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Improving File Distribution Performance by
Grouping in Peer-to-Peer Networks

Ma Lingjun, Pui-Sze Tsang, and King-Shan Lui

Abstract—It has been shown that the peer-to-peer paradigm
is more efficient than the traditional client-server model for
file sharing among a large number of users. Given a group of
leechers who wants to download a single file and a group of
seeds who possesses the whole file, the minimum time needed
for distributing the file to all users can be calculated based on
their bandwidth availabilities. A scheduling algorithm has been
developed so that every leecher can obtain the file within this
minimum time. Unfortunately, this mechanism is not optimal
with regard to the average download time among the peers. In
this paper, we study how to reduce the average download time
without prolonging the time needed for all leechers to obtain
the file from a theoretical perspective. Based on the bandwidth
capacities, the seeds and leechers are divided into different
groups. We identify the necessary conditions for grouping to
bring about benefits. We also study the impact on performance
when leechers leave the system before the downloading process
is complete. To evaluate our mechanism, we conduct extensive
simulations and compare the performance with a BitTorrent-
like file sharing algorithm. The results show that our grouping
protocol successfully reduces the average download time over a
wide range of system configurations.

Index Terms—Peer-to-peer, grouping, file distribution.

I. INTRODUCTION

F ILE sharing under the peer-to-peer (P2P) model is more
efficient than the traditional client-server model, and this

is demonstrated by applications such as BitTorrent (BT) [1]
and PPLive [2]. In the P2P paradigm, each user acts both as a
client and a server, sending file pieces that he/she possesses to
other users while receiving pieces he/she needs from others.
This enables P2P file sharing to scale well when the number
of participating nodes increases [3]. In this paper, we study
the performance of distributing a single file offline to a large
number of users who do not have any portion of the file in
the beginning. Several servers, called seeds, possess the whole
file before the distribution begins. The users who want to
obtain the file are called the leechers. A leecher can connect
to any seed and any leecher for sharing the file. The rate at
which a seed/leecher can upload/download is constrained by
its bandwidth capacity. One important performance metric is
the time needed to distribute the file to all leechers.

File scheduling is a common technique used to reduce the
file distribution time [4] [5] [6] [7]. A scheduling scheme
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determines who should send a file piece to whom and when the
file piece should be sent out. Two approaches, pull-based and
push-based, have been developed. In the pull-based approach,
a peer selects a piece it does not possess and requests it from
other peers. On the other hand, in the push-based situation,
a peer selects a piece it possesses and sends it to other
peers. The work in [8] shows that a purely push-based or
pull-based mechanism is not efficient in file distribution. A
hybrid approach called INTERLEAVE is proposed, which
combines the two approaches to reduce the file distribution
time. Unfortunately, an optimal scheduling mechanism is
difficult to develop, especially in a large network. Network
coding is proposed to solve this problem [9] [10]. Instead of
sending a certain file block, a linear combination of the blocks
available in the sender is sent. Although experimental results
show that the distribution time is better than some commonly
used heuristic block distribution mechanisms, the information
distributed is more than the information needed in a perfect
scheduling mechanism.

Based on the fluid model, Kumar and Ross derived the
theoretical lower bound of the file distribution time [4].
They also developed an optimal file distribution scheme that
achieves this lower bound. In other words, if their algorithm
can distribute the file to all leechers in 𝑡 seconds, there is no
other scheduling algorithm that is able to finish the task in less
that 𝑡 seconds. In their scheme, all leechers complete their
downloads at the same time, which means that the average
download time of the leechers is also 𝑡 seconds. However, the
time needed may not be the best from an individual leecher’s
perspective. Note that the time needed for a single leecher is
related to its download capacity. The smaller the capacity, the
longer time it takes. If there are some leechers with extremely
limited download capacities, as all leechers finish at the same
time in the algorithm of Kumar and Ross, other leechers
have to wait even if their capacities are abundant. For this
reason, we believe that the average download time can be
further reduced by grouping seeds and leechers appropriately.
Peers can only exchange file pieces with other peers in the
same group, and inter-group communication is not allowed.
As each peer can only talk to a subset of the whole system, the
overhead in maintaining inter-peer communication is reduced
as well.

In this paper, we study how the average download time
can be reduced by clustering from a theoretical perspective.
We first identify the necessary condition for grouping to
be feasible in bringing about benefits. We then develop a
determinstic grouping scheme that is promising in reducing
the average download time in file distribution. The scheme can
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work with different scheduling algorithms such as BT and the
algorithm developed by Kumar and Ross [4]. Moreover, it is
compatible with network coding. Finally, we extend the model
in [4] and analyze the system performance in a dynamic model
where some leechers fail before the file distribution process
is completed. In summary, following the theoretical studies
conducted by Kumar and Ross [4], we study the impact of
grouping in P2P file sharing. Our results offer insights into
practical protocol design where grouping can be adopted as a
strategy for performance improvement.

The rest of this paper is organized as follows. Section II
presents the related work, and Section III defines the problem
studied in this paper. Our grouping mechanism is discussed
in Section IV. Section V studies how the failure of a leecher
affects the system. The criteria for the system performance to
experience degradation is also described. Performance evalu-
ation with regard to the grouping protocol is given in Section
VI. We conclude the whole paper in Section VII.

II. RELATED WORK

Previous studies on P2P file distribution are mainly based
on two models: the chunk model and the fluid model. In the
chunk model, files are first chopped into pieces of equal sizes,
and the subsequent distribution occurs in pieces. That is, a peer
will not distribute a piece until he/she has received the last bit
of that piece. As opposed to the chunk model, it is assumed
in the fluid model that a peer can distribute a bit once that bit
is received.

One important evaluation metric in file distribution is the
minimum amount of time needed to distribute the file to all
leechers. We refer to this value as the minimum download time.
In the chunk model, it is difficult to develop a closed form
expression for the minimum download time. By assuming
all peers have the same upload capacities and unlimited
download bandwidth, Mundinger et al. developed a closed
form expression for the minimum download time1 [5]. Other
researchers analyzed the minimum download time based on
certain scheduling mechanisms. The work in [11] studied the
performances of several tree-based distributing schemes. The
works in [8] assumed file distribution is slot-based, where each
user can upload one piece at most in each slot, and there is no
limit on a user’s download capability. A centralized optimal
protocol is developed that can complete the file distribution
in 𝑘 + 𝑙𝑜𝑔2𝑛 slots, where there are 𝑘 file pieces, 𝑛 leechers,
and a single source. The popular chunk-based BitTorrent (or
BT-like) protocol was also studied [3] [12].

There are some analytical frameworks developed based
on the fluid models. In [13] [14], a stochastic fluid model
was built to study the performance of the P2P web cache
(SQUIRREL) and cache clusters. The request streams of the
individual nodes are modeled by a fluid flow, and the large
number of users can join or leave the system randomly. The
work in [15] applied the Fluid Stochastic Petri Net (FSPN) to
analyze the distribution of the transfer time in P2P file sharing
systems. The authors analyzed the transfer time distribution in
file sharing applications and further extended their model by

1In their paper, minimum download time is referred to as minimal distri-
bution time.

including features such as parallel downloads and on-off peer
behavior [16]. However, none of the frameworks mentioned
above attempted to derive the minimum download time for
the file distribution process. Kumar and Ross [4] derived
the first closed form expression of the minimum download
time based on the fluid model and designed a scheduling
algorithm to achieve it. In their model, every leecher can talk
to every seed/leecher, and each node has limited upload and
download capacities. However, peers in [4] are assumed to stay
in the system until the whole distribution process ends, making
the average download time to be the same as the minimum
download time. This is not very advantageous because a peer
cannot finish earlier even he/she has abundant bandwidth. In
this paper, we study how grouping can reduce the average
download time without increasing the minimum download
time.

Grouping has been used to solve problems of content
location and discovery in peer-to-peer networks. Peers with
similar interests are aggregated into groups, and this signif-
icantly improves the content search capabilities of the P2P
network as a whole. The work in [17] proposes a multi-
group structure, which is self-organized and based on the
interests of peers in the system. A locality-based clustering
peer-to-peer overlay network (LCO) is introduced in [18].
LCO restricts each flood to the range of one cluster. Thus,
it reduces the unnecessary traffic produced by the topology
mismatching between the P2P logical overlay network and
the physical underlying network. In [19], an interest-based
clustering peer-to-peer network (ICN), which applies Freenet
[20] mechanism and cache management, is introduced. The
works in [21] employ the scale-free and cluster properties
of user interests in query searching to enhance efficiency.
As peers tend to group with peers of similar interest, an
interest-based proximity measurement scheme is described in
[22] for query searching. While these schemes are based on
peers’ interests, our grouping scheme is based on the peers’
bandwidth information, which is effective in reducing the
average download time.

Although BT does not explicitly group peers, clustering of
peers with similar bandwidth can be observed in its operation
as well [23]. The tracker protocol could be extended to
report peer capacities so that peers could select peers of
similar bandwidth. However, it was not clear how to determine
whether two bandwidth values were similar. Furthermore, the
performance was not studied from a theoretical perspective.
When the bandwidth of communication between two nodes
also depends on the path between them, it would be beneficial
to establish sessions of higher bandwidth for file sharing. As
peers that are closer in terms of network distance tend to
have better bandwidth capacities, the Ono plugin for BT [24]
identifies these peers based on the network measurements. Our
work, on the other hand, assumes the bandwidth bottlenecks
are on the seeds and leechers as in [4] [25] [26].

We study the problem of offline file download. Another
related issue that also attracts some attention is P2P multicast
for multimedia streaming. Traditionally, an application layer
multicast is used to send the whole stream from the source
node to the receivers. In a P2P multicast system, the stream is
divided into different pieces, and each piece follows a different
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multicast tree [25] [27] [26]. As a multimedia stream is shared,
it is assumed that not all the file pieces are necessary, which is
very different from the requirement of offline file download.
SplitStream [25] is the first system that uses a forest (multiple
trees) for stream sharing. The trees built are interior-node-
disjoint, meaning that if a peer is an internal node on a certain
multicast tree of a file piece, it will be a leaf node in all other
multicast trees used for other file pieces. ChunkySpread [27]
allows a peer to be an internal node of more than one tree.
It also considers latency threholds in the tree construction to
reduce the latencies of the stream distribution. Orchard [26]
avoids free-riders in the multicast by ensuring that a peer
makes a fair contribution. All these systems focus on forest
construction that allows peers to join and leave dynamically.
The related performance metrics include whether a new peer
can successfully join a tree, workload of a peer, latency,
number of file pieces obtained, and others. In this work, on the
other hand, we are interested in the average download time of
the file downloading process in which every peer has to receive
every bit of a file, and no peer joins or leaves in the middle of
the distribution process. We adopt the KR algorithm [4] as the
scheduling mechanism, which has been formally proven to be
the optimal scheduling algorithm for offline file downloading
based on the fluid model.

III. PRELIMINARIES

A. Notations and Definitions

In this section, we define the notations used in this paper,
and the summary can be found in Table I.

