identified. */
6: for 𝑖 = 1 to 𝐿 do
7: if 𝑞𝑖 is a forward neighbor of 𝑓𝑖 then
8: /* 𝑀𝐶(𝑞𝑖) is an MC. */
9: Inform 𝑞𝑖 to start the real 𝑀𝐶 search and terminate.

10: end if
11: end for
12: /* Determining whether search of 𝑀𝐶(𝑞𝑖) can be pruned. Initially,

assume all the searches cannot be pruned. */
13: for 𝑖 = 1 to 𝐿 do
14: /* Prune 𝑀𝐶(𝑞𝑖) if 𝐺𝐹𝑁(𝑓𝑖) = 𝑞. */
15: if 𝑞 = 𝐺𝐹𝑁(𝑓𝑖) then
16: Prune 𝑀𝐶(𝑞𝑖).
17: Continue
18: end if
19: for 𝑗 = 1 to 𝐿 do
20: if 𝑖 ∕= 𝑗 and 𝑀𝐶(𝑞𝑖) and 𝑀𝐶(𝑞𝑗) have not been pruned then
21: /* Check if they share the same greedy forward neighbor. */
22: if 𝐹𝑁(𝑓𝑖) = 𝐺𝐹𝑁(𝑓𝑗) then
23: prune 𝑀𝐶(𝑞𝑗) if 𝑠𝑖 < 𝑠𝑗 ;
24: prune 𝑀𝐶(𝑞𝑖), otherwise.
25: end if
26: end if
27: end for
28: end for
29: /* Send the unpruned search of 𝑀𝐶(𝑞𝑖) to 𝐺𝐹𝑁(𝑞). */
30: Send << 𝑞𝑖, 𝑠𝑖, 𝐺𝐹𝑁(𝑓𝑖) >> to 𝐺𝐹𝑁(𝑞) for every 𝑀𝐶(𝑞𝑖) that has

not been pruned.

REFERENCES

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the
physical world with pervasive networks,” IEEE Pervasive Computing,
2002.

[2] D. Chen and P. K. Varshney, “QoS Support in wireless sensor networks:
a survey,” in Proc. Int. Conf. Wireless Networks, 2004.

[3] M. Cardei and J. Wu, “Coverage in wireless sensor networks,” Handbook
of Sensor Networks, M. Ilyas and I. Magboub, editors, 2004.

[4] K.-Y. Chow, K.-S. Lui, and E. Y. Lam, “Wireless sensor networks
scheduling for full angle coverage,” Multidimensional Systems and
Signal Processing, vol. 20, no. 2, pp. 101–119, June 2009.

[5] C. C. Lee and D. T. Lee, “On a circle-cover minimization problem,”
Inf. Process. Lett., vol. 18, pp. 109–115, Feb. 1984.

[6] A. A. Bertossi, “Parallel circle-cover algorithms,” Info. Process. Lett.,
vol. 27, pp. 133–139, 1988.

[7] M. Atallah and D. Z. Chen, “An optimal algorithm for the minimum
circle-cover problem,” Inf. Process. Lett., vol. 32, pp. 159–165, 1989.

[8] M. S. Yu, C. L. Chen, and R. C. T. Lee, “Optimal parallel circle-
cover and independent set algorithms for circular ARC graphs,” in Proc.
International Conf. Parallel Processing, 1989, pp. 126–129.

[9] K.-Y. Chow, K.-S. Lui, and E. Lam, “Maximizing angle coverage in
visual sensor networks,” in IEEE International Conf. Commun. (ICC),
June 2007.

[10] G. F. Simmons, Introduction to Topology and Modern Analysis. McGraw
Hill International Editions, 1963.

[11] H. Gupta, S. R. Das, and Q. Gu, “Connected sensor cover: self-
organization of senor networks for efficient query execution,” in Proc.
ACM MobiHoc, 2003.