TABLE I
TABLE OF NOTATIONS

Symbol Meaning

𝑆 set of seeds
𝐿 set of leechers
𝑢(𝑥) upload bandwidth of seed/leecher 𝑥
𝑑(𝑥) download bandwidth of leecher 𝑥
𝑢(𝑆) total upload bandwidth of all seeds in 𝑆,∑

𝑠∈𝑆 𝑢(𝑠)
𝑢(𝐿) total upload bandwidth of all leechers in

𝐿,
∑

𝑙∈𝐿 𝑢(𝑙)
𝑑𝐿𝑚𝑖𝑛 minimum download bandwidth among the

leechers in 𝐿, min{𝑑(𝑙)∣𝑙 ∈ 𝐿}
𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) minimum possible download time for the

seeds in 𝑆 to distribute a file of size 𝐹 to
the leechers in 𝐿 (𝐹 may be omitted for
simplicity)

𝑇𝐴
𝑎𝑣𝑔(𝑆,𝐿, 𝐹 ) average download time needed for the

seeds in 𝑆 to distribute a file of size 𝐹
to the leechers in 𝐿 using Algorithm 𝐴

𝑇𝐺(𝑆,𝐿) time needed for the leechers in 𝐿 to get
the file from seeds in 𝑆 when grouping is
applied

We denote the set of seeds as 𝑆, and the set of leechers
as 𝐿. Following the model in [4], each leecher can obtain
file pieces from every seed and every leecher. All seeds and

leechers join the distribution process at the same time, and
they stay in the system until the distribution is complete. Each
seed is associated with an upload bandwidth limiting how
much data it can send out at a time. The upload bandwidth
is independent of which leecher the seed is sending to. That
is, the limit of sending to Leecher A alone is the same as the
limit of sending to Leecher B alone. There is also no limit on
how many leechers the seed is sending the file pieces to. It
can use all its bandwidth to send to only one leecher or split
the bandwidth among several leechers. Similar to the seeds,
each leecher also has its own upload bandwidth. They need to
download as well; thus, they are also associated with download
bandwidth, which tells how much at most each leecher can
receive at a time.

The upload and download bandwidth of a seed/leecher 𝑥
are denoted as 𝑢(𝑥) and 𝑑(𝑥), respectively. The minimum
download bandwidth of the leechers in a leecher set 𝐿 is 𝑑𝐿𝑚𝑖𝑛.
That is, 𝑑𝐿𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝑑(𝑙)∣𝑙 ∈ 𝐿}. We further define 𝑢(𝑆) to
be the total upload bandwidth of all seeds in 𝑆 and 𝑢(𝐿) to
be the total upload bandwidth of all leechers in 𝐿. Formally,
𝑢(𝑆) =

∑
𝑠∈𝑆 𝑢(𝑠) and 𝑢(𝐿) =

∑
𝑙∈𝐿 𝑢(𝑙). For the example

seed set (𝑆) and leecher set (𝐿) in Tables II and III, we have
𝑑𝐿𝑚𝑖𝑛 = 500 Kbps, 𝑢(𝑆) = 18300 Kbps, and 𝑢(𝐿) = 10900
Kbps.

The goal of file distribution is to allow all leechers, which
do not have any single file piece in the beginning, to obtain
the whole file. A scheduling algorithm governs how the seeds
and leechers work together to distribute the file. Every leecher
takes a certain amount of time to obtain the whole file. We
denote the download time of a single leecher 𝑙 as 𝑇 (𝑙). When a
group of leechers are considered, different leechers may have
different download times. The download time of a group of
leechers 𝐿 is the time it takes for all leechers to obtain the
file. Therefore, it corresponds to the time needed for the last
leecher to finish downloading the file, which is 𝑚𝑎𝑥{𝑇 (𝑙)∣𝑙 ∈
𝐿}. We denote 𝑇 (𝑆,𝐿, 𝐹 ) to be the download time of the
leechers in 𝐿 given the seed set 𝑆 for downloading a file of
size 𝐹 .

Different scheduling algorithms yield different 𝑇 (𝑆,𝐿, 𝐹 ).
Kuman and Ross analyzed the minimum possible 𝑇 (𝑆,𝐿, 𝐹 )
that can be achieved based on the fluid model where peers are
assumed to stay for as long as the file distribution takes [4].
We refer this time as the minimum download time and denote it
as 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ). Eq. (1) gives the formula of 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ).

𝑚𝑎𝑥{ 𝐹

𝑑𝐿𝑚𝑖𝑛

,
∣𝐿∣𝐹

𝑢(𝐿) + 𝑢(𝑆)
,
𝐹

𝑢(𝑆)
}

=
𝐹

𝑚𝑖𝑛{𝑑𝐿𝑚𝑖𝑛,
𝑢(𝑆)+𝑢(𝐿)
∣𝐿∣ , 𝑢(𝑆)}

(1)

𝐹
𝑢(𝑆) represents the amount of time needed for the seeds

to send out a single copy of 𝐹 . 𝐹
𝑑𝐿
𝑚𝑖𝑛

is the amount of time

needed for the leecher(s) with the smallest bandwidth (𝑑𝐿𝑚𝑖𝑛)
to obtain a copy of 𝐹 . Finally, ∣𝐿∣𝐹

𝑢(𝐿)+𝑢(𝑆) reflects the time
needed for both seeds and leechers to contribute all their
upload bandwidth to the distribution of ∣𝐿∣ copies of 𝐹 to
all leechers. As a complete file distribution should perform all
the three tasks, 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) is the maximum value among
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the three terms.
Note that Eq. (1) is independent of the scheduling algorithm.

That is, no algorithm can distribute the file to all leechers
using time less than 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ). An optimal scheduling
algorithm is an algorithm that can distribute the file using
exactly 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) amount of time. Kumar and Ross
also developed such an optimal algorithm, and we refer this
algorithm as the KR Algorithm in the rest of this paper.
This algorithm allows every leecher to obtain the whole file
in 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) amount of time. That is, every leecher
finishes downloading at the same time. If we define the
average download time of leechers in 𝐿 as

∑
𝑙∈𝐿 𝑇 (𝑙)

∣𝐿∣ , the
average download time of the KR algorithm is the same as
𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ). We denote the average download time of the
KR algorithm as 𝑇𝐾𝑅

𝑎𝑣𝑔 (𝑆,𝐿, 𝐹 ). That is, 𝑇𝐾𝑅
𝑎𝑣𝑔 (𝑆,𝐿, 𝐹 ) =

𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ). [We write 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) and 𝑇𝑎𝑣𝑔(𝑆,𝐿, 𝐹 )
as 𝑇𝑚𝑖𝑛(𝑆,𝐿) and 𝑇𝑎𝑣𝑔(𝑆,𝐿) when the context is clear. In
the rest of the paper, 𝐹 will be omitted in the notations for
simplicity.]

TABLE II
UPLOAD BANDWIDTH OF SEEDS

Seed 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5
𝑢(𝑠𝑖)/Kbps 300 1200 4800 5600 6400

TABLE III
UPLOAD AND DOWNLOAD BANDWIDTH OF LEECHERS

Leecher 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5
𝑢(𝑙𝑖)/Kbps 1800 1500 1450 1400 1300
𝑑(𝑙𝑖)/Kbps 1000 500 2000 9500 7000
Leecher 𝑙6 𝑙7 𝑙8 𝑙9 𝑙10
𝑢(𝑙𝑖)/Kbps 850 800 650 600 550
𝑑(𝑙𝑖)/Kbps 6500 9600 7400 4500 1300

Refer to the seeds and leechers in Tables I and II. Assume
𝐹 = 300M. If we apply the KR algorithm, 𝑇𝑚𝑖𝑛(𝑆,𝐿) =
𝑇𝐾𝑅
𝑎𝑣𝑔 (𝑆,𝐿) = 600 s, which means every leecher in Table III

takes 600 s to obtain 𝐹 . However, it is definitely not the
best for individual leechers. For example, if Seed 3 sends
the whole file to Leecher 3, Leecher 3 takes only 150 s
to receive the file. Of course, if we do so, other leechers
may take more time to finish. Is it possible to reduce the
download time of individual leechers without prolonging the
time for the last leecher to finish? That is, is it possible
to reduce the average download time while maintaining the
download time to be 𝑇𝑚𝑖𝑛(𝑆,𝐿)? We found that if we divide
the seeds and the leechers into different groups and a node
can only communicate with the nodes in the same group, it is
possible to reduce the average download time. To illustrate,
we divide our example seed set and leecher set as in Fig.
1. We denote the seeds as 𝑠𝑖, where 1 ≤ 𝑖 ≤ ∣𝑆∣ and the
leechers as 𝑙𝑖, where 1 ≤ 𝑖 ≤ ∣𝐿∣. One group consists of
seed set 𝑆3 = {𝑠4} and leecher set 𝐿3 = {𝑙5, 𝑙7, 𝑙9}. If we
apply the KR algorithm, 𝑇 (𝑆3, 𝐿3) = 108.4 s. The minimum
download times of other groups are shown in the figure. It
can be observed that 𝑚𝑎𝑥{𝑇 (𝑙)∣𝑙 ∈ 𝐿} under this grouping
arrangement is still 600 s. However, the average download

s1
s2

l1 l2

l10 l3

Tmin(S1,L1) = 600

Tmin(S2,L2) = 230.7692 

l5

l7
l9

Tmin(S3,L3) = 108.4337 
l4

l6
l8

Tmin(S4,L4) = 96.7742 

s3

s5

s4

Fig. 1. Grouping the seeds and the leechers in Tables I and II.

time of the leechers is only 227.7 s. Therefore, grouping can
further improve the performance of the KR algorithm, and we
aim at developing an effective grouping mechanism.

We now formally define a grouping. Given a set of seeds 𝑆
and a set of leechers 𝐿, a grouping scheme 𝐺 divides the seeds
and the leechers into 𝐾(𝐾 ≥ 2) groups, 𝐺1, 𝐺2, ..., 𝐺𝐾 ,
where 𝑆𝑖 and 𝐿𝑖 belong to 𝐺𝑖, and the following conditions
are satisfied:

1) The subsets of 𝑆 are 𝑆1, 𝑆2, ..., 𝑆𝐾 , where 𝑆𝑖 ∩ 𝑆𝑗 = ∅
if 𝑖 ∕= 𝑗 and ∪1≤𝑖≤𝐾𝑆𝑖 = 𝑆.

2) The subsets of 𝐿 are 𝐿1, 𝐿2, ..., 𝐿𝐾 , where 𝐿𝑖∩𝐿𝑗 = ∅
if 𝑖 ∕= 𝑗 and ∪1≤𝑖≤𝐾𝐿𝑖 = 𝐿.

Leechers in 𝐿𝑖 can only obtain file pieces from other
leechers in 𝐿𝑖 and the seeds in 𝑆𝑖, and no inter-group
communication is allowed. Therefore, if the KR algorithm is
adopted in each group, 𝑇 (𝑙) = 𝑇𝑚𝑖𝑛(𝑆𝑖, 𝐿𝑖) for 𝑙 ∈ 𝐿𝑖. Let
𝑇𝐺
𝑎𝑣𝑔(𝑆,𝐿) be the average download time after grouping 𝐺 is

implemented, and the KR algorithm is adopted in each group.
Then,

𝑇𝐺
𝑎𝑣𝑔(𝑆,𝐿) =

∑𝐾
𝑖=1 ∣𝐿𝑖∣𝑇𝑚𝑖𝑛(𝑆𝑖, 𝐿𝑖)

∣𝐿∣ .

We are interested in a grouping that achieves smaller aver-
age download time without increasing the minimum download
time. We refer a grouping with this feature as feasible group-
ing. That is, the feasible grouping 𝐺 of 𝐾 groups satisfies the
following:

1) 𝑇𝑚𝑖𝑛(𝑆𝑖, 𝐿𝑖) ≤ 𝑇𝑚𝑖𝑛(𝑆,𝐿), where 1 ≤ 𝑖 ≤ 𝐾
2) 𝑇𝐺

𝑎𝑣𝑔(𝑆,𝐿) < 𝑇𝑚𝑖𝑛(𝑆,𝐿)

To evaluate the benefit of feasible grouping 𝐺, we define
the performance improvement ratio 𝜌 as follows:

𝜌 =
𝑇𝐾𝑅
𝑎𝑣𝑔 (𝑆,𝐿)

𝑇𝐺
𝑎𝑣𝑔(𝑆,𝐿)

=
∣𝐿∣𝑇𝑚𝑖𝑛(𝑆,𝐿)∑𝐾

𝑖=1 ∣𝐿𝑖∣𝑇𝑚𝑖𝑛(𝑆𝑖, 𝐿𝑖)
(2)

For the seeds and the leechers in Tables I and II, after apply-
ing the grouping scheme illustrated in Fig. 1, the performance
improvement ratio 𝜌 = 600𝑠

227.7𝑠 = 2.635, which indicates a
significant performance improvement.
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B. Existence of Feasible Grouping

Although grouping looks promising in reducing the average
download time, we find that a feasible group may not always
exist. In this section, we identify the conditions that imply the
impossibilities of finding a feasible grouping. If there exists
a feasible grouping for the configuration (𝑆,𝐿), we say that
(𝑆,𝐿) is feasible in grouping.

Denote 𝑇𝐺(𝑆,𝐿) as the download time of grouping 𝐺 with
𝐾 groups. Then,

𝑇𝐺(𝑆,𝐿) = 𝑚𝑎𝑥{𝑇𝑚𝑖𝑛(𝑆𝑖, 𝐿𝑖)∣𝑖 = 1, 2, . . . ,𝐾}. (3)

We study the existence of feasible grouping in three cases,
with one case for each term in Eq. (1).

Case A: 𝑇𝑚𝑖𝑛(𝑆,𝐿) = ∣𝐿∣𝐹/(𝑢(𝐿) + 𝑢(𝑆))
Case B: 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹/𝑢(𝑆)
Case C: 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹/𝑑

𝐿
𝑚𝑖𝑛

Lemma 1: No feasible grouping exists in Case A.
Proof:
In Case A, for any grouping scheme 𝐺 that divides the seeds
and the leechers into 𝐾 ≥ 2 groups,

𝑇𝑚𝑖𝑛(𝑆,𝐿) = ∣𝐿∣𝐹/(𝑢(𝐿) + 𝑢(𝑆))

=

∑𝐾
𝑖=1 ∣𝐿𝑖∣𝐹∑𝐾

𝑖=1 (𝑢(𝑆𝑖) + 𝑢(𝐿𝑖))

≤ 𝑚𝑎𝑥

{ ∣𝐿𝑖∣𝐹
𝑢(𝑆𝑖) + 𝑢(𝐿𝑖)

∣𝑖 = 1, 2, . . . ,𝐾

}

≤ 𝑚𝑎𝑥 {𝑇𝑚𝑖𝑛(𝑆𝑖, 𝐿𝑖)∣𝑖 = 1, 2, . . . ,𝐾}
𝑏𝑦 (3) = 𝑇𝐺(𝑆,𝐿).

The download time after grouping should be no larger
than that before grouping. Therefore, we need 𝑇𝑚𝑖𝑛(𝑆,𝐿) =
𝑇𝐺(𝑆,𝐿), which holds true if and only if

∣𝐿1∣
𝑢(𝑆1) + 𝑢(𝐿1)

= ⋅ ⋅ ⋅ = ∣𝐿𝐾 ∣
𝑢(𝑆𝐾) + 𝑢(𝐿𝐾)

=
∣𝐿∣

𝑢(𝑆) + 𝑢(𝐿)

This implies that 𝑇𝐺
𝑎𝑣𝑔(𝑆,𝐿) ≥ 𝑇𝑚𝑖𝑛(𝑆,𝐿), and no feasible

grouping exists. □

Lemma 2: No feasible grouping exists in Case B.
Proof:
In Case B, 𝑇𝑚𝑖𝑛 = 𝐹/𝑢(𝑆). As 𝐹/𝑢(𝑆𝑖) > 𝐹/𝑢(𝑆) for every
proper subset 𝑆𝑖 of 𝑆, we have 𝑇𝐺(𝑆,𝐿) > 𝑇𝑚𝑖𝑛(𝑆,𝐿) for
any grouping 𝐺. Therefore, there is no feasible grouping in
this case. □

We have studied the situations in Cases A and B. We will
study Case C in the next section.

C. NP-Completeness of Grouping

It turns out that some configurations satisfying the condition
of Case C are feasible in grouping while some are not.
In other words, 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹/𝑑𝐿𝑚𝑖𝑛 is not a sufficient
condition to determine the existence and non-existence of
feasible grouping. For example, the configuration in Tables
I and II satisfies Case C. The grouping as illustrated in Fig. 1
is a feasible grouping. On the other hand, if there are only two
seeds 𝑠1 and 𝑠2, where 𝑢(𝑠1) = 300 Kbps and 𝑢(𝑠2) = 18000

Kbps, to distribute the file to the leechers in Table II, no
feasible grouping exists. In fact, it is NP-complete to find a
feasible grouping. To prove NP-completeness, we first develop
the following lemma.

Lemma 3: If 𝐺′ is a feasible grouping of configuration
(𝑆,𝐿), and 𝐺′ consists of more than two groups, then there
exists a feasible grouping 𝐺 that consists of exactly two
groups.

Proof:
We prove the lemma by showing how to construct 𝐺 based
on the 𝐾 groups of 𝐺′. As 𝐺′ is feasible,

𝐹

𝑑𝐿𝑖

𝑚𝑖𝑛

≤ 𝐹

𝑑𝐿𝑚𝑖𝑛

and
𝐹

𝑢(𝑆𝑖)
≤ 𝐹

𝑑𝐿𝑚𝑖𝑛

and
∣𝐿𝑖∣𝐹

𝑢(𝑆𝑖) + 𝑢(𝐿𝑖)
≤ 𝐹

𝑑𝐿𝑚𝑖𝑛

for 𝑖 = 1, 2, . . . ,𝐾 . Furthermore, there is at least one group
with a distribution time less than 𝑇𝑚𝑖𝑛(𝑆,𝐿). Without loss
of generality, we assume (𝑆𝐾 , 𝐿𝐾) is the group that follows
𝑇𝑚𝑖𝑛(𝑆𝐾 , 𝐿𝐾) < 𝑇𝑚𝑖𝑛(𝑆,𝐿). Let 𝑆𝑎 = 𝑆1∪𝑆2∪⋅ ⋅ ⋅∪𝑆𝐾−1,
𝐿𝑎 = 𝐿1 ∪ 𝐿2 ∪ ⋅ ⋅ ⋅ ∪ 𝐿𝐾−1, 𝑆𝑏 = 𝑆𝐾 , and 𝐿𝑏 = 𝐿𝐾 . That
is, 𝑢(𝑆𝑎) = 𝑢(𝑆1) + 𝑢(𝑆2) + ... + 𝑢(𝑆𝐾−1) and 𝑑𝐿𝑎

𝑚𝑖𝑛 =
𝑚𝑖𝑛{𝑑𝐿𝑖

𝑚𝑖𝑛∣𝑖 = 1, 2, . . . ,𝐾 − 1}. We have

𝐹

𝑑𝐿𝑎

𝑚𝑖𝑛

=
𝐹

𝑚𝑖𝑛{𝑑𝐿𝑖

𝑚𝑖𝑛∣𝑖 = 1, 2, . . . ,𝐾 − 1}
≤ 𝐹

𝑑𝐿𝑚𝑖𝑛

,

𝐹

𝑢(𝑆𝑎)
=

𝐹

𝑢(𝑆1) + 𝑢(𝑆2) + ⋅ ⋅ ⋅+ 𝑢(𝑆𝐾−1)
<

𝐹

𝑑𝐿𝑚𝑖𝑛

,

∣𝐿𝑎∣𝐹
𝑢(𝑆𝑎) + 𝑢(𝐿𝑎)

=

∑𝐾−1
𝑖=1 ∣𝐿𝑖∣𝐹∑𝐾−1

𝑖=1 (𝑢(𝑆𝑖) + 𝑢(𝐿𝑖))

≤ 𝑚𝑎𝑥{ ∣𝐿𝑖∣𝐹
𝑢(𝑆𝑖) + 𝑢(𝐿𝑖)

∣1 ≤ 𝑖 ≤ 𝐾 − 1}

≤ 𝐹

𝑑𝐿𝑚𝑖𝑛

.

Let (𝑆𝑎, 𝐿𝑎) and (𝑆𝑏, 𝐿𝑏) be the two groups in 𝐺. We have
𝑇𝑚𝑖𝑛(𝑆𝑎, 𝐿𝑎) ≤ 𝑇𝑚𝑖𝑛(𝑆,𝐿), 𝑇𝑚𝑖𝑛(𝑆𝑏, 𝐿𝑏) < 𝑇𝑚𝑖𝑛(𝑆,𝐿),
and 𝑇𝐺

𝑎𝑣𝑔(𝑆,𝐿) < 𝑇𝑚𝑖𝑛(𝑆,𝐿). 𝐺 is a feasible grouping, thus
proving the lemma. □

Lemma 3 indicates that in deciding whether a Case C con-
figuration is feasible in grouping, we only need to determine
whether there exists a feasible grouping scheme that divides
the seeds and the leechers into two groups. A feasible grouping
scheme should maintain the download time to 𝑇𝑚𝑖𝑛(𝑆,𝐿).
That is, for individual group 𝐺𝑖 = 𝑆𝑖 ∪ 𝐿𝑖(𝑖 = 1, 2),
𝑚𝑎𝑥{ 𝐹

𝑑
𝐿𝑖
𝑚𝑖𝑛

, ∣𝐿𝑖∣𝐹
𝑢(𝐿𝑖)+𝑢(𝑆𝑖)

, 𝐹
𝑢(𝑆𝑖)

} ≤ 𝐹
𝑑𝐿
𝑚𝑖𝑛

. As 𝐹

𝑑
𝐿𝑖
𝑚𝑖𝑛

≤ 𝐹
𝑑𝐿
𝑚𝑖𝑛

,

we need to find a grouping such that both

𝑢(𝑆𝑖) ≥ 𝑑𝐿𝑚𝑖𝑛 (4)

and

𝑢(𝑆𝑖) + 𝑢(𝐿𝑖) ≥ ∣𝐿𝑖∣𝑑𝐿𝑚𝑖𝑛 (5)

are satisfied. We deal with (4) first. According to (4), for a
grouping scheme to be feasible, it needs to divide the seeds
into two groups such that the combined upload bandwidth of
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the seeds in each group is greater than 𝑑𝐿𝑚𝑖𝑛. We formally
define the problem as follows:
Problem 1 Given a set 𝑆 of positive real numbers and 𝑑 > 0,
does a partition 𝒫 that divides 𝑆 into two subsets 𝑆1 and 𝑆2,
where

∑
𝑥∈𝑆𝑖

𝑥 ≥ 𝑑 for 𝑖 = 1 and 2, exists?
We show that it is NP-complete to decide whether there

exists a feasible grouping scheme that meets (4). That is,
Lemma 4: Problem 1 is NP-complete.

For Problem 1 to be NP-complete, it needs to meet two
conditions. First, Problem 1 needs to be NP; second, a well-
known NP-complete problem is polynomial-time reducible to
Problem 1.
Proof:
First, we prove that the problem is NP. Given a partition that
divides the set into two subsets 𝑆1 and 𝑆2, to determine the
feasibility of the scheme, we only need to obtain the sum of
the elements in each subset and compare it with 𝑑. As it takes
polynomial time to check the feasibility of a partition, it is
NP to decide whether there exists a feasible partition.