[12] J. Carle and D. Simplot-Ryl, “Energy-efficient area monitoring for
sensor networks,” IEEE Computer, Feb. 2004.

[13] G. Cao, G. Wang, T. L. Porta, S. Phoha, G. Wang, and W. Zhang, “Dis-
tributed algorithms for deploying mobile sensors,” in Proc. Theoretical
Algorithmic Aspects Sensor, Ad Hoc Wireless Peer-to-Peer Networks,
2004.

[14] C.-F. Huang and Y.-C. Tseng, “The coverage problem in a wireless
sensor network,” in Proc. ACM International Conf. Wireless Sensor
Networks Applications (WSNA), 2003.

[15] ——, “The coverage problem in a wireless sensor network,” Mobile
Networks Applications, 2005.

[16] M. Ye, E. Chan, G. Chen, and J. Wu, “Energy efficient fractional
coverage schemes for low cost wireless sensor networks,” in Proc. IEEE
ICDCSW, 2006.

[17] K.-S. Hung, K.-S. Lui, and Y.-K. Kwok, “A trust-based geographical
routing scheme in sensor networks,” in Proc. IEEE WCNC, 2007.

[18] K. Kar and S. Banerjee, “Node placement for connected coverage in
sensor networks,” in Proc. ACM WiOpt, 2003.

[19] M. Cardei and D.-Z. Du, “Improving wireless sensor network lifetime
through power aware organization,” in Proc. ACM Wireless Networks,
2005, pp. 333–340.

[20] M. Cardei, J. Wu, and M. Lu, “Improving network lifetime using sensors
with adjustable sensing range,” International J. Sensor Networks, pp.
41–49, 2006.

[21] M. T. Thai, Y. Li, F. Wang, and D.-Z. Du, “O(log n)-localized algorithms
on the coverage problem in heterogeneous sensor networks,” in Proc.
IEEE International Performance Computing Commun. Conf. (IPCCC),
Apr. 2007.

[22] M. K. Watfa and S. Commuri, “Boundary coverage and coverage bound-
ary problems in wireless sensor networks,” Int. J. Sensor Networks, Apr.
2007.

[23] ——, “Power conservation approaches to the border coverage problem
in wireless sensor networks,” in Proc. International Conf. Wireless
Networks (ICWN), 2006.

[24] H. Lee and H. Aghajan, “Vision-enabled node localization in wireless
sensor networks.” in Proc. Cognitive Systems Interactive Sensors (CO-
GIS), Mar. 2006.

[25] C. McCormick, P.-Y. Laligand, H. Lee, and H. Aghajan, “Distributed
agent control with self-localizing wireless image sensor networks.” in
Proc. Cognitive Systems Interactive Sensors (COGIS), Mar. 2006.

[26] N. Tezcan and W. Wang, “Self-orienting wireless multimedia sensor
networks for maximizing multimedia coverage,” in Proc. IEEE ICC,
May 2008.

[27] K.-Y. Chow, “Angle coverage in wireless sensor networks,” M.Phil.
thesis, The University of Hong Kong, Oct. 2007.

Ka-Shun Hung earned his B.Eng. (first class hon-
ors) in electrical and electronic engineering from
the University of Hong Kong, Hong Kong. He
continued his M.Sc. in electrical engineering at
Columbia University, New York, and then received
his Ph.D. in electrical and electronic engineering
from the University of Hong Kong, Hong Kong. His
research interests include perimeter coverage, trust,
and security issues in wireless sensor networks.

King-Shan Lui (S’00-M’03-SM’09) received the
B.Eng. and M.Phil. degrees in computer science
from the Hong Kong University of Science and
Technology. After receiving her Ph.D. degree from
the University of Illinois at Urbana-Champaign,
USA, she joined the Department of Electrical and
Electronic Engineering at the University of Hong
Kong. Her research interests include network pro-
tocol design and analysis, sensor networks, and
quality-of-service issues.