We now prove the problem is NP-complete. Given a set 𝐴
in the well-known set partition problem [28], we construct a
problem instance of Problem 1 by assigning 𝑆 as 𝐴 and 𝑑
as 1

2 (
∑

𝑥∈𝐴 𝑥). The transformation is polynomial. Set 𝐴 can
be partitioned into two sets, 𝐵 and 𝐴 ∖ 𝐵, where the sums
of the elements are the same if and only if 𝑆 can be divided
to two subsets 𝑆1 and 𝑆2, where the sum of the elements
of each set is no less than 1

2 (
∑

𝑥∈𝐴 𝑥). The set partition
problem is polynomial-time, reducible to Problem 1. Problem
1 is therefore NP-complete. □

As it is NP-complete to decide whether we can divide the
seeds in a way that the necessary condition Eq. (4) is satisfied,
it is NP-complete to decide the feasibility of grouping in Case
C.

IV. GROUPING PROTOCOL

The results of the previous section indicate that we can
only identify a feasible grouping of a configuration (𝑆,𝐿)
where 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹/𝑑𝐿𝑚𝑖𝑛. In this section, we present a
mechanism to identify a feasible grouping. Formally, given 𝑆
and 𝐿, we would like to find 𝐺 with 𝐾 groups such that

1) The subsets of 𝑆 are 𝑆1, 𝑆2, ..., 𝑆𝐾 , where 𝑆𝑖 ∩ 𝑆𝑗 = ∅
if 𝑖 ∕= 𝑗 and ∪1≤𝑖≤𝐾𝑆𝑖 = 𝑆.

2) The subsets of 𝐿 are 𝐿1, 𝐿2, ..., 𝐿𝐾 , where 𝐿𝑖∩𝐿𝑗 = ∅
if 𝑖 ∕= 𝑗 and ∪1≤𝑖≤𝐾𝐿𝑖 = 𝐿.

3) 𝑇𝑚𝑖𝑛(𝑆𝑖, 𝐿𝑖) ≤ 𝑇𝑚𝑖𝑛(𝑆,𝐿) ∀ 𝑖
4) 𝑇𝐺

𝑎𝑣𝑔(𝑆,𝐿) =
∑𝐾

𝑖=1 ∣𝐿𝑖∣⋅𝑇𝑚𝑖𝑛(𝑆𝑖,𝐿𝑖)

∣𝐿∣ < 𝑇𝑚𝑖𝑛(𝑆,𝐿)

A good protocol should produce feasible grouping schemes
against a wide range of networks of varying bandwidth
characteristics. Due to the intricacies involved, our protocol is
divided into two phases: seed grouping and leecher grouping.
Given 𝑆 and 𝐿, the whole grouping and verification procedure
is as follows:

1) Check whether 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹
𝑑𝐿
𝑚𝑖𝑛

. If not, no feasible
grouping exists; otherwise, proceed to 2).

2) Apply seed grouping to 𝑆.
3) Apply leecher grouping to 𝐿.

A. Seed Grouping

Section III proves that it is NP-complete to decide whether
there exists a feasible seed grouping. We employ a heuristic
algorithm to perform seed grouping. It is our intention to
divide the seeds into as many groups as possible such that
the complexity of each group is reduced.

Algorithm 1 shows the pseudocodes of seed grouping. We
start by comparing 𝑢(𝑆) and 𝑑𝐿𝑚𝑖𝑛. If 𝑢(𝑆) < 2𝑑𝐿𝑚𝑖𝑛, no
feasible grouping scheme exists. If 𝑢(𝑆) ≥ 2𝑑𝐿𝑚𝑖𝑛, we first sort
the seeds in non-descending order of their upload bandwidth.
We then put each seed 𝑠𝑖 into 𝑆𝑖. If all the seed bandwidth
values are larger than 𝑑𝐿𝑚𝑖𝑛, we are done. Otherwise, we merge
the two groups with the smallest seed upload bandwidth. The
process is repeated until either all groups satisfy the condition,
or all the groups are merged back to 𝑆. In the latter case, our
algorithm cannot find a feasible grouping scheme.

Algorithm 1 Seed Grouping Algorithm
input:upload bandwidth of ∣𝑆∣ seeds, the minimum download bandwidth of the leechers
𝑑𝐿
𝑚𝑖𝑛;

output:grouping scheme for seeds;
1: 𝑢← 𝑢(𝑠1) + 𝑢(𝑠2) + . . .+ 𝑢(𝑠∣𝑆∣)
2: if 𝑢 < 2𝑑𝐿

𝑚𝑖𝑛 then
3: output no feasible grouping scheme exists
4: else
5: sort the seeds in 𝑆, such that 𝑢(𝑠1) ≤ 𝑢(𝑠2) ≤ . . . ≤ 𝑢(𝑠∣𝑆∣);
6: Place ∣𝑆∣ seeds into 𝑆1, 𝑆2, . . . , 𝑆∣𝑆∣, such that 𝑠𝑖 is in 𝑆𝑖;
7: 𝐾 ← ∣𝑆∣;
8: while 𝑑𝐿

𝑚𝑖𝑛 > 𝑢(𝑆1) and 𝐾 > 1 do
9: merge 𝑆1 and 𝑆2 to form 𝑆

′
1;

10: Re-sort 𝑆
′
1, 𝑆3, . . . , 𝑆𝐾−1, 𝑆𝐾 in the ascending order of their upload

bandwidth;
11: Denote the re-sorted groups by 𝑆1, 𝑆2, . . . , 𝑆𝐾−1;
12: 𝐾 ← 𝐾 − 1;
13: end while
14: if 𝐾 = 1 then
15: seed grouping scheme not available
16: else
17: output grouping scheme for seeds
18: end if
19: end if

We now illustrate the seed grouping mechanism using the
example in Table I. Initially five seeds, 𝑠1, 𝑠2, . . . , 𝑠5, are put
into five groups, 𝑆1, 𝑆2, . . . , 𝑆5, respectively. From Table II,
we know that 𝑑𝐿𝑚𝑖𝑛 = 500 Kbps. We start from 𝑆1, which is
the group with the minimum upload bandwidth. As 𝑢(𝑆1) <
𝑑𝐿𝑚𝑖𝑛, we merge 𝑆1 and 𝑆2 to form 𝑆

′
1. Re-sort 𝑆

′
1, 𝑆3, . . . , 𝑆5

in ascending order of their upload bandwidth. Denote the re-
sorted groups by 𝑆1, 𝑆2, . . . , 𝑆4. Then, the upload bandwidth
of 𝑆1 is 1500 Kbps. 𝑢(𝑆1) > 𝑑𝐿𝑚𝑖𝑛 indicates that there is no
need to do further merging. Algorithm 1 divides 𝑠1, 𝑠2, . . . , 𝑠5
into four groups, such that 𝑆1 = {𝑠1, 𝑠2}, 𝑆2 = {𝑠3}, 𝑆3 =
{𝑠4}, and 𝑆4 = {𝑠5}. This constitutes the seed grouping
scheme for seeds in Table 1.

The total time complexity of Algorithm 1 is 𝑂(∣𝑆∣𝑙𝑜𝑔∣𝑆∣)
if heap sort is employed. For this reason, Algorithm 1 ensures
the system scales well when there are a large number of seeds
present. Unfortunately, due to the NP-complete nature of the
problem, our polynomial time algorithm may not be able to
identify a feasible grouping for every configuration (𝑆,𝐿).
For example, let 𝑆 contain six seeds, where 𝑢(𝑠1) = 1 Kbps,
𝑢(𝑠2) = 1 Kbps, 𝑢(𝑠3) = 2 Kbps, 𝑢(𝑠4) = 2 Kbps, 𝑢(𝑠5) = 3
Kbps, 𝑢(𝑠6) = 3 Kbps and 𝑑𝐿𝑚𝑖𝑛 = 6 Kbps. We first put the
seeds with smallest bandwidth in the same group. Then, there
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are five groups with upload bandwidth units 2, 2, 2, 3, and 3,
respectively. We merge the two groups with 2 units of upload
bandwidth. Four groups remain, and their bandwidth units are
2, 3, 3, and 4, respectively. If we continue the merging process,
all the seeds are put in the same group, and there is no partition
at all. Nevertheless, there is a feasible one for 𝑆, which is
𝑆1 = {𝑠1, 𝑠3, 𝑠5} and 𝑆2 = {𝑠2, 𝑠4, 𝑠6}.

B. Leecher Grouping

Assume K groups are derived from the seed grouping. We
now describe how to assign leechers into these K groups.
Algorithm 2 shows the pseudo-code of the leecher grouping.
We first sort the leechers in 𝐿 such that 𝑢(𝑙1) ≥ 𝑢(𝑙2) ≥
. . . ≥ 𝑢(𝑙𝑁 ). Starting from 𝑙1, we assign leechers one by
one into different groups. When we consider a leecher 𝑙𝑖, we
calculate 𝑇𝑚𝑖𝑛(𝑆𝑗 , 𝐿𝑗 ∪ {𝑙𝑖}) for 𝑗 = 1, 2, . . . ,𝐾 , which is
the minimum download time of 𝐺𝑗 if 𝑙𝑖 is assigned to 𝐺𝑗 .
Denote by 𝑀𝑖𝑛 the minimum 𝑇𝑚𝑖𝑛(𝑆𝑗 , 𝐿𝑗 ∪ {𝑙𝑖}) among all
groups. If 𝑀𝑖𝑛 ≤ 𝐹

𝑑𝐿
𝑚𝑖𝑛

and 𝐺𝑐 is the corresponding group
that results in 𝑀𝑖𝑛, we assign 𝑙𝑖 to 𝐺𝑐. Otherwise, we merge
the two groups with the least total seed upload bandwidth
and re-calculate 𝑀𝑖𝑛 ≤ 𝑇𝑚𝑖𝑛(𝑆𝑗 , 𝐿𝑗 ∪ {𝑙𝑖}). The process is
repeated until either𝑀𝑖𝑛 ≤ 𝐹

𝑑𝐿
𝑚𝑖𝑛

or all the groups are merged
back to one group. In the latter case, our algorithm cannot find
a feasible grouping scheme.

Algorithm 2 Greedy Leecher Grouping Algorithm
input:upload bandwidth of N leechers, which follows 𝑢(𝑙1) ≥ 𝑢(𝑙2) ≥ . . . ≥ 𝑢(𝑙𝑁 );
output:grouping scheme for leechers
1: for i=1 To N do
2: while 𝐾 > 1 do
3: for 𝑗 = 1 To 𝐾 do
4: Calculate 𝑇𝑚𝑖𝑛(𝑆𝑗, 𝐿𝑗 ∪ {𝑙𝑖});

/*the minimum download time of 𝐺𝑗 if 𝑙𝑖 is assigned into 𝐺𝑗*/
5: end for
6: 𝑀𝑖𝑛 ← 𝑇𝑚𝑖𝑛(𝑆,𝐿);/*the minimum download time before grouping*/
7: 𝑔 ← 0; /*mark group number*/
8: for 𝑗 = 1 To 𝐾 do
9: if 𝑀𝑖𝑛 > 𝑇𝑚𝑖𝑛(𝑆𝑗, 𝐿𝑗 ∪ {𝑙𝑖}) then
10: 𝑀𝑖𝑛 ← 𝑇𝑚𝑖𝑛(𝑆𝑗 , 𝐿𝑗 ∪ {𝑙𝑖});
11: 𝑔 ← 𝑗;
12: end if
13: end for
14: if 𝑀𝑖𝑛 = 𝑇𝑚𝑖𝑛(𝑆,𝐿) then
15: /*leecher 𝑖 cannot be assigned into any of these 𝐾 groups*/
16: Merge 𝐺1 and 𝐺2 to form 𝐺

′
1;

17: Re-sort 𝐺
′
1, 𝐺3, . . . , 𝐺𝐾 by the ascending order of their combined

seed upload bandwidth;
18: 𝐾 ← 𝐾 − 1;
19: else
20: assign leecher i into Group g;
21: end if
22: end while
23: if 𝐾 = 1 then
24: grouping scheme not available;
25: end if
26: end for
27: output grouping scheme for leechers

To illustrate, we again take the seeds and the leechers in
Tables I and II as an example. After the seed grouping, 𝑆1 =
{𝑠1, 𝑠2}, 𝑆2 = {𝑠3}, 𝑆3 = {𝑠4}, and 𝑆4 = {𝑠5}. We start
leecher allocation from 𝑙1, with 𝑢(𝑙1) = 1800 Kbps and 𝑑(𝑙1) =
1000 Kbps. For 𝑗 = 1, 2, . . . , 4, we obtain 𝑇𝑚𝑖𝑛(𝑆𝑗 , 𝐿𝑗∪{𝑙1})
from Eq.(1), which is the minimum download time of 𝐺𝑗 if 𝑙1
were placed in 𝐺𝑗 . As 𝑇𝑚𝑖𝑛(𝑆1, 𝐿1 ∪ {𝑙1}) = 𝑇𝑚𝑖𝑛(𝑆2, 𝐿2 ∪
{𝑙1}) = ⋅ ⋅ ⋅ = 𝑇𝑚𝑖𝑛(𝑆4, 𝐿4 ∪ {𝑙1}) = 300 s, 𝑙1 is placed
in the group with the smallest group number, which is 𝐺1.

We go on to consider 𝑙2, and it is placed in 𝐺1 as well. If
𝑙3 were placed in 𝐺1, current 𝑇𝑚𝑖𝑛(𝑆1, 𝐿1 ∪ {𝑙3}) would be
600 s. On the other hand, if 𝑙3 were placed in any group
other than 𝐺1, the average download time would be 150 s.
Therefore, 𝑙3 is placed in 𝐺2. The same procedure is carried
out for 𝑙4 to 𝑙10, and the following is the grouping result:
𝐺1 = {𝑠1, 𝑠2, 𝑙1, 𝑙2}, 𝐺2 = {𝑠3, 𝑙3, 𝑙10}, 𝐺3 = {𝑠4, 𝑙5, 𝑙7, 𝑙9}
and 𝐺4 = {𝑠5, 𝑙4, 𝑙6, 𝑙8}. After grouping,

𝑇𝐺
𝑎𝑣𝑔(𝑆,𝐿)

= 1
10 (600 ∗ 2 + 230.8 ∗ 2 + 108.4 ∗ 3 + 96.8 ∗ 3)

= 227.7(𝑠),

which indicates a significant improvement over 𝑇𝑚𝑖𝑛(𝑆,𝐿).
As 𝐾 groups are formed after seed grouping, the time
complexity of the greedy leecher grouping is 𝑂(𝑁𝑙𝑜𝑔𝑁) +
𝑂(𝐾𝑁) if the heap sort is used.

In the Greedy Leecher Grouping Algorithm, leechers are
considered according to the non-ascending order of their
upload bandwidth. This order is critical because it ensures
that the working configuration is feasible in grouping every
time we consider the placement of a new leecher. To prove
this, consider the placement of leecher 𝑙𝑖. We assume that
all leechers before 𝑙𝑖 are successfully placed in one of the
groups, and these leechers are represented as 𝐿

′
, where

1 ≤ ∣𝐿′ ∣ < ∣𝐿∣. Under this assumption, it is obvious that
grouping is feasible for seed set 𝑆 and leecher set 𝐿

′
. Thus,

it must follow that

𝑢(𝑆) + 𝑢(𝐿
′
)

∣𝐿′ ∣ > 𝑑𝐿𝑚𝑖𝑛.

We now examine whether the configuration is still feasible in
grouping after we bring in 𝑙𝑖. Assume to the contrary that the
grouping is not feasible and

𝑢(𝑆) + 𝑢(𝐿
′
) + 𝑢(𝑙𝑖)

∣𝐿′∣+ 1
< 𝑑𝐿𝑚𝑖𝑛. (6)

From (6), 𝑢(𝑙𝑖) < 𝑑𝐿𝑚𝑖𝑛. Consider the leecher 𝑙𝑖+1 next to 𝑙𝑖
for placement. As 𝑢(𝑙𝑖+1) ≤ 𝑢(𝑙𝑖) < 𝑑𝐿𝑚𝑖𝑛, we have

𝑢(𝑆) + 𝑢(𝐿
′
) + 𝑢(𝑙𝑖) + 𝑢(𝑙𝑖+1)

∣𝐿′∣+ 1 + 1
< 𝑑𝐿𝑚𝑖𝑛.

If we continue this process until the last leecher in line for
placement, we will come to the conclusion that

𝑢(𝑆) + 𝑢(𝐿)

∣𝐿∣ < 𝑑𝐿𝑚𝑖𝑛. (7)

This is a contradiction because configuration (𝑆,𝐿) is feasible
in grouping. Therefore, if we sort the leechers in the descend-
ing order of their upload bandwidth, every time we bring in
a new leecher 𝑙𝑖 for placement, it is always true that

𝑢(𝑆) + 𝑢(𝐿
′
) + 𝑢(𝑙𝑖)

∣𝐿′∣+ 1
≥ 𝑑𝐿𝑚𝑖𝑛. (8)

From (8), we find that grouping is justified in every step of
the leecher grouping process.
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C. Discussions

We follow the mathematical model developed in [4], and
the work assumes that a group of seeds will distribute a file
to a group of leechers that does not have any file piece.
No seed or leecher joins or leaves before the distribution
ends. Example scenarios include scheduled patch updates in
which users would expect to receive a large file at around the
same time. As a static environment is assumed, the grouping
can be computed in a centralized manner. A seed can be
elected as the coordinator, and when a leecher wants to join
the file download process, it should contact the coordinator
seed and report its upload and download capacities. After the
coordinator seed collects all the information, it can determine
the grouping and inform the seeds and leechers to form groups
by themselves. After the grouping is formed, the peers in a
group have to determine how they distribute the file among
them. The message overhead for file distribution depends
on the scheduling algorithm adopted. If the KR scheduling
scheme, which will be described in the next section, is used,
the schedule can be determined at the same time with the
grouping algorithm. No more message is needed as long as the
grouping does not change. Therefore, the message overhead
involved in grouping is similar to that in the BT protocol in
which a leecher needs to contact the tracker to obtain peer
information.

Although we describe our protocol based on the KR algo-
rithm, as Eq. (1) does not depend on the scheduling algorithm,
our protocol can be used to divide a large configuration into
smaller groups such that some groups can have a smaller
theoretically best possible download time of download. In fact,
each group can adopt any scheduling mechanism the peers
agree on. However, not every algorithm can achieve a lower
bound as specified in Eq. (1). If the theoretical download time
analysis of a scheduling algorithm is available, our grouping
mechanism can be enhanced to develop a grouping mechanism
for this scheduling algorithm.

V. IMPACT OF LEECHER FAILURE

A leecher may leave the system before the file distribution
ends. In this section, we address this problem and study the
impact of leecher failure on the minimum download time.
We demonstrate that grouping allows the isolation of the
adverse effect of leecher failure. We will first give a brief
overview of the KR scheduling mechanism before analyzing
the performance.

A. The KR Scheduling Algorithm

We follow the notations developed in Section III-A. As there
is no grouping involved in the KR algorithm, we aggregate
all the seeds to a single one as 𝑆. Then, 𝑢(𝑆) represents the
upload capacity of this seed. In general, the file is divided into
∣𝐿∣ chunks 𝐹1, 𝐹2, ..., 𝐹∣𝐿∣, and the seed distributes chunk 𝐹𝑖
to leecher 𝑙𝑖 directly. Leecher 𝑙𝑖 is responsible for sending 𝐹𝑖
to other leechers in the system (in most cases). The size of 𝐹𝑖
and the rate of sending 𝐹𝑖 are calculated according to which
term determines the minimum download time in Eq.(1). Four
different cases are considered:

Case I: 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹/𝑑
𝐿
𝑚𝑖𝑛 and 𝑑𝐿𝑚𝑖𝑛 ≤ 𝑢(𝐿)

∣𝐿∣−1

…… Fi …… Fj … FLF1

ljli

rij

rji

rsjrsi

Distribute Fi at rate rsi

Fig. 2. The KR Scheduling Algorithm

Case II: 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹/𝑑
𝐿
𝑚𝑖𝑛 and 𝑑𝐿𝑚𝑖𝑛 >

𝑢(𝐿)
∣𝐿∣−1

Case III: 𝑇𝑚𝑖𝑛(𝑆,𝐿) = ∣𝐿∣𝐹/(𝑢(𝐿) + 𝑢(𝑆))
Case IV: 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹/𝑢(𝑆)

Figure 2 illustrates the file distribution process, and Table
IV gives the rates at which the peers exchange the file chunks
in different cases. The rate at which the seed sends the file
to leecher 𝑙𝑖 is 𝑟𝑠𝑖. The rate at which leecher 𝑙𝑖 distributes
information to leecher 𝑙𝑗 is 𝑟𝑖𝑗 . Note that a leecher can
distribute a file piece only after the seed has sent the piece
to it. As the fluid model is assumed, 𝑟𝑠𝑖 ≥ 𝑟𝑖𝑗 for every
pair of leechers 𝑙𝑖 and 𝑙𝑗 . Furthermore, the total rate of 𝑙𝑖
sends to other leechers should not exceed its limit. Therefore,∑∣𝐿∣

𝑗=1,𝑖∕=𝑗 𝑟𝑖𝑗 ≤ 𝑢(𝑙𝑖). Similarly, the rate that 𝑙𝑖 receives from
the seed and other leechers should not be larger than 𝑑(𝑙𝑖).
In Case I, 𝐹𝑖 has a size 𝑢(𝑙𝑖)

𝑢(𝐿)𝐹 (Table IV, 1st column), and

𝑙𝑖 receives 𝐹𝑖 at a rate of 𝑢(𝑙𝑖)
𝑢(𝐿)𝑑

𝐿
𝑚𝑖𝑛 from the seed (Table IV,

2nd column). At the same time, 𝑙𝑖 sends 𝐹𝑖 to 𝑙𝑗 at a rate of
𝑢(𝑙𝑖)
𝑢(𝐿)𝑑

𝐿
𝑚𝑖𝑛 (Table IV, 4th column) and receives 𝐹𝑗 at a rate of

𝑢(𝑙𝑗)
𝑢(𝐿) 𝑑

𝐿
𝑚𝑖𝑛 from leecher 𝑙𝑗 . Note that the total download rate

of 𝑙𝑖 is 𝑑𝐿𝑚𝑖𝑛.
In Case I, 𝑙𝑖 sends 𝐹𝑖 to 𝑙𝑗 at the same rate that it obtains 𝐹𝑖

from the seed. Therefore, when the process terminates after
time 𝐹/𝑑𝐿𝑚𝑖𝑛, all the leechers obtain the whole file chunk
𝐹𝑖. However, in some cases, 𝑙𝑗 relies also on the seed to get
𝐹𝑖. Refer to Case II in the 2nd and 4th columns of Table
IV. Before time 𝑇0, 𝑟𝑠𝑖 > 𝑟𝑖𝑗 , which means that 𝑙𝑖 receives
𝐹𝑖 faster than it distributes to leecher 𝑙𝑗 . After 𝑇0, 𝑙𝑖 has
obtained the whole 𝐹𝑖 but 𝑙𝑗 has not. At this time, the seed
also helps 𝑙𝑗 to obtain 𝐹𝑖 by sending 𝐹𝑖 at a rate specified in
the 3rd column of Table IV. Due to space limitation, we refer
interested readers to [4] for the detailed explanations of the
whole scheduling mechanism.

B. Impact of Leecher Failure on the KR Algorithm

If leecher 𝑙𝑖 leaves the system before the whole distribution
process ends, the portion of 𝐹𝑖 that 𝑙𝑖 is responsible for
distributing but has not yet sent to other leechers is affected.
As only the seeds possess this portion after 𝑙𝑖 has left, it
has to distribute this remaining portion of 𝐹𝑖. There are two
ways to handle this situation. One way is treating this affected
portion as a new file, while another file distribution is launched
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TABLE IV
RATE PROFILE OF LEECHER 𝑙𝑖

Case Size of Rate at which Rate at which Rate at which
𝐹𝑖 𝑙𝑖 downloads 𝐹𝑖 𝑙𝑖 downloads 𝐹𝑗 𝑙𝑖 sends 𝐹𝑖

from 𝑆 (𝑟𝑠𝑖) from 𝑆 to 𝑙𝑗 (𝑟𝑖𝑗)
[1st column] [2nd column] [3rd column] [4th column]

I 𝑢(𝑙𝑖)
𝑢(𝐿)𝐹

𝑢(𝑙𝑖)
𝑢(𝐿)𝑑

𝐿
𝑚𝑖𝑛 0 𝑢(𝑙𝑖)

𝑢(𝐿)𝑑
𝐿
𝑚𝑖𝑛

II
𝐹 (𝑑𝐿

𝑚𝑖𝑛+
𝑢(𝑙𝑖)−𝑢(𝐿)

∣𝐿∣−1
)

∣𝐿∣𝑑𝐿
𝑚𝑖𝑛−𝑢(𝐿)

Before 𝑇0, Before 𝑇0, 0; 𝑢(𝑙𝑖)
∣𝐿∣−1

𝑑𝐿𝑚𝑖𝑛 + 𝑢(𝑙𝑖)−𝑢(𝐿)
∣𝐿∣−1 ; After 𝑇0,

After 𝑇0, 0. 𝑑𝐿
𝑚𝑖𝑛−𝑢(𝑙𝑗)
∣𝐿∣−1

(𝑇0 = 𝐹
∣𝐿∣𝑑𝐿

𝑚𝑖𝑛−𝑢(𝐿)
) (𝑇0 = 𝐹

∣𝐿∣𝑑𝐿
𝑚𝑖𝑛−𝑢(𝐿)

)

III ( 𝑢(𝑙𝑖)
∣𝐿∣−1 + 𝑢(𝑆)

∣𝐿∣ − 𝑢(𝐿)
∣𝐿∣(∣𝐿∣−1))

𝐹
𝑢(𝑆) Before 𝑇0, Before 𝑇0, 0; 𝑢(𝑙𝑖)

∣𝐿∣−1
𝑢(𝑙𝑖)
∣𝐿∣−1 + 1

∣𝐿∣(𝑢(𝑆)− 𝑢(𝐿)
∣𝐿∣−1); After 𝑇0,

After 𝑇0, 0. 𝑢(𝑆)+𝑢(𝐿)
∣𝐿∣(∣𝐿∣−1) − 𝑢(𝑙𝑗)

∣𝐿∣−1
(𝑇0 = 𝐹

𝑢(𝑆) ) (𝑇0 = 𝐹
𝑢(𝑆) )

IV 𝑢(𝑙𝑖)
𝑢(𝐿)𝐹

𝑢(𝑙𝑖)
𝑢(𝐿)𝑢(𝑆) 0 𝑢(𝑙𝑖)

𝑢(𝐿)𝑢(𝑆)

using the remaining upload and download capacities of the
seeds and leechers without affecting the distribution of other
file chunks. Another approach is to collect the undistributed
portions of all the file chunks as a new file and restart the
distribution. The first approach is simpler, but it cannot reduce
the distribution time. To illustrate, let us assume the leecher
𝑙 where 𝑑(𝑙) = 𝑑𝐿𝑚𝑖𝑛 leaves the system and 𝐿′ = 𝐿∖{𝑙}.
We further assume that this configuration belongs to Case
I. In Case I, 𝑇𝑚𝑖𝑛(𝑆,𝐿) is 𝐹/𝑑𝐿𝑚𝑖𝑛. After 𝑙 has left, as all
leechers are still using the rate of 𝑑𝐿𝑚𝑖𝑛 to download the file,
the download time cannot be reduced. On the other hand, if the
undownloaded portions of the file chunks can be collected as a
new file, as 𝑙 has left, then 𝐹/𝑑𝐿

′
𝑚𝑖𝑛 is smaller than 𝑇𝑚𝑖𝑛(𝑆,𝐿),

and the remaining peers can obtain the file faster.

A complete analysis involves four different cases of the two
approaches, making up a total of eight variants. Due to space
limitation, we only focus on the second approach because it
makes the reduction of the download time possible. We start
with Cases I and II. In these two cases, 𝑇𝑚𝑖𝑛(𝑆,𝐿) = 𝐹/𝑑

𝐿
𝑚𝑖𝑛

and 𝑢(𝑆) ≥ 𝑑𝐿𝑚𝑖𝑛. Let 𝑇 ′𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) be the total time needed
to distribute the file in the case where a leecher fails.

1) Case I: Assume at time 𝑡, leecher 𝑙𝑖 fails, and the current
distribution process is suspended. A new file of size 𝐹 ′, which
consists of the undownloaded portion of the original file, is
created and distributed to the remaining ∣𝐿∣ − 1 leechers.
Let 𝐿′ = 𝐿∖{𝑙𝑖}, thus 𝑢(𝐿′) = 𝑢(𝐿) − 𝑢(𝑙𝑖). The minimum
distribution time after reorganizing the distribution is

𝑇 ′𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) = 𝑡+
𝐹 ′

𝑚𝑖𝑛{𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 }

.

As

𝐹 ′ = 𝐹 −
∣𝐿∣∑
𝑖=1

𝑢(𝑙𝑖)

𝑢(𝐿)
(𝑑𝐿𝑚𝑖𝑛 ∗ 𝑡) = 𝐹 − 𝑑𝐿𝑚𝑖𝑛 ∗ 𝑡,

by the fact that 𝑢(𝑆) ≥ 𝑑𝐿𝑚𝑖𝑛,

𝐹 ′

𝑢(𝑆)
≤ 𝐹

𝑑𝐿𝑚𝑖𝑛

− 𝑡 = 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 )− 𝑡.

As 𝑑𝐿
′

𝑚𝑖𝑛 ≥ 𝑑𝐿𝑚𝑖𝑛,

𝐹 ′

𝑑𝐿
′

𝑚𝑖𝑛

≤ 𝐹

𝑑𝐿𝑚𝑖𝑛

− 𝑡 = 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 )− 𝑡.

Therefore, the distribution process will not be prolonged
if 𝑢(𝑆)+𝑢(𝐿′)

∣𝐿∣−1 is larger than or equal to either 𝑢(𝑆) or 𝑑𝐿
′

𝑚𝑖𝑛.

We now study if 𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 is the smallest among 𝑢(𝑆) and

𝑑𝐿
′

𝑚𝑖𝑛 and under what condition 𝑇 ′𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) is larger than
𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ). For simplicity, we let 𝑑𝐿𝑚𝑖𝑛 be 𝑑.

𝐹 ′
𝑢(𝑆)+𝑢(𝐿′)

∣𝐿∣−1

+ 𝑡 > 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 )

iff. 𝐹 ′(∣𝐿∣−1)
𝑢(𝑆)+𝑢(𝐿′) > 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 )− 𝑡

iff. (𝐹−𝑑∗𝑡)(∣𝐿∣−1)
𝑢(𝑆)+𝑢(𝐿′) > 𝐹

𝑑 − 𝑡
iff. (𝐹−𝑑∗𝑡)(∣𝐿∣−1)

𝑢(𝑆)+𝑢(𝐿′) > 𝐹
𝑑 − 𝑡

iff. 𝑑 ∗ (∣𝐿∣ − 1) > 𝑢(𝑆) + 𝑢(𝐿′)
iff. 𝑢(𝑙𝑖) > 𝑢(𝑆) + 𝑢(𝐿)− 𝑑 ∗ (∣𝐿∣ − 1)

The above analysis shows that if 𝑢(𝑙𝑖) > 𝑢(𝑆) +

𝑢(𝐿)− 𝑑𝐿𝑚𝑖𝑛 ∗ (∣𝐿∣ − 1) and 𝑚𝑖𝑛{𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 } =

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 , the distribution process will be prolonged after 𝑙𝑖

fails.

2) Case II: We again let 𝑙𝑖 leave at time 𝑡 before the
whole distribution process is complete, and 𝐿′ = 𝐿∖{𝑙𝑖}.
Refering to Table IV, before time 𝑇0, as 𝑟𝑠𝑘 > 𝑟𝑘𝑗 , leecher 𝑙𝑘
possesses part of 𝐹𝑘 that it has not sent to another leecher
yet. Therefore, if the file distribution is suspended at this
time due to the departure of leecher 𝑙𝑖, for each file chunk
𝐹𝑘 where 𝑘 ∕= 𝑖, 𝑙𝑘 possesses more of 𝐹𝑘 than the other
remaining leechers. This portion of 𝐹𝑘, which 𝑙𝑘 has already
obtained while other leechers have not, should not be collected
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as a new file for distribution as a new file should contain
the information that all leechers do not have. We refer the
file portion of 𝐹𝑘 that some but not all leechers possess as
𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡), where 𝑘 = 1, 2, ...∣𝐿∣ − 1 and 𝑘 ∕= 𝑖. Each leecher
𝑙𝑘 has its own unique 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡). In summary, the original file
consists of three parts: (1) the portion where every leecher
has obtained (𝐹𝑑𝑜𝑛𝑒), (2) the file portion that some but not all
remaining leechers have (𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡)), and (3) the file portion
that no remaining leecher possesses (𝐹 ′). We now analyze the
sizes of 𝐹𝑑𝑜𝑛𝑒 and 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡). There are two situations: 𝑡 < 𝑇0
and 𝑡 ≥ 𝑇0. To simplify the notations, we overload 𝐹𝑑𝑜𝑛𝑒 to
refer to both the file chunk itself and the size of the file chunk.
The same applies to 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡) and 𝐹 ′.
When 𝑡 < 𝑇0
In this case, only 𝑙𝑖 sends 𝐹𝑖 to 𝑙𝑘, and the size of 𝐹𝑑𝑜𝑛𝑒 is

𝐹𝑑𝑜𝑛𝑒 =

∣𝐿∣∑
𝑖=1

𝑟𝑖𝑘 ∗ 𝑡 =
∣𝐿∣∑
𝑖=1

𝑢(𝑙𝑖)

∣𝐿∣ − 1
𝑡 =

𝑢(𝐿)

∣𝐿∣ − 1
𝑡 (9)

𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡) = (𝑟𝑠𝑘 − 𝑟𝑘𝑗) ∗ 𝑡 = (𝑑𝐿𝑚𝑖𝑛 − 𝑢(𝐿)

∣𝐿∣ − 1
) ∗ 𝑡 (10)

When 𝑡 ≥ 𝑇0
In this situation, 𝑙𝑘 has downloaded the whole file chunk 𝐹𝑘
and thus 𝑟𝑠𝑘 = 0. 𝑙𝑘 is still sending 𝐹𝑘 to 𝑙𝑗 at a rate of
𝑟𝑘𝑗 . Moreover, the seed is also sending 𝐹𝑘 to 𝑙𝑗 at a rate of
𝑟 specified in the 3rd column of Table IV. Therefore,

𝐹𝑑𝑜𝑛𝑒 =

∣𝐿∣∑
𝑖=1

𝑟𝑖𝑘 ∗ 𝑡+
∣𝐿∣∑
𝑖=1

𝑑𝐿𝑚𝑖𝑛 − 𝑢(𝑙𝑖)
∣𝐿∣ − 1

(𝑡− 𝑇0)

=
∣𝐿∣𝑑𝐿𝑚𝑖𝑛𝑡− 𝐹

∣𝐿∣ − 1
(11)

𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡) = 𝐹𝑘 − 𝑟𝑘𝑗 ∗ 𝑡− 𝑟 ∗ (𝑡− 𝑇0)

=
𝐹 − 𝑑𝐿𝑚𝑖𝑛𝑡

∣𝐿∣ − 1
(12)

From Eq. (10) and Eq. (12), 𝐹 𝑘
𝑠𝑦𝑛𝑐(𝑡) is the same for every

possible 𝑘. We use 𝐹𝑎𝑠𝑦𝑛(𝑡) to represent the collection of all
the 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡), and its size is (∣𝐿∣ − 1) ∗ 𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡). Therefore,

𝐹 ′ = 𝐹 − 𝐹𝑑𝑜𝑛𝑒 − (∣𝐿∣ − 1) ∗ 𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡). (13)

When we reorganize the distribution, we only have to
consider 𝐹𝑎𝑠𝑦𝑛(𝑡) and 𝐹 ′. For 𝐹 ′, we can apply the KR
scheduling mechanism just as in Case I. On the other hand,
we found that the situation where part of the file is possessed
by some but not all leechers is similar to the circumstance in
Case II after 𝑇0. Hence, we can adopt the same technique to
handle 𝐹𝑎𝑠𝑦𝑛(𝑡). We now analyze the following approach of
distribution. After leecher 𝑙𝑖 leaves, 𝐹𝑎𝑠𝑦𝑛(𝑡) is first distributed
among the leechers so that every leecher finally obtains the
whole 𝐹𝑎𝑠𝑦𝑛(𝑡). Then, 𝐹 ′ is distributed as a new file.

In distributing 𝐹𝑎𝑠𝑦𝑛(𝑡), the objective is to synchronize all
the file portions being held by all the remaining leechers. That
is, we want to distribute 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡) to leecher 𝑙𝑗 where 𝑗 ∕= 𝑖, 𝑘.
In Case II after time 𝑇0, leecher 𝑙𝑘 has already obtained the
whole file chunk 𝐹𝑘 and thus 𝑟𝑠𝑘 = 0. Therefore, the seeds

and leecher 𝑙𝑘 together distribute 𝐹𝑘 to the other leechers.
According to Case II in Table IV, the sum of the 3rd column
and the 4th column represents the total download rate of
a leecher 𝑙𝑗 for receiving file chunk 𝐹𝑘 after 𝑇0, which is
𝑑𝐿
𝑚𝑖𝑛

∣𝐿∣−1 . 𝑑𝐿𝑚𝑖𝑛 is the bottleneck rate of the configuration, and 𝑙𝑗
receives ∣𝐿∣− 1 file chunks from other leechers. Applying the
same idea, when distributing 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡), 𝑙𝑗 receives at a rate of
1

∣𝐿∣−2 min {𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 }. As all the 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡) are
of the same size, the distributions of the different 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡)
will finish at the same time. Let 𝑡𝑠𝑦𝑛𝑐 be the time needed in
this phase and

𝑡𝑠𝑦𝑛𝑐 =
𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡)

1
∣𝐿∣−2 min {𝑢(𝑆), 𝑑𝐿′

𝑚𝑖𝑛,
𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 }

The minimum distribution time after reorganizing the dis-
tribution is thus

𝑇 ′𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) = 𝑡+ 𝑡𝑠𝑦𝑛𝑐 +
𝐹 ′

min {𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 }

.

That is,

𝑇 ′𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) = 𝑡+
(∣𝐿∣ − 2)𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡) + 𝐹
′

min {𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 }

. (14)

By Eq. (13),

(∣𝐿∣ − 2)𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡) + 𝐹

′ = 𝐹 − 𝐹𝑑𝑜𝑛𝑒 − 𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡). (15)

When 𝑡 < 𝑇0, by Eqs. (9) and (10),

(∣𝐿∣ − 2)𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡) + 𝐹

′ = 𝐹 − 𝑑𝐿𝑚𝑖𝑛𝑡.

When 𝑡 ≥ 𝑇0, by Eqs. (11) and (12),

(∣𝐿∣ − 2)𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡) + 𝐹

′ = 𝐹 − 𝑑𝐿𝑚𝑖𝑛𝑡 as well.

Following the same explanation in Case I, if 𝑢(𝑙𝑖) > 𝑢(𝑆)+
𝑢(𝐿)− 𝑑𝐿𝑚𝑖𝑛 ∗ (∣𝐿∣ − 1) and 𝑚𝑖𝑛{𝑢(𝑆), 𝑑𝐿′

𝑚𝑖𝑛,
𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 } =

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 , the distribution process will be prolonged after 𝑙𝑖

fails.

3) Case III: This case is similar to Case II in the sense
that 𝑟𝑠𝑖 > 𝑟𝑖𝑗 . Therefore, when the distribution is suspended,
as in Case II, we have 𝐹𝑑𝑜𝑛𝑒, 𝐹 𝑘

𝑎𝑠𝑦𝑛(𝑡), and 𝐹 ′.
When 𝑡 < 𝑇0

𝐹𝑑𝑜𝑛𝑒 =

∣𝐿∣∑
𝑖=1

𝑟𝑖𝑘 ∗ 𝑡 =
∣𝐿∣∑
𝑖=1

𝑢(𝑙𝑖)

∣𝐿∣ − 1
𝑡 =

𝑢(𝐿)

∣𝐿∣ − 1
𝑡 (16)

𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡) = (𝑟𝑠𝑘 − 𝑟𝑘𝑗) ∗ 𝑡 = 1

∣𝐿∣ (𝑢(𝑆)−
𝑢(𝐿)

∣𝐿∣ − 1
) ∗ 𝑡 (17)

When 𝑡 ≥ 𝑇0

𝐹𝑑𝑜𝑛𝑒 =

∣𝐿∣∑

𝑖=1

𝑟𝑖𝑘 ∗ 𝑡+
∣𝐿∣∑

𝑖=1

(
𝑢(𝑆) + 𝑢(𝐿)

∣𝐿∣(∣𝐿∣ − 1)
− 𝑢(𝑙𝑖)

∣𝐿∣ − 1
)(𝑡− 𝑇0)

=
(𝑢(𝑆) + 𝑢(𝐿))𝑡− 𝐹

∣𝐿∣ − 1
(18)
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𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡) = 𝐹𝑘 − 𝑟𝑘𝑗 ∗ 𝑡− 𝑟 ∗ (𝑡− 𝑇0)

=
1

∣𝐿∣ − 1
(𝐹 − 𝑢(𝑆) + 𝑢(𝐿)

∣𝐿∣ 𝑡) (19)

Eqs. (13), (14), and (15) still apply. Therefore, for any 𝑡,

(∣𝐿∣ − 2)𝐹 𝑘
𝑎𝑠𝑦𝑛(𝑡) + 𝐹

′ = 𝐹 − 𝑢(𝑆) + 𝑢(𝐿)

∣𝐿∣ 𝑡

In this case, if 𝑢(𝑙𝑖) > 𝑢(𝑆)+𝑢(𝐿)
∣𝐿∣ and

𝑚𝑖𝑛{𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 } = 𝑢(𝑆)+𝑢(𝐿′)

∣𝐿∣−1 , the distribution
process will be prolonged after 𝑙𝑖 fails.

4) Case IV: In this case, it is not possible for the perfor-
mance to improve. We prove by contradiction and assume to
the contrary that 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) > 𝑇

′
𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ). Then,

𝐹 ′

𝑢(𝑆)
+ 𝑡 >

𝐹 ′

min{𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 }

+ 𝑡

⇒ 𝐹 ′

𝑢(𝑆)
>

𝐹 ′

min {𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆)+𝑢(𝐿′)
∣𝐿∣−1 }

⇒ 𝑢(𝑆) < min{𝑢(𝑆), 𝑑𝐿′
𝑚𝑖𝑛,

𝑢(𝑆) + 𝑢(𝐿′)
∣𝐿∣ − 1

}. (20)

Eq. (20) is not possible because the left hand side of the
inequality cannot be smaller than 𝑢(𝑆).

C. Leecher Failure in Grouping

We now use an example to show that when grouping is
applied, and the leecher with the highest upload bandwidth
leaves before the distribution ends, the average download time
can still be smaller than that in the case where no grouping is
applied. Tables V and VI show the bandwidth configuration
of a system with three seeds and six leechers.

TABLE V
UPLOAD BANDWIDTH OF SEEDS

Peers 𝑠1 𝑠2 𝑠3
𝑢(𝑠𝑖)/𝐾𝑏𝑝𝑠 150 200 250

TABLE VI
UPLOAD AND DOWNLOAD BANDWIDTH OF LEECHERS

Peers 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙6
𝑢(𝑙𝑖)/𝐾𝑏𝑝𝑠 50 50 50 150 150 250
𝑑(𝑙𝑖)/𝐾𝑏𝑝𝑠 150 150 250 300 400 350

From Tables V and VI, we have 𝑢(𝑆) = 600 Kbps,
𝑢(𝐿) = 700 Kbps, 𝑢(𝐿)+𝑢(𝑆)

∣𝐿∣ = 216.7 Kbps, and 𝑑𝐿𝑚𝑖𝑛 = 150

Kbps. As 𝑑𝐿𝑚𝑖𝑛 < min {𝑢(𝑆), 𝑢(𝐿)+𝑢(𝑆)
∣𝐿∣ } and 𝑑𝐿𝑚𝑖𝑛 >

𝑢(𝐿)
∣𝐿∣−1 ,

the configuration falls in Case II as discussed before. As
𝑢 = 𝑢(𝑆)+𝑢(𝐿)− (∣𝐿∣−1)𝑑𝐿𝑚𝑖𝑛 = 550 Kbps and 𝑢(𝑙6) < 𝑢,
we know that the system performance will not be degraded
if 𝑙6 fails during the file distribution process. After applying
the calculation described in the previous section, we find
that 𝑇𝑚𝑖𝑛(𝑆,𝐿, 𝐹 ) = 𝑇𝐾𝑅

𝑎𝑣𝑔 (𝑆,𝐿, 𝐹 ) = 2000 s, so that the

l3

S1
S3

l4

S2

l1

l5

l6

l2

Fig. 3. Grouping result using the seeds and leechers in Tables V and VI.

performance remains unchanged even if 𝑙6 fails when grouping
is not adopted.

The configuration is feasible in grouping. If we apply the
grouping protocol, we have the following grouping result
illustrated in Fig. 3: 𝐺1 = {𝑠1, 𝑙1}, 𝐺2 = {𝑠2, 𝑙2} and
𝐺3 = {𝑠3, 𝑙3, 𝑙4, 𝑙5, 𝑙6}.

We now assume 𝑙6 of 𝐺3 fails. In 𝐺3, 𝑢(𝑆3) = 250

Kbps, 𝑢(𝐿3) = 600 Kbps, 𝑢(𝑆3)+𝑢(𝐿3)
∣𝐿3∣ = 212.5 Kbps,

𝑑𝐿3

𝑚𝑖𝑛 = 250 Kbps. As 𝑢(𝑆3)+𝑢(𝐿3)
∣𝐿3∣ < min {𝑢(𝑆3), 𝑑𝐿3

𝑚𝑖𝑛},
the bandwidth characteristics of 𝐺3 fall in Case III in the
above section. As 𝑢 = 𝑢(𝑆3)+𝑢(𝐿3)

∣𝐿3∣ = 212.5 Kbps, the failure
of 𝑙6 will cause the system performance to suffer because
𝑢(𝑙6) > 𝑢. After calculation, 𝑇𝑚𝑖𝑛(𝑆3, 𝐿3, 𝐹 ) = 1493.75 s
and 𝑇𝐺

𝑎𝑣𝑔(𝑆,𝐿, 𝐹 ) = 1662.5 s. From the results above, we can
see that although the performance in the grouped case suffers
after 𝑙6 fails, 𝑇𝐺

𝑎𝑣𝑔(𝑆,𝐿, 𝐹 ) is still less than 𝑇𝐾𝑅
𝑎𝑣𝑔 (𝑆,𝐿, 𝐹 )

when grouping is not applied. Hence, grouping can bring about
benefits even when the leecher with the largest bandwidth fails.

Moreover, when grouping is used, reorganization occurs
only within the group that is affected, which is much simpler
compared with the redistribution of the whole system. In
fact, by grouping, reorganization becomes scalable because
even when there are many seeds and leechers, our grouping
mechanism will partition them into groups of small sizes. The
effect of leecher failure is then isolated to a smaller group
only.

VI. PERFORMANCE EVALUATION

We conduct extensive simulations to evaluate the perfor-
mance improvement of our grouping mechanisms. We assume
the grouping is calculated by a coordinator seed as mentioned
in Section IV-C, and no peer leaves before the distribution
ends. Therefore, each seed/leecher only needs to send one
message to the coordinator seed to report its bandwidth
capacity, making up a total of 𝑂(∣𝑆∣ + ∣𝐿∣) messages. To
measure the distribution time performance of our grouping
mechanism, we use 𝜌 as defined in Eq. (2). The ratio means
total time to distribute the file/average time to distribute the
file. We use the same ratio for the BT-like algorithm. However,
because the BT-like algorithm is not a perfect algorithm, the
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total time for distributing the file must not be smaller than the
time it takes for our grouping mechanism.

A. Simulation Setup

We vary the size of 𝑆, the size of 𝐿, and the upload and
download capacities of the peers to observe the performance.
Table VII summarizes the simulation parameters.

TABLE VII
SIMULATION PARAMETERS

∣𝑆∣ [1, 20]
∣𝐿∣ [20, 140]
𝑢(𝑠) [56𝐾𝑏𝑝𝑠, 12𝑀𝑏𝑝𝑠]
𝑑(𝑙) [36𝐾𝑏𝑝𝑠, 12𝑀𝑏𝑝𝑠]

We set the lower bound of the seed upload limit to 56 Kbps
because this estimates the speed of the dial-up service. On
the other hand, 12 Mbps is close to the speed available in
ADSL2 [29]. The lower bound of 𝑑(𝑙) is smaller than the
lower bound of 𝑢(𝑠) because not all peers connect to high-
speed dial-ups. We use different ranges of 𝑢(𝑙) to evaluate
our protocol. Basically, 𝑢(𝑙) is in the range of [𝑝, 𝑝∗ 𝑞], where
𝑝 = 20 Kbps, which is also the lower limit used in [23]. We
select 𝑞 to be 50, 100, and 180 to study the performance when
the upload capacities of the leechers are of different degrees
of diversities. Note that the upload capacities of leechers
are smaller than their download bandwidth to simulate the
current widely used ADSL technology. Each data point in
every figure is the average result of 30 different configurations.
Note that because we generate configurations randomly, it is
possible that some configurations are not feasible in grouping,
as defined in Section III-B. That is, grouping does not bring
about benefits in these configurations. To evaluate the effect of
grouping more directly, we ignore the overheads in setting up
the TCP connections among peers and in the packet headers.

For comparison, we develop a BT-like algorithm. There are
100 file pieces. Initially, leechers do not have any file piece,
and each leecher makes a request for a randomly selected
file piece. Afterwards, the rarest-piece-first mechanism is used
to select the file piece to request. The request is sent to a
randomly selected peer. Each peer serves one request at a time,
and it can download one piece at most at any time. Each peer
buffers one pending request at most. That is, when a request
arrives when a peer is serving another peer, if the buffer is
empty, the peer receiving this request puts the request in the
buffer. If there is another request in the buffer, this newly
arrived request is rejected. If the request it sends is rejected,
the leecher waits for time 𝑡 before sending the same request
to another peer. 𝑡 is selected uniformly from [0𝑠, 1𝑠].

B. Simulation Results

Figs. 4 and 5 show the performance improvement ratios 𝜌
of our mechanism and the BT-like mechanism from different
viewing perspectives of the same 3-D plot. Fig. 4 demonstrates
the performance when there are more than 100 leechers while
Fig. 5 provides the results when there are around 20 leechers.
The larger 𝜌, the better the performance. The first three planes

Fig. 4. Performance comparison of BitTorrent and Greedy Grouping over
varying 𝑞, number of seeds and leechers, view 1. From top to bottom: Greedy
grouping with 𝑞 = 180, 100 and 50, and BitTorrent with 𝑞 = 180, 100, and
50.

Fig. 5. Performance comparison of BitTorrent and Greedy Grouping over
varying 𝑞, number of seeds and leechers, view 2. From top to bottom: Greedy
grouping with 𝑞 =180, 100, and 50, and BitTorrent with 𝑞 =180, 100, and 50.

from the top are the results of our algorithm when 𝑞 are 180,
100, and 50, respectively. The lower planes are the results of
the BT-like mechanism. Since they are too close to each other
in Figs. 4 and 5, we put them separately in Figs. 6 and 7 for
better illustration.

Our simulation results show that the Greedy leecher group-
ing algorithm outperforms the BT-like mechanism. The im-
provement is very significant when the system consists of
many seeds and leechers. We now describe the relations
between 𝜌 and different parameters.

Number of seeds
From Fig. 4, it can be observed that the performance of our
protocol is better when there are more seeds. There are several
reasons. First, when there are more seeds, it is more likely
that 𝑢(𝑆) > 𝑑𝐿𝑚𝑖𝑛, which means that it is more likely that
the configuration is feasible in grouping. On the other hand,
given more seeds, the configuration can be partitioned into
more groups and the effect of slow leecher can be isolated to
a smaller group. Fewer leechers will be affected by this slow
leecher and the average download time can be reduced.

Number of leechers
𝜌 also increases when there are more leechers. Note that
grouping cannot be applied unless 𝑑𝐿𝑚𝑖𝑛 is small enough
to become a bottleneck, as shown in Section III-B. When
grouping is not applied, our mechanism does not bring about
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Fig. 6. Performance of BitTorrent over varying 𝑞, number of seeds and
leechers, view 1. From top to bottom: BitTorrent with 𝑞 = 180, 100, and 50.

Fig. 7. Performance of BitTorrent over varying 𝑞, number of seeds and
leechers, view 2. From top to bottom: BitTorrent with 𝑞 =180, 100, and 50.

benefits and cannot reduce the average download time. When
there are more leechers, it is more likely that the configuration
is a feasible one as there is a higher chance that there is
a leecher with a small download capacity. Therefore, the
performance increases when the number of leechers increases.

Diversity of leecher upload capacities
We generate leecher upload capacities from the range of
[𝑝, 𝑝 ∗ 𝑞], where 𝑝 is set to 20 Kbps. Larger 𝑞 implies a
higher diversity among the leecher upload bandwidth, and
the performance becomes better in general. However, we
observe from Figs. 4 and 5 that the difference in performance
is larger when there are more leechers. To understand this
behavior, we study the relation between number of leechers
and the value of 𝑢(𝑆)+𝑢(𝐿)

∣𝐿∣ , as shown in Fig. 8. It can

be observed that 𝑢(𝑆)+𝑢(𝐿)
∣𝐿∣ is larger when 𝑞 is larger. If

𝑇𝑚𝑖𝑛(𝑆,𝐿) =
∣𝐿∣𝐹

𝑢(𝑆)+𝑢(𝐿) , a larger 𝑞 implies larger 𝑢(𝑆)+𝑢(𝐿)
∣𝐿∣

and a smaller 𝑇𝑚𝑖𝑛(𝑆,𝐿).
When ∣𝐿∣ is large, it is very likely that the configuration

is feasible, and grouping can be applied. After partitioning 𝑆
and 𝐿 into smaller groups, these small groups (𝑆𝑖, 𝐿𝑖) very
often have a 𝑇𝑚𝑖𝑛(𝑆𝑖, 𝐿𝑖) =

∣𝐿𝑖∣𝐹
𝑢(𝑆𝑖)+𝑢(𝐿𝑖)

. Therefore, a larger 𝑞
would reduce the average download time. However, when ∣𝐿∣
is small, and many configuration are not feasible in grouping,
the effect of 𝑞 would not be obvious.

Performance of the BT-like mechanism
Figs. 4 and 5 demonstrate that our protocol outperforms the
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BT-like mechanism in all configurations. Moreover, Figs. 6
and 7 show a similar trend as in our protocol when the
number of seeds increases. However, the BT-like mechanism
has better performance when there are fewer leechers, and this
is different from our grouping algorithm. When the number of
leechers increases, it is much more likely that the minimum
download time is 𝐹 ∣𝐿∣

𝑢(𝑆)+𝑢(𝐿) . From Fig. 8, 𝑢(𝑆)+𝑢(𝐿)
∣𝐿∣ is smaller

when there are more leechers in the system. Therefore, if
𝑇𝑚𝑖𝑛(𝑆,𝐿) =

𝑢(𝑆)+𝑢(𝐿)
∣𝐿∣ , 𝑇𝑚𝑖𝑛(𝑆,𝐿) will increase when the

number of leechers increases and the performance suffers.
In summary, our simulation results show that our protocol

can effectively reduce the average download time of a wide
range of configurations. Our mechanism is particularly useful
when there are many seeds and leechers in the system.

VII. CONCLUSION AND FUTURE WORKS

P2P content distribution networks have been largely em-
ployed for file distributions over the Internet. In evaluating
the performance of such systems, file distribution time is an
important measure. In this paper, we first briefly introduce the
theoretical minimum time needed for file distribution under
the fluid model derived by Kumar and Ross. Next, we study
the factors affecting the distribution time. Subsequently, we
propose the greedy grouping mechanism to reduce further
the average download time without prolonging the minimum
download time. Our scheme organizes the seeds and the
leechers based on their upload and download bandwidth
characteristics. The performance is enhanced by isolating slow
leechers and reducing their negative effects on other leechers.
Simulation results are supplied to illustrate the performance
under a wide range bandwidth capacities.

The advantages brought by grouping are not limited to what
we have mentioned above. We then demonstrate the robustness
of grouping in the event of leecher failure. The impact of
leecher failure is contained to a fraction of the leechers. We
propose two strategies to handle leecher failure situations. One
way is to treat the affected file portion as a new file and launch
a new file distribution using the remaining resources. This way,
the distribution of other file chucks are unaffected. Another
way is to combine the undistributed partitions as a new file
and start a new file distribution. Subsequently, we derive the
conditions in which the performance improves after a leecher
fails for different cases.

In summary, this paper studies how to reduce the average
download time and the grouping strategy from a theoretical



162 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 3, SEPTEMBER 2009

perspective. In the future, we would like to investigate how
to apply the theoretical results to a practical situation where
nodes are more dynamic, and peers may possess some part of
the file when they join the network. On the other hand, group-
ing can work complimentarily with many other file sharing
mechanisms. Our preliminary results show that our grouping
mechanism also works well with the tit-for-tat strategy of the
BT protocol to reduce further the average download time. We
would like to conduct more extensive studies in this direction
in our future works.
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